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Estimation of Displacements from Two
3-D Frames Obtained from Stereo

Zhengyou Zhang and Olivier D. Faugeras, Senior Member, IEEE

Abstract— We present a method for estimating 3-D displace-
ments from two stereo frames. It is based on the hypothesize-
and-verify paradigm used to match 3-D line segments between
the two frames. In order to reduce the complexity of the method,
we make the assumption that objects are rigid. We formulate
a set of complete rigidity constraints for 3-D line segments and
integrate the uncertainty of measurements in this formulation.
The hypothesize-and-verify stages of the method use an extended
Kalman filter to produce estimates of the displacements and of
their uncertainty. In the experimental sections, the algorithm is
shown to work on indoor and natural scenes. Furthermore, it is
easily extended, as is also shown, to the case where several mobile
objects are present. The method is quite robust, fast, and has been
thoroughly tested on hundreds of real stereo frames.

Index Terms— Extended Kalman filtering, hypothesize-and-
verify, motion from stereo, multiple object motions, rigidity
constraints, robot vision, 3-D matching, uncertainty.

I. INTRODUCTION

OTION ANALYSIS is a very important research field

in robot vision and is essential for the interpretation

of 3-D dynamic scenes. Its applications include mobile robot
navigation, scene segmentation, construction of a world model,
dynamic surveillance, and object tracking. Most previous
research efforts have been on the motion analysis of a sequence
of monocular images [1}-[3]. With the development of stere-
ovision systems and range finders [4]-[9], the computation of
motion from 3-D data becomes a more attractive technique.
Our research focuses on motion analysis from 3-D frames
that are obtained at different instants by a stereo system
when the mobile robot navigates in an unknown environment
possibly containing some moving rigid objects. The features
reconstructed by our stereo are 3-D-oriented line segments.
The orientation is obtained from the image intensity contrast.
The problem of determining the 3-D structure and motion
of objects from image data has been extensively studied by
computer scientists for more than a decade. Table I summarizes
the current approaches to motion analysis. They are first
distinguished from each other according to whether they use
either the changes of feature positions or those of gray levels
between adjacent frames. The first approach is usually called
feature tracking, and the second is known as optical flow.
In each case, one can consider the number of frames used:
short sequence analysis (two or three frames) or long sequence
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TABLE I
SUMMARY OF APPROACHES TO MOTION ANALYSIS
changes sequence dimension
features short (2 or 3) 2-D
gray levels long (> 4) 3-D

analysis (more than four). One can further classify the current
approaches according to the dimension of the available data. If
we have only one image at each instant, we have only 2-D data,
and the problem is called monocular sequence analysis. If we
have two or three images at each instant, we can reconstruct
3-D data using stereo, and the problem is called binocular
or trinocular sequence analysis. We can thus roughly divide
existing methods into eight categories.

We do not intend to review all previous work here. The
reader is referred to [10]-[15] for the work related to the
optical flow approach, to [16]-[22] for the work related to
the motion estimation from 2-D feature correspondences over
two or three frames, and to {23]-[28] for the work related to
(2-D or 3-D) feature tracking approaches using a large number
of frames. Those references are by no means exhaustive. The
work reported in this paper falls into the category of motion
analysis using 3-D data from stereo over two frames.

The problem is usually tackled in two steps. The first
step is to establish feature correspondences between two
frames. The correspondence (matching) problem is recognized
as a very difficult one. The rigidity assumption provides a
powerful constraint to simplify the analysis and is used in
almost all matching algorithms. Pollard et al. [29] describe a
matching strategy combining the local feature focus method
proposed in [30] and {31] and the constrained tree-search
technique using rigidity constraints proposed in [32]. Chen
and Huang [33] propose an approach to match two sets of 3-D
points, which also exploits the rigidity constraints. Due to the
completeness of the defined constraints for 3-D points, that
approach avoids extensive comparisons of interrelationships
and model tests like in the general tree-search approaches. The
same authors presented, in [34], an algorithm for matching 3-D
line segments. Using the point-matching algorithm described
in [33], the directions of line segments can be matched. Several
potential matchings may exist. For each potential match, a
rotation can be computed. In the second stage, a Hough-
like procedure is used to prune those potential matchings and
to compute a 3-D translation that brings the (rotated) line
segments into correspondences. Kim and Aggarwal [35] use a
relaxation method to register two 3-D frames from stereo. The
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constraints used are the distance and angle between a line and
its neighbor. Once the feature correspondences are established,
the second step is to estimate the 3-D motion between the
two frames. Many methods exist in the literature, including
analytic or numeric, linear or nonlinear, batch, or recursive
ones [36]-[40]. Due to the uncertainty in the measurements,
these methods minimize some criteria (usually least squares).

Under some restricted conditions, motion can be computed
without registration between two frames. In [41], for example,
3-D points are used, and the same set of points is assumed to
be observed to undergo the same motion between successive
views. These assumptions, of course, are not realistic. Features
may be visible in one view and not in another view due to,
for example, occlusion, appearance, or disappearance. Multiple
moving objects may also exist in the scene.

It is worth noticing that motion analysis shares many
common points with another important research field in com-
puter vision: object recognition and localization. Grimson
and Lozano-Perez proposed in [32] and [42] a tree pruning
approach using rigidity constraints to recognize 2-D objects
from 2-D data or 3-D objects from 3-D data. For example, they
used distance and angular constraints to match measured 3-D
points with model faces. To ensure the global consistency, a
model test is required. Their approach suffers from exponential
combinatorics in the case of spurious data and occluded
objects. The scheme of the algorithm presented in this paper
is similar to those reported in [38] and [43] in the sense that
all methods fall into the “hypothesize-and-verify” paradigm.
Faugeras and Hébert proposed, in [38], a method to match
points and planar patches from range data with a list of planar
patches in a stored model. Ayache and Faugeras described,
in [43], a method to match 2-D line segments from polygonal
approximation of an image to 2-D objects in a model base that
is also represented by 2-D line segments. A similar approach
is proposed by Lowe in [44] and [45] to recognize 3-D objects
from 2-D images. Lowe made use of perceptual organization
to form structures in the image that are likely viewpoint
invariant. Evidential reasoning was used to establish the initial
feature correspondences. He iteratively updated the viewpoint
estimation by adding more feature correspondences.

