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PCR was used to amplify (eu)bacterial small-subunit (16S) rRNA genes from total-community genomic
DNA. The source of total-community genomic DNA used for this culture-independent analysis was the
microbial mats from a deep-sea, hydrothermal vent system,' Pele's Vents, located at Loihi Seamount, Hawaii.
Oligonucleotides complementary to conserved regions in the 16S rRNA-encoding DNA (rDNA) of bacteria were
used to direct the synthesis of PCR products, which were then subcloned by blunt-end ligation into phagemid
vector pBluescript II. Restriction fragment length polymorphism patterns, created by using tandem tetrameric
restriction endonucleases, revealed the presence of 12 groups of 16S rRNA genes representing discrete
operational taxonomic units (OTUs). The rank order abundance of these putative OTUs was measured, and
the two most abundant OTUs accounted for 72.9% of all of the 16S rDNA clones. Among the remaining 27.1%
of the 16S rDNA clones, none of the 10 OTUs was represented by more than three individual clones. The
cumulative OTU distribution for 48 bacterial 16S rDNA clones demonstrated that the majority of taxa
represented in the clone library were detected, a result which we assume to be an estimate of the diversity of
bacteria in the native hydrothermal vent habitat. 16S rDNA fingerprinting of individual clones belonging to
particular OTUs by using an oligonucleotide probe that binds to a universally conserved region of the 16S
rDNA fragments was conducted to confirm OTU specificity and 16S rDNA identity.

Defining the diversity and structure of natural microbial
communities through the quantification of their constituent
populations has been a long-standing challenge in microbial
ecology. Selective enrichment cultivation as an approach for
the description of naturally occurring microbial communities
has severe limitations (33, 47). The majority (typically >90 to

99%) of bacteria in nature cannot be cultivated by using
traditional techniques (3, 18). Consequently, it is unlikely that
collections of bacterial isolates are representative of in situ

diversity and community structure. Furthermore, because rel-
atively nutrient-rich media are generally used for isolation,
copiotrophic bacteria rather than the bacteria dominant in the
natural community may be selected for.
An alternative approach to understanding the composition

of natural communities is an approach that uses recently
developed techniques of molecular biology and provides a

culture-independent analysis of microorganisms. This ap-

proach involves examining variations in 16S rRNA or 16S
rRNA-encoding DNA (rDNA) within a naturally occurring
prokaryotic community (2, 5, 6, 13-15, 40, 47-5 1). Our objec-
tive in this study was to estimate diversity and community
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structure by performing a restriction fragment length poly-
morphism (RFLP) analysis of all clones derived from a library
of (eu)bacterial 16S rRNA genes following tandem tetrameric
site-specific restriction endonuclease treatment. The 16S
rRNA gene contains information which makes it an excellent
biomarker of microorganisms. For example, each 16S rRNA
gene contains both highly conserved regions found in all living
organisms and diagnostic variable regions that are unique to

particular organisms or closely related groups of organisms.
Analysis of the latter regions leads to a specific RFLP pattern,
which in turn can be used to define an operational taxonomic
unit (OTU). In this study we used tandem tetrameric restric-
tion endonucleases to produce RFLP patterns, which were

then analyzed and cataloged. Furthermore, we used 16S rDNA
fingerprinting to confirm both the validity of the RFLP analysis
results and the 16S rDNA identities.
We define community structure in terms of the number of

OTUs present in a community and the abundance of individual
clones within each OTU. These values are estimated by a

tandem tetrameric RFLP analysis of each 16S rDNA clone.
Diversity is a metric for the number of populations in a

community and the genetic relatedness among these popula-
tions. In this study we focused only on the populations in a

bacterial community; genetic relatedness, as assessed by phy-
logenetic analysis, will be discussed in a subsequent publica-
tion. For both community structure and diversity, we estimated
the number of populations by the number of OTUs present in
the community. In addition, we used an analog of rarefaction
to ascertain that the majority of the total diversity in the native