This paper deals with the analysis of motion or, rather,
of displacement from two stereo views. In [46] and [47],
we reported our preliminary work on this problem. This
paper includes new developments, gives a more complete
description of our approach, and provides new results. Since
rigidity may be the most important constraint in two-view
motion analysis, we first provide a thorough description of
it. We show that the rigidity constraints we formulate are
complete for 3-D line segments. The rigidity constraints are
reformulated to take into account explicitly the uncertainty
in measurements. We then develop an approach based on
the hypothesize-and-verify paradigm for registering two stereo
frames and computing the 3-D displacement between them.
The rigidity constraints formulated before are heavily used
to generate hypotheses of primitive correspondences between
two frames. We propose a new representation for 3-D line
segments in order to characterize the uncertainty caused by
stereo. Using this representation, 3-D displacement can be
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incrementally estimated via an extended Kalman filter, and
matching can be done efficiently. Finally, we provide two
experimental examples and the application of this algorithm
to multiple object motions.

II. OUTLINE OF THE MATCHING ALGORITHM

The matching problem has been recognized as a very
difficult problem. Given two sets of primitives observed in two
views, the task of matching is to establish a correspondence
between them. By a correspondence, we mean that the two
paired primitives are the different observations (instances) of
a single primitive undergoing motion. The matching problem
has an exponential complexity in general. For example, if
we structure the matching as a search in the interpretation
tree [32], one should examine the consistency of (n + 1)™
interpretations, where n and m are the numbers of primitives
in the two views. Recognizing this, we need some constraints
to heuristically guide the search without exploring most of the
nodes while making sure a good interpretation is found at the
end.

The rigidity assumption about the environment and objects
is used in most matching algorithms. Our approach uses that
rigidity constraint to guide a hypothesize-and-verify method.
The hypothesize-and-verify paradigm is one of the most popu-
lar paradigms in dealing with the matching problem [29]-[32],
[38], [43].

Our idea is simple. We use the rigidity constraints to gen-
erate some hypothetical primitive correspondences between
two successive frames. We compute an initial estimate of
the displacement for each hypothesis. We then evaluate the
validity of these hypothetical displacements. Due to the rigidity
constraints (see below), the number of hypothetical displace-
ments is usually very small, and computational efficiency is
achieved. We exploit the rigidity constraint locally in the
hypothesis generation phase and globally in the hypothesis
verification phase, as will be shown later. Fig. 1 illustrates
diagrammatically the principle of our hypothesize-and-verify
method.

III. RIGIDITY CONSTRAINTS

A. 3-D Rigid Displacement

It is well known that any 3-D rigid displacement can be
uniquely decomposed into a rotation around the origin of the
coordinate system followed by a translation. Let P and P’ be
the position vectors of the same 3-D point before and after
displacement, where the following relation holds:

P' =RP +t, 1)

where R is called the rotation matrix, and ¢ is called the
translation vector of the rigid displacement. (R, ) must satisfy
the following requirements.

Definition 1: (R,%) represents a rigid displacement if and
only if the following requirements are satisfied:

* Ris a 3 x 3 orthogonal matrix, and its determinant equals

+1.
* t is a real 3-D vector.
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Fig. 1. Diagram of the displacement analysis algorithm based on the
hypothesize-and-verify paradigm.
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Fig. 2 Line segments undergoing a rigid displacement.

Proposition 1 gives some interesting properties of the rota-
tion matrix R (the proof is omitted).

Proposition 1: The rotation matrix R has the following
properties:

1. RR" =R"R=1I;,and R°! = R

2. || Rull = lul

3. RuRv = u-v

4. Ru A Rv = R(u Av)
where u and v are two arbitrary 3-D vectors, T denotes the
transpose of a matrix, ~' denotes the inverse of a matrix, || ||
denotes the norm of a vector, - denotes the inner product of
two vectors, and A denotes the cross product of two vectors.

Consider now two line segments undergoing a rigid dis-
placement (see Fig. 2). The two segments are denoted by S;
and S, before displacement and by S] and S} after displace-
ment. We use the following notations: The unit direction vector
of S is denoted by u, and the endpoints are denoted by b and
e (Remark: Segments are oriented). If the rigid displacement
is represented by (R, t), we have the following equations:

u, = Ru,,
b, =

m, = Bm; +1t,

Rb; +t, e = Re;+t, fori=1,2. (2)

B. Rigidity Constraints

Under rigid displacement, the geometry of a rigid object
remains constant. In other words, the geometry of the object

1143

does not change during displacement. We want to derive
specific constraints reflecting this invariance. The following
requirements should be satisfied:

* The constraints should be independent of the coordinate
systems. The relation between the coordinate systems is
just what we want to compute.

* The constraints should be as complete as possible to guar-
antee the global consistency of the final interpretation.

* The constraints should be as simple as possible to allow
efficient computation.

The following proposition gives necessary conditions.

Proposition 2: If two segments S; and S in the first frame

are matched to two segments 97 and S} in the second frame,
under the assumption of rigid displacement, the following
constraints, which are known as rigidity constraints, must be
satisfied:

1. Length constraints

lll = 11 and /2 = 12 (3)

2. Distance constraint
vl = [l )

3. Angular constraints
ucu; = ui-uh 5)
U 'ﬁ12 = u’1 "l’\)llz (6)
U2 -ﬁ12 = u’z 13’12 (7)

4. Triple product constraint
®

In the above, (u;, us, us) denotes the triple product (i.e.,
u; - (uz A ug)), v12 is the vector joining the midpoints (i.e.,
vi2 = my — my), and vy is a unit length vector parallel to
viz (i.e, 912 = via/|lv12]]).

The above proposition can be easily verified using (2) and
the properties of rigid displacement described in Proposition
1 (see [48] for the proof).

In the rigidity constraints, three angles are involved (4, 1,
and 6 in Fig. 3). In this figure, the segment //Ss is parallel to
segment Sy and shares a common endpoint with S;. Instead of
angles, we use the cosine of angles. Equation (5) implies the
conservation of the angle between S; and S, (i.e., the angle ¢
between S1 and //Ss). Equation (6) implies the conservation
of the angle #; between S; and the segment w1, joining the
midpoints. Equation (7) implies the conservation of the angle
02 between S, and v,.

The reverse of Proposition 3.2 is proved in [48].

Propeosition 3: The rigidity constraints given in Proposi-
tion 2 are complete for 3-D line segments in the sense that
they are necessary and sufficient to guarantee the congruency
of two sets of line segments.

The following proposition follows.

(w1, ug, 912) = (u], uy, ¥,).
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Fig. 3. Definition of the angles used in rigidity constraints.

Proposition 4: The displacement computed from two pair-
ings of noncollinear segments satisfying the rigidity constraints
in Proposition 2 is rigid and unique.