habitat was successfully detected in the 48 clones examined.
The microbial community and habitat which we examined
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were the microbial mats at Pele's Vents, which are located on
the southwest portion of the summit (980 m below sea level) of
Loihi Seamount. The area of active hydrothermal fluid dis-
charge is restricted to the flank of a relatively small volcanic
cone approximately 10 to 15 m below the summit. The active
field (area, <0.25 kM2) is characterized by numerous individ-
ual vents discharging waters heated to temperatures of '370C
(compared with the ambient seawater temperature of 40C).
The individual vent orifices are distinguished by a white
precipitate, which has been determined to contain high con-
centrations of elemental sulfur (19, 20). The vent fluid is
exceptionally clear and nearly devoid of suspended particulate
matter.

Loihi Seamount is an active, submarine, hotspot volcano and
potentially the next Hawaiian island. Geochemical evidence
and biological evidence suggest that hydrothermal vent systems
at midplate sites differ fundamentally from vent systems at
plate boundaries (e.g., midocean ridges) (19, 20, 42). Most
notably, the vent waters at Pele's Vents contain extremely high
concentrations of total dissolved CO2 (ca. 300 mM) that are
more than 100 times greater than the concentration at the
Galapagos Rift Vents (9). Consequently, the in situ pH of vent
waters can be as low as 4.2 (42). The levels of dissolved iron
(ca. 1 mM) are 2 x 106 times greater than the levels in ambient
seawater and approximately 40 times greater than the levels at
the Galapagos Rift Vents (9). Another compound of potential
microbial importance is CH4; the dissolved CH4 concentration
(ca. 7.2 FiM) in the effluent of Pele's Vents is enriched 105-fold
compared with ambient seawater (19). Loihi Seamount has
none of the luxuriant macrobenthos (e.g., tubeworms and giant
clams that harbor bacterial endosymbionts) present at other
deep-sea hydrothermal systems. This characteristic may be
related to the absence or extremely low levels of sulfide in the
vent waters (42), to the high levels of dissolved CH4 and iron
(19, 20), or perhaps to the low pH of the effluent waters (42).
There have been previous descriptive and metabolic studies

of the microbiological components at Loihi Seamount. Karl et
al. (19, 20) described the predominance of iron-depositing
sheathed bacteria at the site, demonstrated methanotrophy,
utilization of acetate and glutamate, and incorporation of
[3H]adenine and [3H]thymidine into nucleic acids, and de-
tected thermophilic bacterial populations. In this study we
supplemented this information and estimated the diversity and
community structure, as previously defined, of bacteria living
at Pele's Vents.

MATERIALS AND METHODS

Collection of bacterial mat samples. Material was collected
from Pele's Vents (depth, 980 m) on dives 193-196 (12
October 1991 to 18 October 1991) and 208-215 (18 September
1992 to 1 October 1992) of DSRV Pisces V (Fig. 1). Two
independent methods were used to sample the microbial mats.
Mat-covered rocks were placed into polyvinylchloride "coffins"
to prevent winnowing of the mat material en route to the
surface. Hydrothermal fluids containing bacterial mat material
were collected by using the vacuum produced by opening
2-liter Niskin baggie samplers adapted with a 2-m Tygon tube
for directional sampling. Aboard ship, samples were collected
either by aseptically scraping mat-covered rocks or by allowing
mat particulates to settle inside suspended Niskin baggies.
Samples were quick frozen and maintained on dry ice until
they were returned to the laboratory, and then they were kept
at - 85°C until they were processed.
Genomic DNA extraction and purification. Both French

press lysis and enzymatic cellular lysis were used to maximize

the recovery of genomic DNA. Approximately 10 g (wet
weight) of mat material was thawed on ice, ground with a cold
(4°C) sterile mortar and pestle, and resuspended in cold (4°C)
sucrose lysis buffer (0.75 M sucrose, 700 mM NaCl, 40 mM
Na2EDTA, 50 mM Tris-HCl; pH 8.3) to a total volume of 20
ml; the high salt concentration helped prevent DNA shearing.
The mat slurry was passed through a cold (4°C) French
pressure cell twice at 20,000 lb/in2, 1 mg of lysozyme per ml was
added, and then the preparation was incubated at 37°C for 30
min. After the addition of 0.5% (wt/vol) sodium dodecyl
sulfate (SDS), 100 pLg of proteinase K (United States Biochem-
ical Co., Cleveland, Ohio) per ml, 250 ,ug of achromopeptidase
(Sigma Chemical Co., St. Louis, Mo.) per ml, and 50 ,ug of
RNase A (United States Biochemical Co.) per ml, the mixture
was incubated at 55°C for 30 min. The cells in the mat slurry
were monitored by microscopic examination to determine that
complete lysis had occurred. The polysaccharides and residual
proteins were aggregated by adding 1% (wt/vol) hexadecyltri-
methyl ammonium bromide and incubating the preparation at
65°C for 30 min. Protein and polysaccharide complexes were
removed by extraction with an equal volume of phenol-
chloroform-isoamyl alcohol (50:49:1) (phenol was first pre-
pared fresh by water saturation, 0.1% [wt/vol] p-hydroxyquin-
oline addition, and buffer saturation with STE buffer [100 mM
NaCl, 10 mM Na2EDTA, 50 mM Tris-HCl; pH 7.4]). The
residual phenol was removed by extracting the aqueous phase
with an equal volume of chloroform-isoamyl alcohol (24:1).
The genomic DNA was allowed to precipitate at - 20°C for 8
h after the addition of 0.1 volume of 3 M sodium acetate (pH
4.6) and 2.5 volumes of 100% ethanol and was collected by
centrifugation at 10,000 x g for 30 min by using 30-ml Corex
glass centrifuge tubes (Corning Inc., Horseheads, N.Y.). The
genomic DNA pellet was resuspended to a concentration of
100 ng/pl1, as measured by A260, and the yield was between 10
and 20 Rg/10 g (wet weight) of bacterial mat sample. Approx-
imately 5 to 10 pLg of this crude DNA preparation was purified
by treatment with Qiaex (Qiagen, Inc., Chatsworth, Calif.), a
uniform 3-pm silica gel matrix which selectively binds DNA in
the presence of high salt concentrations.

Oligonucleotide synthesis and purification. All oligonucle-
otides used in this study were synthesized with a model 380B
automated DNA synthesizer (Applied Biosystems, Foster City,
Calif.) and were purified by using the Surepure thin-layer
chromatography system (United States Biochemical Co.) at
the University of Hawaii Biotechnology-Molecular Biology
Instrument and Training Facility.

Amplification of 16S rRNA genes. The 16S rDNA was
selectively amplified from purified genomic DNA by using
PCR (10, 36, 45) with oligonucleotide primers designed to
anneal to conserved positions in the 3' and 5' regions of
bacterial 16S rRNA genes. The forward primer (5'-TNANA
CATGCAAGTCGAICG) corresponded to positions 49 to 68
of Escherichia coli 16S rRNA (4), and the reverse primer
(5'-GGYTACCTTGTTACGACTT) corresponded to the
complement of positions 1510 to 1492 (22). The reaction
conditions were as follows: 100 ng of template DNA, 10 Ill of
1Ox PCR reaction buffer (500 mM KCl, 100 mM Tris-HCl
[pH 9.0 at 25°C], 15 mM MgCI2, 1% [wt/vol] Triton X-100), 2.5
U of Taq DNA polymerase (Promega, Madison, Wis.), 1.5 ,ug
of T4 gene 32 protein (United States Biochemical Co.), I ,uM
forward primer, 1 p.M reverse primer, 200 p.M dATP, 200 p.M
dCTP, 200 p.M dGTP, and 200 p.M dTTP were combined in a
total volume of 100 ,u1. The reaction mixtures lacking template
DNA, T4 gene 32 protein, and Taq DNA polymerase were UV
irradiated for 10 min to eliminate potentially contaminating
template DNA (38) and then heated at 94°C for 2 min. The
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FIG. 1. Map showing the location of Loihi Seamount in relation to the island of Hawaii. (Inset) Larger-scale view of the major islands which
make up the state of Hawaii. Redrawn from reference 12. Isobaths are in meters.