Since two pairings of noncollinear segments satisfying the
rigidity constraints implies the congruency of two tetrahedra
(or quadrilaterals) from Proposition 3, a unique rigid displace-
ment can be computed (see [48] for the proof).

IV. REPRESENTATION OF 3-D LINE SEGMENTS

Before proceeding further, we briefly describe in this section
how to represent 3-D line segments. The 3-D line segments
we have (from stereo or other sensors) are inherently uncertain
and usually do not have the same error distribution in different
directions. It has been recognized in the computer vision
and robotics community [49], [SO] that uncertainty should be
explicitly represented and manipulated.

A. Motivation

A line is usually represented by its endpoints M; and M,
which require six parameters and their covariance matrices A;
and A;. A; and A, are estimated from stereo triangulation
from point correspondences [51]. Equivalently, a line segment
can be represented by its direction vector v, its midpoint
M, and their covariance matrices. However, we cannot use
directly these parameters in most cases. The endpoints or the
midpoint of a segment are not reliable. The reason for this
is that the way the uncertainty of the endpoints of a 3-D
segment is computed takes only into account the uncertainty in
pixel location due to edge detection and the uncertainty in the
calibration of the stereo rig [52]. It does not, however, take into
account the uncertainty due to the variations in segmentation
of the polygonal approximation process. There are two main
sources for those variations. The first one is purely algorithmic;
because of noise in the image and because we sometimes
approximate curved contours with straight line segments, the
polygonal approximation may vary from frame to frame,
inducing a variation in the segments endpoints yet unaccounted
for. The second is physical; because of partial occlusion in the
scene, a segment can be considerably shortened or lengthened,
and this also has to be taken into account in the modeling of
uncertainty.

Thus, instead of the line segment, the infinite line supporting
the segment is usually used, as in [35]. In an earlier version
of our algorithm, for displacement analysis from two stereo
views [40], [46], [47], a line segment was treated in a mixed
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way. The infinite supporting line was used in estimating the
displacement, and the line segment was used for matching.
There has been a lot of representations proposed for a line
in the literature [50], [53]. The main problem is that the
uncertainty on the line parameterization does not reflect that
of the segment the line supports (see [48] for more details). A
segment with large uncertainty may result in small uncertainty
in the line parametrization. In the next subsection, we describe
a representation for 3-D line segments, taking into account the
variations in segmentation.

B. Our Representation

Due to the deficiencies of the previous representations for a
line or a line segment, we use a five-parameter representation
for a line segment: two for the orientation, and three for the
position of a point on the segment. This is a tradeoff between
line and segment. If we add another parameter for the length,
the line segment is fully specified. Special care is given to the
representation of uncertainty.

1) Representing the Orientation by Its Euler Angles ¢ and
6: Consider the spherical coordinates. Let u = [uy, uy, )7
be a unit vector of orientation. We have

Uy = COS Psin b
Uy = sin ¢sin @ &)
U, = COS ¢
with0 < ¢p<2mr, 0<6< .
From u, we can compute ¢, 8
{ arccos —ma— ifuy >0
¢= g .
21 — arccos o otherwise
6 = arccosu,. 10)

If we denote [¢, 8]7 by @, then the mapping between ¥
and u is 1-to-1 except when § = 0. When § = 0, ¢ is not
defined. Fortunately, the component corresponding to ¢ in the
covariance matrix computed below will be very large in this
case, as shown in [48]. This means that the measurement ¢
has no information. Another problem with this representation
is the discontinuity of ¢ when a segment varies nearly parallel
to the plane y = 0. In that case, the angle ¢ may jump from the
interval [0, 7/2) to the interval (37 /2, 27) or vice versa. This
discontinuity must be dealt with in matching and integration.

In the following, we assume that the direction vector v =
[z, y, 2]T and its covariance matrix Ay of a given segment
are known. We want to compute ¥ and its covariance matrix
Ag from v and Ay. From (11), ¢ and 8 are simply given by

ify>0
¢= 27 — arccos \/% otherwise
@24y

z

V2 +y? + 22,

Since the relation between ¥ and v is not linear, we use the
first-order approximation to compute the covariance matrix

arccos ——=—
2 4y2

f = arccos

an
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Ag from Ay, that is

or  ovT
Aw = 30—110 v

(12)

where the Jacobian matrix
oy~ |2 &0 9
oz dy oz
2) Modeling the Midpoint of a 3-D Line Segment: We
choose the midpoint as the point on the segment, but a special
treatment of the covariance is introduced to characterize the
uncertainty in the location of a segment.
The midpoint M and its covariance matrix Ajs can be
computed from the endpoints of the segment by

M= (Ml +M2)/2 and Ay = (A.] + Ag)/4

As described earlier, the measurement of the endpoints is not
reliable. The position of a segment may vary along its direction
in different views. Therefore, we model the midpoint m as
follows:

m= (M1 +M2)/2+nu (13)

where u is the unit direction vector of the segment, and n is
a random scalar independent of M; and M,. Equation (13)
says, in fact, that the midpoint of a segment is only partially
credible; it may vary randomly along the line supporting it
in successive views. As explained before, the main reason of
this modelization is that the uncertainty measures of M; and
M, given by the stereo system modelize only the uncertainties
due to stereo triangulation but not those due to, for example,
different segmentations. Remark that this modelization is in
accordance with the definition of a line. If a point py on a line
and its orientation u are given, the line L may be defined as
a set of points in 3-D space parametrized by a real variable ¢:

(14)

The random variable n in (13) is modeled as Gaussian
zero-mean with deviation o,, which is a positive scalar.
If a segment is reliable, o, may be chosen to be a small
number; if not, it may be chosen to be a big number. In our
implementation, o, is related to the length [ of the segment,
i.e.,, o, = kl, where x is some constant independent of the
segment. That is to say, if a segment is longer, the deviation
oy, is bigger. That is reasonable since a long segment is very
likely to be broken into smaller segments in other views due
to, for example, occlusion. In our experiments, x = 0.2.

In order to compute the covariance of m, we should first
compute u and Ay. The unit direction vector u and its
covariance Aq can be computed from the nonnormalized
direction vector v and its covariance matrix Ay. Indeed, we
have

L={p| p=py+ut, —0<t<x}

v ou, ou”
= — = —Ayp— 15
SR AT 5 (1)
where du/0v is a 3 x 3 matrix (% = WI;}W - ﬁ’T"”T;). Note

that the covariance matrix Aq is singular (the determinant is
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zero). This is, of course, because the three components of u
are not independent.