complete reaction mixture was overlaid with mineral oil and
incubated in a thermal cycler (Perkin-Elmer Cetus, Norwalk,
Conn.) as follows: denaturation at 94°C for 1 min, primer
annealing at 60°C for 1.5 min, and chain extension at 72°C for
3 min with an additional extension time of 7 min on the final
cycle, for a total of 33 cycles. Each lot of T4 gene 32 protein
and Taq DNA polymerase was tested for potential contamina-
tion of 16S rDNA templates as described by Schmidt et al.
(41). PCR-amplified gene products were separated chromato-
graphically in 1.5% agarose (0.75% NuSieve and 0.75%
SeaKem; FMC Bioproducts, Rockland, Maine) electrophore-
sis gels stained with 0.5 ,ug of ethidium bromide per ml and
visualized by UV excitation.

Construction of bacterial 16S rDNA clone library. Ampli-
fied 16S rDNA gene products from four to six individual PCRs
were pooled, purified by treatment with Qiaex, and made blunt

ended by treatment with 10 U of the large (Klenow) fragment
of DNA polymerase I and 10 U of T4 polynucleotide kinase
(Promega). The reaction mixture also included 10 ,ul of IOx
Klenow buffer (0.5 M Tris-HCl [pH 7.5 at 25°C], 100 mM
MgCl2, 10 mM dithiothreitol, 0.5 mg of bovine serum albumin
per ml), 1 mM ATP, 200 p.M dATP, 200 p.M dCTP, 200 pM
dGTP, and 200 puM dTTP; the total volume was 100 p,1. and the
preparation was incubated at 37°C for 1.0 h. The blunt-ended
PCR-amplified 16S rDNA gene products were again purified
by treatment with Qiaex and ligated into the SmaI restriction
site of pBluescript II KS- (Stratagene, La Jolla, Calif.). The
ligation reaction mixture contained 270 ng of insert and 15 ng
of vector (i.e., the molar ratio was 9:1), as well as 1 p.1 of 10 x
ligase buffer (300 mM Tris-HCl [pH 7.8 at 25°C], 100 mM
MgCl2, 100 mM dithiothreitol, 10 mM ATP) and 2 U of T4
DNA ligase (Promega) in a final reaction volume of 10 pl and

VOL. 60, 1994

 o
n
 J

u
ly

 2
8
, 2

0
1
5
 b

y
 O

L
D

 D
O

M
IN

IO
N

 U
N

IV
h
ttp

://a
e
m

.a
s
m

.o
rg

/
D

o
w

n
lo

a
d

e
d

 fro
m

 

http://aem.asm.org/


APPL. ENVIRON. MICROBIOL.

was incubated at 16WC for 12 to 14 h. The resulting ligation
products from four independent ligation reactions were

pooled, diluted 2:3 with TE buffer (10 mM Tris-HCl, 1 mM
Na2EDTA [pH 8.0 at 25°C]), and used to transform competent

Epicurian Coli XL1-Blue MRF' cells (Stratagene) according
to the manufacturer's protocol. Clones were screened for
ox-complementation by using X-Gal (5-bromo-4-chloro-3-in-

dolyl-p-D-galactopyranoside) as the substrate (37) on YT agar

supplemented with ampicillin (100 p.g/ml) and tetracycline

(12.5 p.g/ml).
16S rDNA RFLP analysis. Plasmid DNA was prepared from

clones by using the Magic Miniprep DNA purification system

(Promega). Insert 16S rDNA gene fragments were cut from
the plasmid vector with restriction enzymes BamHI plus PstI
(United States Biochemical Co.), concentrated by ethanol
precipitation with ammonium acetate (37), separated by gel
electrophoresis in 1.5% agarose (0.75% NuSieve and 0.75%
SeaKem; FMC Bioproducts) gel stained with 0.5 jLg of
ethidium bromide per ml, and visualized by UV excitation.
Insert 16S rDNA gene fragments were excised from the
agarose gel, extracted by using Qiaex, restricted by using the
tetrameric endonuclease pairs HaeIII plus MspI or AluI plus
RsaI (New England Biolabs Inc., Beverly, Mass.), and concen-