At this point, the covariance of m can be computed.
Equation (16) can be rewritten as

m=M+ nu. (16)
Since n and u are independent of each other, we have
Enu] = En]E[u] =0 17)

Any = E|(nu)(nu)T] = En?|E[uu’] = 02 (Ay + ua")
(18)

where % denotes E[u], and

E[m] = E[M], 19
Am = E[(m — E[m])(m — E[m])T] = Ay + Anu. (20)

If we add another parameter [ to denote the length of the
segment, we can then represent a line segment exactly. This
ends our modelization of a line segment (see [S4] and (48]
for more details).

V. ERROR MEASUREMENTS IN THE CONSTRAINTS

In Section IIl, we have proposed a number of rigidity
constraints for 3-D line segments and shown that they were
complete (necessary and sufficient conditions for the existence
of a rigid displacement). We have also shown that we can
compute a unique rigid displacement from two pairings of
segments satisfying the rigid constraints. However, all deriva-
tions were based on the noise-free assumption. The data we
have are always corrupted with noise due to uncertainties
in polygonal approximation, stereo calibration, and recon-
struction. The equalities in Proposition 2 are no longer true.
In this section, we reformalize the rigidity constraints by
explicitly taking into account the uncertainty of measurements.
The idea is to dynamically compute a threshold for each
constraint from the uncertainty in 3-D data as modeled in
the last section. The reader is referred to [32], [29], [34],
and [55] for other formalisms of rigidity constraints in the
literature. Unlike our approach, all those approaches use some
predefined error ranges in the measurements. However, the
errors of measurements given by a stereo system have different
distributions in different positions. One cannot handle such
phenomena with some prefixed values.

Examining Proposition 2, we find that the rigidity con-
straints take three forms:

Norm constraint

flol] =1l 21
Dot—-product constraint
u-v=u-v (22)
Triple—product constraint
< u1,uz,u3 >=< U}, U, ug > . (23)
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A. Norm Constraint

The norm constraint says that the difference between the
norms of two vectors should be zero. For convenience, we use
the squared norm of a vector instead of its norm. Taking into
account the uncertainty of measurements, we can formalize
the constraint as follows:

2 "2
[loll? ~ /17| < e (24)
where ¢, is the threshold to be determined on the norm
constraint.
Replacing ||v||2 - ||v/||? by d,,, we then have
dyn=v-v—v v =0vTv— oy, (25)
Given the covariance matrix Ay of v and the covariance matrix
Ay of v/, we now compute the variance Aq, of d,. Under
the first-order approximation, we have
T T
A, = Jg Aoy + Jgr Aw Jgr (26)
where Jg is the Jacobian matrix of d,, with respect to v and
J,‘f?, which is the one with respect to v’. Here, we assume that
v and ¢’ are two independent Gaussian random variables.

;I‘he Jacobian Jg* is given by Ji» = g = 2Ty -
v'"v') = 2v” Similarly, we have Jir = —2v'". Now, (26)
can be rewritten as

Ad, = 40T Apv + v Ayv). 27)

Therefore, the norm constraint (21) is finally expressed in
the real case as

d2

Aa,

< Kn, (28)
where d,, is computed by (25), Ay, by (27), and &, is a
cocfficient.

In fact, id"— can be considered up to the first-order approx-
imation that We have used as a random variable following a
x? distribution with 1 degree of freedom. Looking at the 2
table, we can choose an appropriate value for «,,. This gives
us the probability that d2 falls into the interval [0, knAg ].
For example, we can take %, = 3.84 for a probability of 95%
when we consider the lengths of segments and «,, = 1.32 for
a probability of 75% when we consider the distance between
the midpoints of the two segments, that is, we impose a
stricter constraint on the distance between midpoints than on
the lengths of segments.

B. Dot-Product Constraint

The dot-product constraint says that the difference between
the cosines of angles between two vectors should be zero.
Suppose we are given two vectors % and v and their covariance
matrices Ay and Ay. Here, u and v are assumed unit vectors.
Denote the difference between the cosines of angles as d, i.e.

T
de=uw-v—u - -v=vTv—u v (29)
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We now compute the variance A4, of d.. Under the first-order
approximation, we have

Ad, = T A i+ T Ay J T 475 Ay 73T + 785 Ay T2 ™
(30)
where Jge, Jd, J,‘i? and Jg are the Jacobian matrices of d,
with respect to u, v, o/, and v/, respectively. We assume that u,
v, o, and v’ are four independent Gaussian random variables.
The Jacobian Ji° is given by Jg- = 2% — oT_ Similarly,
we have J,‘j‘ = uT,J,‘iﬁ = -7 T, and Jg,“ =T Equation
(30) can be rewritten as

Ag, = 0T Ayv + uTApu + v  Agv’ + v/ T Apad'. €3]

Therefore, the dot-product constraint (22) is finally ex-
pressed in the real case as

2

C
<K
Aq, ¢

(32

where d,. is computed by (29), A4, (31), and .. is a coefficient.
We can choose k. = 1.32 for a probability of 75%.

C. Triple-Product Constraint

The same manipulation can be done for the mix-product
constraint. Given six unit vectors uy, u, u3, uj, u5, uf, and
their covariance matrices. Denote the difference between the
two triple products by d,, i.e.

dy = (u1, ug, u3) — (uy, us, uj). (33)
We can compute the covariance A4, of d; under the first-
order approximation. The mix-product constraint (23) is then
expressed in the real case as

34

where k. is a coefficient.

In our implementation, however, we do not compute the
variance of the d; because the computation is relatively
expensive. Instead, we give a predefined threshold e,. If |d;| <
€¢, then the mix-product constraint is considered satisfied;
otherwise, it is not satisfied. |d;| reaches a maximum of 2
when u;, uz, and ug3 are perpendicular to each other, ul, u,
u; are perpendicular to each other, and they are not congruent
(i.e., reflection). |d;| reaches a minimum of 0 when they are
congruent. We have chosen &; = 0.5 in our implementation
to account for noise.

VI. THE DISPLACEMENT ESTIMATION ALGORITHM

In this section, we present an algorithm based on the
hypothesis-and-verify paradigm that registers two stereo
frames and estimates the displacement between them. We
assume that the environment is static and that it is only the
stereo rig that has moved.
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A. Generating Hypotheses

At the first stage, the rigidity constraints are heavily used to
generate hypotheses of matches between the two frames. Two
pairings of segments form a plausible hypothesis if they satisfy
the rigidity constraints described in the previous sections. If
we explore all possible pairs, the complexity is O(m2n?),
where m is the number of segments in the first frame, and n
is that in the second frame. The generation of hypotheses is
implemented as follows. For a segment S in the first frame,
we find a segment S} in the second frame such that its length
is compatible with that of §;. For the pairing (S;, S}), we
then find the pairings (Sk, S},) such that the two pairings form
a plausible hypothesis. When we are done, we go to the next
segment Sy of the first frame.