trated by ethanol precipitation with ammonium acetate (37).
The resulting RFLP products were separated by gel electro-
phoresis in 4.0% agarose (3.0% NuSieve and 1.0% SeaKem;
FMC Bioproducts) gels stained with 0.5 jg of ethidium
bromide per ml and visualized by UV excitation.

16S rDNA fingerprinting by Southern blotting and oligonu-
cleotide probe hybridization. RFLP gels were denatured in a

1.5 M NaCl-0.5 N NaOH solution and Southern blotted (43)
onto Nytran membranes (Schleicher & Schuell, Keene, N.H.)
with a vacuum blotter (model 785; Bio-Rad Laboratories,
Richmond, Calif.) by using a transfer buffer (2.16 M NaCl, 12
mM Na2EDTA, 120 mM NaPO4 buffer [pH 7.6]) (16). The
following DNA oligonucleotides were used as hybridization
probes with RFLP blots: oligonucleotide 1406F (5'-GYACA
CACCGCCCGT), corresponding to E. coli 16S rRNA posi-
tions 1392 to 1406; oligonucleotide 926F (5'-CAGCMGC
CGCGGTAATIC), corresponding to positions 907 to 926; and
oligonucleotide 536F (5'-AAACTYAAAKGAATTGACGG),
corresponding to positions 519 to 536 (23). These oligonucle-

otides correspond to highly conserved or "universal" regions
found in all known small-subunit ribosomal genes (23), and
each was 5' end labeled with [y-32P]ATP (Amersham Corp.,
Arlington Heights, Ill.) by using T4 polynucleotide kinase
(Promega) to a specific activity of approximately 2 x 108 to 4

x 108 dpm/,ug (44). The labeled probes were purified on C18
reverse-phase Sep-Pak columns (Millipore Corp., Milford,
Mass.) (23). Southern-blotted RFLP membranes were dried at

80'C for 30 min under a vacuum and UV cross-linked for 2 min
(0.1 J/cm2). The membranes were prehybridized for 15 min at

25°C in 10 ml of hybridization buffer (1 x Denhardt's reagent,

0.1% SDS, 1.08 M NaCl, 6 mM Na2EDTA, 60 mM NaPO4 [pH
7.6]) in a hybridizer oven (model HB-1D; Techne Inc., Prin-
ceton, N.J.). The solution was replaced with 10 ml of fresh
hybridization buffer containing 20 jICi of y-32P-labeled oligo-
nucleotide probe, and the preparation was incubated at 25'C
for 4 to 12 h. Following hybridization, the membranes were

washed three times (15 min each) in 25 ml of washing buffer
(0.1% SDS, 1.08 M NaCl, 6 mM Na2EDTA, 60 mM NaPO4
[pH 7.6]) at 28'C. The final 15-min wash at 37'C was done in
washing buffer. Hybridized membranes were kept moist for the
purpose of reprobing by placing them on blotting paper

saturated with TE buffer and sealed inside Micro-Seal bags
(Dazey Corp., Kansas City, Kans.). The Micro-Seal bags were

placed directly into autoradiography cassettes with intensifying
screens for 6 to 8 h of exposure to X-ray film. Oligonucleotide
probes were stripped from membranes by washing the mem-

branes twice (15 min each) with washing buffer at 65'C prior to

probing with a different oligonucleotide.

RESULTS

A total of 76 colonies were chosen after they tested positive
for ot-complementation of 3-galactosidase, and 51 clones con-

tained an insertion detectable by primary restriction with
BamHI plus PstI. A total of 48 of these clones contained the
entire 1.5-kb 16S rDNA insert, including three discrete, uni-
versally conserved oligonucleotide hybridization sites. These
universally conserved sites were assessed by 16S rDNA finger-
printing analyses (data not shown). The RFLP patterns of the
48 intact 16S rDNA clones indicated that only three specific
patterns were obtained after primary restriction with BamHI

TABLE 1. Data matrix for OTU polymorphisms as detected by restriction digestion

Estimated Presence in:
size of

Restriction rDNA
digestion fragment OTU 1 OTU 2 OTU 3 OTU 4 OTU 5 OTU 6 OTU 7 OTU 8 OTU 9 OTU 10 OTU 11 OTU 12

(bp) (n = 12)a (n = 23) (n =3) (n = 1) (n = 1) (n = 2) (n =1) (n = 1) (n =1) (n =1) (n = 1) (n = 1)

Primaryb 1,500 + + - + + + - + - - + +
1,250 - - - - - - + - + - - -
800 - - + - - - - - +

700 - - + - - - - - - + - -

250 - - - - - - + - +

Secondary' 550 - - - - - + - - - - - +
350 + - - + + _ + _ +
300 - + + _ _ _ + + +
250 - - + - +d _ _+
175 + + + + + + + + + + + +
150 - - - + + - - - - + - +
125 +d +d + + + +

100 - - - - + - -

75 - + + - _ + _ - + _ d

50 + + _ d + + + + +

a n is the number of clones examined.
b Restriction with BamHI plus Pstl.
' Restriction with AluI plus Rsa I.
d After hybridization with universal oligonucleotide probe 536F.
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ABC DE F G H
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276-

I
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FIG. 2. OTUs determined from RFLP analysis of representative

bacterial 16S rDNA cloned inserts restricted with AluI plus RsaI.
Lanes A and J contained HaeIII-restricted 4X174 DNA size markers.
Lanes B, K, and R, OTU 1 clones; lanes C and L, OTU 2 clones; lanes
D and M, OTU 3 clones; lane E, OTU 4 clone; lane F, OTU 5 clone;
lane G, OTU 6 clone; lane H, OTU 7 clone; lane I, OTU 8 clone; lane
N, OTU 9 clone; lane 0, OTU 10 clone; lane P, OTU 11 clone; lane
Q, OTU 12 clone. Two or three lanes containing members of the same
OTU demonstrate that there was reproducibility among different 16S
rDNA clones in that OTU.

A B C D E F G H

bp

175v-

I J K L M N O P
FIG. 3. 16S rDNA fingerprinting of RFLPs from clones represent-

ing OTUs with oligonucleotide probe 536F. Lanes A, I, and P, OTU 1
clones; lanes B and J, OTU 2 clones; lanes C and K, OTU 3 clones;
lane D, OTU 4 clone; lane E, OTU 5 clone; lane F, OTU 6 clone; lane
G, OTU 7 clone; lane H, OTU 8 clone; lane L, OTU 9 clone; lane M,
OTU 10 clone; lane N, OTU 11 clone; lane 0, OTU 12 clone. Two or
three lanes containing members of the same OTU demonstrate that
there was reproducibility among different 16S rDNA clones in that
OTU.

plus PstI (Table 1). These RFLP patterns resulted from no
more than one internal cut site within the 16S rDNA insert of
any individual clone. Two of the three clones with inserts not
used in the OTU analysis contained incomplete inserts that
were approximately 600 bp long, and the other clone had an
approximately 1.8-kb insert containing a 16S rDNA chimeric
structure. The latter was detected after the cloned 16S rDNA
insert was digested after secondary restriction with tetrameric
endonuclease pairs, which was followed by the hybridization of
two discrete sites to a single universally conserved oligonucle-
otide probe (data not shown).