Since at this stage we do not want to recover all matches
between two frames, but to recover all potential displacements
between them, we reduce the complexity of the hypothesis
generation phase by using a number of heuristics:

Sort the segments: Sort all segments in each frame in

decreasing length order so that we can easily find, by binary

search, the segments in the second frame that are compatible
in length with the segments in the first one.

Control the depth: Rather than finding all possible pairings

compatible with a given pairing, we stop if we have found a

sufficient number of compatible pairings (five, for instance).

Avoid redundant hypotheses: If a pairing has already been

retained as a potential match in some earlier hypothesis, it

is not considered further because it does not give us new
information about the displacement between two frames.

Reduce the width: Consider segments of the first frame

only in the central part of the frame because segments on

the sides are likely to have moved out of the field of view
in the next frame.

Reduce the number of segments: Choose only the longest

segments in the first scene, for instance, the m/ q longest

(¢ = 2 or 3) . This also reduces the search width.

Other constraints can be integrated in the algorithm to
increasingly speed up the generation process. In the indoor
mobile robot navigation example, the robot and the objects
usually move horizontally (in the ground plane). In our stereo
coordinate system, the ground plane is paralle] to the plane
y = 0. Thus, we can impose the constraint that if two segments
can be matched to each other, they must have almost the same
y coordinates. Another constraint we can use is on the change
of the orientation of a segment [47]. In general, the rotation
angle between two successive frames does not go beyond 60°;
therefore, we can impose that the orientation difference of a
pairing of segments to be matched must be less than 60°.

B. Verifying Hypotheses

At the second stage of the algorithm, we propagate each
hypothesis generated above to the whole frame and try to
match more segments. We then choose the best hypotheses,
where best is defined later. This can be done in parallel for
each hypothesis. The process is performed as follows.

1) Estimating the Initial Rigid Displacement: From Propo-
sition 4, we know that a unique rigid displacement can
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be computed for each hypothesis. We compute an initial
estimation of the rotation and translation via an extended
Kalman filter (see Section VII). An initial guess of the state
vector (representing the rigid displacement) is required as input
to the filter. In our implementation, the state vector s for the
displacement is simply initialized to zero (i.., 89 = 0) but
with a big covariance matrix. The covariance matrix Ay, is
initialized as follows: Az [i][i] = 2.0 for i = 0, 1,2 (rotation
components), Ag, [¢][é] =1.0 x 10° for ¢ = 3,4, 5 (translation
components), and Ag,_ [é][5] = O for ¢ 3 j. This is equivalent to
saying that we assume a standard deviation of 114° of rotation
along each axis and a standard deviation of 1 m of translation
along each axis.

Because we use a first-order approximation, if the initial
estimate is not very good, the final estimate given by the
filter may be different from the true value. In order to reduce
the effect of nonlinearities, we can apply the Kalman filter
iteratively. Usually, we obtain a good estimate after a few
iterations (typically three or four).

2) Propagating Hypotheses: We now have an initial esti-
mate of the displacement for each hypothesis. We apply this
estimate to the first frame and compare the transformed frame
with the second one. If a transformed segment from the first
frame is near enough to some segment in the second frame,
then this pair is considered to be matched (see Section VII
for the definition of near enough), and again, the extended
Kalman filter is used to update the displacement estimate.
After all segments have been processed, we obtain an estimate
of the displacement, its uncertainty, and the correspondences
between segments.

We said that we transformed all segments of the first frame
once, using the initial estimate of displacement. This is the
one-shot approach. The matching results will depend heavily
on this initial estimate. Since we may have a poor initial
estimate, we may not get a satisfactory matching result. To
overcome this problem, we transform only one nonmatched
segment of the first frame at a time. This is the many-shots
approach. If we find a match for it, we update the displace-
ment estimate and transform another nonmatched segment
of the first frame using the new updated estimation of the
displacement (no longer the initial estimate). If we cannot
find a match, we process another segment of the first frame.
After all segments have been processed, we obtain an estimate
of the displacement, its uncertainty, and the correspondences
between segments.

We have implemented the two approaches and found that
the second one gives a much better performance. Starting from
two slightly different initial estimates, the first approach yields
two different (but not dramatically different, of course) results
of matchings and displacement estimates, whereas the second
converges to almost the same result.

In order to obtain a precise estimation and because of the
nonlinearities, we iterate the above procedure twice.

3) Complexity: We note that the complexity of the algo-
rithm in the worst case is O(mn) for each hypothesis. The
speed of the algorithm depends essentially on the ability to
quickly access the segments of Frame 2 that are close to a
transformed segment S. We have used several approaches to
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achieve this. One approach is to use binary search to discard
segments of Frame 2 that are not compatible in length with S.
Another efficient method is to use bucketing techniques, which
allow us to obtain a list of segments in the neighborhood of
some segment. The preprocessing necessary to sort segments
into buckets can be done very quickly (the complexity is linear
in the number of segments).

4) Choosing the Best Hypothesis: We now discuss how to
choose the best hypothesis using the error given by the
Kalman filter. The criterion must be a function of the number
of segments actually matched and of the error made in
approximating the match by a rigid displacement. We use the
following criterion:

(35

where E; is the error of the sth match (the sum of the
distances given by (52) and (53); see Section VIII), N =
min(m, n) is the smallest number of segments in the two
scenes, p is the number of segments matched, and E,,;,, is the
error corresponding to the threshold determining when two
segments are matched (which is equal to kg + K, Which is
given in Section VIII). Then, the hypothesis with a minimal
C is chosen as the best one. From (35), we can see that if we
have more matches, the error is smaller. Note that if we simply
define C' as p (the number of segments matched) and choose
the hypothesis with a maximal C' as the best one, almost the
same result is obtained.

VII. ESTIMATING 3-D DISPLACEMENT
VIA AN EXTENDED KALMAN FILTER

Given a set of correspondences of 3-D primitives (points,
line segments, and planar patches), many methods are reported
in the literature to estimate 3-D displacement [35], [36],
[38]-{40], [56]. A comparison of several of those methods
has been carried out using 3-D line segment correspondences
(see [57]). This work reveals that the extended Kalman filter
should be preferred for its efficiency and accuracy. We assume
that the reader is familiar with the ideas and equations of the
Kalman filter [58], [59], which have now become of standard
use in vision.

The standard Kalman filter is a powerful tool to deal
with parameter estimation problems in a linear noisy system.
However, it is not directly applicable to our problem because
of its nonlinearity. The extended Kalman filter approach
[58], [60] applies the standard Kalman filter to nonlinear
systems with additive Gaussian noise by continually updating
a linearization around the previous state estimate, starting with
an initial guess. Here, we formulate the displacement estima-
tion problem using the representation of 3-D line segments
described in Section IV in order to apply the extended Kalman
filter. We first briefly describe our representation of rotations.

Many representations exist for 3-D rotations, including
Euler angles, quaternions, and rotation axes [61], [62]. We
use the rotation axis representation. More precisely, a rotation
can be defined as a 3-D vector r = [a, b, c|T, whose direction
is that of the axis of rotation and whose magnitude is equal
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to the rotation angle. The relation between r and the rotation
matrix R is given by the following formula, which is known
as the Rodrigues formula [63]:

sinf _

—cosf
R=1Iy+ 3005 1-cosb,

7 o2 (36)

where § is the norm of r (i.e., 6 = ||r||), I5 is the 3 x 3 identity
matrix, and 7 is the antisymmetric matrix defined as

0 —¢c b
r=1|c 0 -—a
b a 0

This matrix represents the crossproduct with vector r since
7z = r Az for all 2. A 3-D displacement is then represented
by the 6-D vector s = [rT, ¢tT]7.
For reason of simplicity, we define two nonlinear functions
g and h to relate a unit vector u and its Euler angles ¥ (see
(8) and (11)) such that
¥ =g(u) and u=h(P). (37
If a segment S is characterized by (¥1,m;) in Frame 1 and
by (¥3, my) in Frame 2 and the displacement between the two
frames is s = [rT, ¢T|7, then we have the following equations:

¥, = g(Rh(¥,)),
my; = Rm; +-t.

(38)
(39)

The above equations simply say that the transformed segment
of the first frame should have the same orientation and location
as the segment observed in the second frame. If we define the
measurement vector as
T T

T= [W ’ m{’ !p2 ’ mg]T (40)
then we can write down the measurement equation from (38)
and (39) as

_ [o(rA(#1) - 93] _
f(z,8) = [ Ry +t—my | = o. 41)
This is a 5-D vector equation. In the following, the first two
components of f(z,s) are denoted by f, and the last three
components by f,.

Equation (41) can be expanded into a Taylor series around
the current displacement estimate 8 and the current observation
I

.., Of(2,8 .
flo,9) =15+ L2805,
+0((z — £)%) + O((s — 3)*).

(s-3)
(42)

9f(%,3)
Js

Ignoring the second-order terms, we get a linearized measure-
ment equation:
y=Ms+v 43)

where y is the new measurement vector, v is the noise vector of
the new measurement, and M is the linearized transformation
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matrix. They are given by

_ (3
s
y=f5)+ L8,
UL,
with Efo] = o, Elve?] = 2L&E8\ of@s"

The standard Kalman filter can then be applied to the above
linearized system to update the displacement estimate 8. The
derivatives of f(x, s) with respect to s and to x are computed
as follows:

of [ o
2 [ﬁz 13] “
f
af = O —Ig o 45
BI I:a!g R o -—I3j| ( )
where
afl 3.‘1("1) (R“I)
o~ Ou  or
% _ 0(Rmy,)
o ~  or
ofy _ 9g(wt) L Oh(:)
L ™ ow

with u; = h(¥1) and u{ = Ru;. The reader is referred to
[48] for the computation of the derivatives B(R"‘) L
_g%ﬁ nd 2h@y)

Each time a new match becomes available, we can in-

crementally update the displacement estimate s via extended
Kalman filtering using the above formulation.

VIII. MATCHING NOISY LINE SEGMENTS

Suppose now that we have an estimate of the displacement
s = [rT, T]T between the two frames with its covariance
matrix Ag. The question is the following: for a given segment
S in Frame 1, which segment in Frame 2 can it be matched to?
Our solution has two steps. The segment S is first transformed
into S by applying the given displacement estimate. It is then
compared with segments in Frame 2.

A. Transformation of a 3-D Line Segment
Let the parametrization of the segment S be (¥, m) and that
of the transformed segment S be (!P m). Clearly, we have
¥ = g(Rh(¥)),
m=Rm+1t.

(46)
(47)
If the uncertainty measure of the segment S is given by
(Ag, Am), then we can compute the covariance matrix AA

of ¥, under the first-order approximation, as

A@ = J!pAwa + J!pAs y (48)
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where the Jacobian matrices are given by

L _ d9(8) L Oh(®)
du o’

¥ _ [Og(u) O(Ru)

Js = ou Or 03

with u = h(¥), ¥ = Ru, and o3 is the 3 x 3 null matrix.
Similarly, the covariance matrix A of the midpoint M is
given by
~ ~T
Aj; = RAmRT + JPAg S 49)

where the Jacobian matrix of m with respect to s is

i [G(Rm)

Is|.
or 3]

The reader is referred to [48] for the computation of the
derivatives.

B. Criterion of Matching

Now, we have a representation of the segment S and a set
of segments {S;|¢ = 1..n} in Frame 2. We want to decide
which segment S; can be matched with S

Using the representation of 3-D line segments described in
Section IV, matching can be done very efficiently. It goes
in two steps. Let the segment S; be represented by (¥;, m;)
and its covariance matrices (Ag , Am,). We want to know

whether S; can be matched with S or not. The first step
is to examine the similarity in orientation. The Mahalanobis
distance between the orientations is given by
dy = (¥ —¥:)T(Ag +Ag,) " (¥ ~¥;).  (50)
If dyg is less than some threshold g, we then go to the second
step: examine the distance between the midpoints of two
segments. The Mahalanobis distance between the midpoints
is given by
drn: (m—-mi)T(Am+Ami)_1(m—mi). (51)
If dyp is still less than some threshold iy, we then consider
the two segments to be matched.

Before computing the Mahalanobis distance between the
W’s (52), special care is required to cope with the discontinuity
of ¥ when a segment is nearly parallel to the plane y = 0 (see
Section 1V). The treatment is very simple: If ¥ < 7 /2 and
U; > 3n/2, then set ¥; = U; — 2; else, if ¥ > 37/2 and
U, < 7/2, then set ¥ = ¥ — 2r; else, do nothing. Note
that adding a constant to a random variable does not affect its
covariance matrix.

By appropriately choosing the threshold kg and Ky, we can
recover almost all possible matches. From the x? distribution
table, we take kg = 6.0 for a probability of 95% with 2
degrees of freedom, and ky = 7.8 for a probability of 95%
with 3 degrees of freedom.
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Fig. 4. Images of the first camera: The left one is at t1, and the right one

is at tg.

IX. EXPERIMENTAL RESULTS

The algorithm presented in this paper has been tested for two
years using real stereo data acquired by our trinocular stereo
system. At least 200 pairs of stereo frames (i.c., 400 individual
stereo frames) have been used. The algorithm has succeeded
in correctly matching and computing the 3-D displacement
and matching two views in almost all cases. The few cases
of failure are due to too little common intersection (less than
20%) between the two stereo frames.

The reader can find some experimental results in [47]. In this
section, we provide two examples to demonstrate the matching
process. In each figure shown, if there are four pictures, the
upper left one is the top view (projection on the ground plane),
the lower left one is the front view (projection on a plane in
front of the stereo system and perpendicular to the ground
plane), the lower right one is a side view (projection on the
plane perpendicular to the previous two planes), and the upper
right is the view from the first camera (perspective projection
using the calibrated camera transformation matrix). If there are
only two pictures in each figure, then the left one is the front
view, and the right one is the top view.

A. Indoor Scene

Fig. 4 shows the images of an indoor scene taken by the first
camera of the stereo rig at two instants. As can be observed,
there is only a small common part between two successive
frames. In fact, there is a big rotation between the two views.
Comparing the two images in Fig. 4, the boxes on the table
have a displacement of about 200 pixels in the image plane
(resolution: 512x512).

Figs. 5 and 6 show the pair of stereo frames reconstructed
by our trinocular stereo. The triangle in each picture represents
the optical centers of the three cameras. We have 79 segments
in the first frame and 121 segments in the second. There is a
rotation of about 16.5° between the two positions, which can
be noted by superposing the two frames (see Fig. 7).

Applying the displacement estimation algorithm to these
two frames, we obtain five hypotheses. All five hypotheses
are propagated to the whole frame to match more segments
and to update the displacement estimate. In the end, four
hypotheses yield the correct estimate of the displacement.
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Fig. 5. Different views of the first 3-D frame (uniform scale).
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Fig. 6. Different views of the second 3-D frame (uniform scale).

Thirty seven matches are recovered. To determine how good
this estimate is, we apply the computed estimate to the first
frame and superimpose the transformed one on the second. Fig.
8 shows such superposition of the matched segments, and Fig.
9 shows the superposition of the whole frames. The estimate
of displacement is very good. We can observe the rotation
between the two positions by the shift of the two triangles in
Fig. 9. We observe also that the common part is very small.
The whole process takes about 50 s on a SUN 3 workstation.
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Fig. 7. Superposition of the two stereo frames: Segments of Frame 1 are

represented in dashed lines and those of Frame 2 in solid lines.

Fig. 8. Superposition of the matched segments after applying the computed
displacement to the segments of Frame 1: Segments of Frame 1 are represented
by dashed lines and those of Frame 2 in solid lines.

Fig. 9. Superposition of the transformed segments of Frame 1 (in dashed
lines) and those of Frame 2 (in solid lines) (nonuniform scale).

Several remarks can be made at this point:

» Segments in the foreground (near the observer) are su-
perimposed better than others. This is reasonable since
segments close to the observer are more precisely recon-
structed by the stereo system than distant ones.
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Fig. 10. Two images of a rock scene taken by the first camera.

» There is a better agreement in the lateral coordinates
of the segments than in the range because the range
component is usually much more uncertain than the other
components.

¢+ Those two remarks justify the use of the weighted least-
squares property of the Kalman filtering approach.

B. Rock Scene

As pointed out earlier, our program is developed in the
context of visual navigation of a mobile robot in an indoor
scene. We expect to be able to describe most of the objects in
such an environment by line segments. In this subsection, we
describe an example that shows that our algorithm works in
a cluttered scene containing rocks. Fig. 10 shows two images
of such a rock scene taken by the first camera of the stereo
rig at two instants.

Two 3-D frames are reconstructed by our trinocular stereo
system displayed in Figs. 11 and 12. We have obtained 211
3-D line segments in the first frame and 208 in the second.
Two remarks can be made. The first is that the segments
reconstructed are very noisy and even spurious (for example,
some are under the ground, as can be observed in the front
views); the second is that they are very small. As we can
observe, there is a rather big difference between the two frames
(about 11° of rotation and 34 cm of translation).

In our program, a parameter [, ranging from —5 to 5, is
used to control the thresholds in the rigidity constraints. A
change of one for | corresponds to a change of 0.2 for the
thresholds. For example, the threshold for the dot-product
constraint k. = 1.32 + 0.2l. The parameter [ is set to
zero in the program, which corresponds to the thresholds
indicated in Section V. When [ decreases, the constraints
are imposed more strictly during the hypothesis generation
process. When [ increases, the constraints are imposed less
strictly. For indoor scenes, we do not need to change I, i.e.,
the thresholds are image independent (they are certainly stereo-
system dependent). However, as the 3-D frames reconstructed
from the rock scene are very mnoisy, the motion program
generates many false hypotheses, although the final result is
good. If we set [ to —3, i.e., we impose more strict rigidity
constraints, we obtain five hypotheses. All these hypotheses
are propagated to the whole frame to match more segments and
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Fig. 11. Different views of the 3-D frame reconstructed at ¢, (uniform scale).

Fig. 12. Different views of the 3-D frame reconstructed at t> (uniform scale).

to update the motion estimate. In the end, four hypotheses give
the correct estimate of the displacement. Ninety three matches
are recovered. To determine how good this estimate is, we
apply the computed estimate to the first frame and superimpose
the transformed one on the second, which is displayed in Fig.
13. We can find that the motion estimate is still very good
even for such a complicated scene. The displacement of the
robot is shown by the shift of the two triangles in the top view
of the superposition. The fifth hypothesis gives a suboptimal
solution (21 matches are found by this hypothesis). The whole

Fig. 13. Superposition of the transformed segments of Frame 1 (in dashed
lines) and those of Frame 2 (in solid lines) (uniform scale).

process takes about 50 s on a SUN 4 workstation: 40 s in the
hypothesis generation phase and 10 s in the verification phase.

X. APPLICATION TO THE ESTIMATION
OF MULTIPLE OBJECT DISPLACEMENTS

Usually, in a static environment (an indoor scene, for exam-
ple), the observer moves and at the same time there are other
moving objects, or the observer is fixed but more than one
moving objects exist (surveillance application, for example).
We call this the multiple object displacement problem.

The algorithm described above is directly applicable to
analyze the multiple object displacement problem. In the
hypothesis generation phase, the algorithm tries to find all
pairs of pairings of segments between two frames that satisfy
the rigidity constraints. Each such pair is a hypothesis of
potential displacement between two frames. If two segments
in a hypothesis are from a single object, the hypothesis will
give the displacement of that object. If an object is made
of more than two segments and two of them are precisely
reconstructed by the stereo system, then at least one hypothesis
among all of them generated by the algorithm belongs to the
object. “Precisely” is, of course, related to the thresholds in
the rigidity constraints.

We first apply the algorithm of hypothesis generation to the
two observed frames. In order not to miss any potential dis-
placements between them, one modification should be made.
Remember that in order to speed up the generation process,
we choose only the m/q (g = 2 or 3) longest segments in the
first frame. It is very likely that for a small object, none of its
segments are among the m/q longest; thus, the displacement
of such an object may not be detected. In order to avoid this,
we use all segments in the first frame, i.e., choose ¢ = 1.
Once the hypotheses are generated, we apply the algorithm
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Fig. 14 Images taken by the first camera of the trinocular stereo rig: The
left one is in the first position, and the right one is in the second position.
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Fig. 15. Front and top views of the reconstructed 3-D frame in the first

position.

of hypothesis verification to each of them to update the
displacement estimate and to find segment correspondences.
We then use the criterion described in (35) to sort those
hypotheses. The best one is chosen as the displacement of
Object 1, and the corresponding segments in the two frames
are labeled as belonging to that object. For each of the other
hypotheses, if they are not compatible with any previous one,
we Tetain it as representing a new displacement. In the end,
all displacements are recovered, and the scene is segmented
into objects.

Two methods can be used to test the compatibility of two
hypotheses. The first one is to compute the similarity of the
corresponding displacement estimates. If the first hypothesis
yields a displacement estimate s, with its covariance matrix A;
and the second one yields a displacement estimate s, with its
covariance matrix A,, then the Mahalanobis distance between
them can be computed as

ds = (81 — 82)T (A1 + A2) "' (s1 — $2).

The distance dg follows a x2 distribution with 6 degrees
of freedom. We can choose kg = 12.6 for a probability of
95%. If the distance between two hypotheses dg < kg, they
are considered compatible. Another approach is to look at
the segment correspondences recovered by the hypotheses.
For example, if half of the correspondences recovered by a
hypothesis are among those recovered by another hypothesis,
then the two hypotheses are considered to be compatible.

In [47], we have described an example of multiple object
displacements using synthetic data. There, we also discussed
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Fig. 16. Front and top views of the reconstructed 3-D frame in the second
position.

Fig. 17. Superposition of the two original frames.

the influence of the egomotion (the displacement of the robot)
on the observed object displacements. The example below
shows an experiment with a real scene with a real moving
object. Fig. 14 shows two successive images observed by
the first camera of the trinocular stereo rig. Notice that the
moving object in the scene is the box in the foreground.
It moves from right to left and toward the stereo rig that
moves away from the observer. Figs. 15 and 16 display the
reconstructed 3-D scenes in the two positions. Fig. 17 shows
the overlay of the two 3-D frames and the difference between
them. There are 168 segments in Frame 1 and 172 segments
in Frame 2.

Considering that the static environment contains much more
segments than the moving object, we first recover only the ego-
motion of the stereo rig. Only half of the longest segments in
Frame 1 are used in the hypothesis generation process. Sixteen
hypotheses are generated, and all of them are evaluated. Eight
hypotheses give the estimation of the correct egomotion. Fig.
18 shows the estimated egomotion. The shift of the triangle
indicates the displacement of the stereo rig. We remark that the
two frames are well superimposed, except for the box. From
the top view in Fig. 18, we easily observe the displacement
of the box as indicated by arrows. In fact, five among the
16 hypotheses give the estimation of its displacement, but we
do not intend to recover it at this stage because it may be
deteriorated by some occasional bad alignment of segments
belonging to the static environment [48].

There remain some unmatched segments. We apply the
estimated egomotion to the first frame and remove the matched
segments in the two frames. We thus obtain two 3-D frames
containing only the segments of the moving object (and several
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Fig. 18. Superposition of the segments of Frame 1 after applying the
estimated egomotion and those of Frame 2.
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Fig. 19. Superposition of the remaining segments of both frames after those
matched through the egomotion estimation procedure have been eliminated.

Fig. 20. Result of applying the estimated displacement of the box.

unmatched segments of the environment); the effect of the
egomotion has been eliminated. The superposition of two such
frames is displayed in Fig. 19. This figure clearly shows the
movement of the box as indicated by arrows.

We then apply the same process as before to these two
sets of segments. All segments are used in the hypothesis
generation phase. Six hypotheses are generated, and they are
all evaluated. All yield the correct displacement of the box.
The result is shown in Fig. 20. We can remark that the
segments of the box superimpose very well.

XI. CONCLUSION

We have developed an approach based on the hypothesize-
and-verify paradigm for registering two stereo frames and
computing the 3-D displacement between them. The rigidity
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constraints are used to generate hypotheses of feature cor-
respondences between two frames. We have shown that the
rigidity constraints we have formulated are complete for 3-
D line segments and that a unique rigid displacement can be
computed from two pairings of segments satisfying those con-
straints. The uncertainty of measurements has been integrated
into the formalism of the rigidity constraints. If two pairings
of segments satisfy the rigidity constraint, they are retained
as a hypothesis. An initial estimate of the displacement can
then be computed for each hypothesis. This initial estimate
is propagated to the whole frame in an attempt to match
more segments. Each time a new match is obtained, the
displacement estimate is updated. Finally, the best hypothesis
is retained. This algorithm has been successfully tested with
several hundreds of real stereo frames.

We have also extended it to determine multiple object
displacements. When the robot navigates in an environment in
which there exist other moving rigid objects, our algorithm first
determines the egomotion and then cancels it before recovering
the object displacements.

The proposed algorithm is easily adapted to solve simple
object recognition and location problems (see [48] for more
details). It has many other interesting applications, such as
visually guided navigation [64] and world model building
[54].

Although the proposed algorithm has been successfully
tested using a large number of scenes, the primitive used 3-
D line segment) is rather limited. It is usually not sufficient
to interpret complex scenes with only line segments. Our
current research consists of developing strategies to include
other primitives such as points, curves, and surface patches.
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