Secondary restriction of complete 16S rDNA inserts was
performed with tetrameric endonuclease pairs (either HaeIII
plus MspI or AluI plus RsaI) to identify discrete OTUs. In
evaluating the RFLP patterns that emerged, we classified each
discrete pattern, which was either unique for a single clone or
similar for two or more clones, as an OTU. After secondary
restriction of the entire 16S rDNA clone library with HaeIII
plus MspI, 11 OTUs, which included all the clones contained in
the two dominant OTUs (data not shown), were detected.
Secondary restriction of all 16S rDNA clones with AluI plus
RsaI was slightly more discriminating in that one additional
OTU, which contained a single clone, was detected; OTU 11
was separated from OTU 1 in this manner. Overall, when AluI
plus RsaI were used after excision with BamHI plus PstI, a total
of 12 OTUs were detected (Table 1; Fig. 2).
The validity of the 12 OTUs was confirmed by the results of

16S rDNA fingerprinting of representative 16S rDNA clones

that underwent secondary restriction with AluI plus RsaI by
using oligonucleotide probe 536F (Table 1; Fig. 3). In addition,
16S rDNA fingerprinting confirmed that cloned inserts were
intact 16S rDNA gene fragments; each of the three oligonu-
cleotide probes used hybridized to the universally conserved
regions in the 16S rRNA gene (data not shown for probes 926F
and 1406F). Intact 16S rDNA inserts were determined both
from the overall sizes of cloned inserts after primary restriction
with BamHI plus PstI from the phagemid vector and from the
occurrence of a single hybridization site among the RFLP
bands for each of the three universally conserved oligonucle-
otide probes.
Having identified 12 putative OTUs, we determined the

distribution of the 48 16S rDNA clones among these OTUs
(Fig. 4). The OTUs were numbered solely in the order of
detection, which was assumed to be stochastic, as determined
by the first 16S rDNA clone found in each OTU. OTUs 1 and
2 together accounted for 72.9% of all of 16S rDNA clones. Of
the two dominant OTUs, OTU 2 clones were nearly twice as
prevalent as OTU 1 clones; OTUs 1 and 2 accounted for 25.0
and 47.9%, of the 16S rDNA clones examined, respectively.
The remaining 13 bacterial 16S rDNA clones were distributed
among 10 OTUs. Only 2 of the remaining 11 OTUs contained
more than one clone. Thus, 8 of the 12 OTUs were represented
by a single 16S rDNA clone.
To determine whether in situ bacterial diversity was well

described by the 16S rDNA clones examined, the cumulative
number of OTUs was plotted as a function of clone number
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FIG. 4. Distribution in OTUs of 48 bacterial 16S rDNA clones
from the bacterial mat community at an active, hydrothermal vent

system at Loihi Seamount, Hawaii. Abundance, as determined by the
number of 16S rDNA clones found in each OTU, was used to define
the community structure. The OTUs are shown in order of initial
detection.

(Fig. 5). The bacterial 16S rDNA clones were numbered solely
on the basis of initial detection, which was assumed to be
stochastic. This technique is analogous to generating a rarefac-
tion curve to estimate species richness from a deterministic
transform of species abundance data (46). After the first 27
bacterial 16S rDNA clones were examined, 11 of the 12 OTUs
had been detected. Only one additional OTU was detected

among the remaining 21 clones. The two dominant OTUs were
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FIG. 5. Estimation of diversity in the bacterial mat community at

an active, hydrothermal vent system at Loihi Seamount, Hawaii. The

sequential detection of cumulative OTUs following RFLP analysis of a

48-clone bacterial 16S rDNA clone library is represented. For exam-

ple, after 27 (and 32) clones were examined, 11 (and 12) OTUs were

detected. The 16S rDNA clone numbers reflect the order of initial

detection, which was assumed to be stochastic relative to the distribu-
tion of clones generated in the library.

detected prior to any other OTUs and after only the first three
16S rDNA clones were examined.

DISCUSSION

In this paper, we describe the novel use of tandem tet-
rameric restriction endonucleases with cloned 16S rDNA gene

fragments to generate RFLP data (equivalent to ribotyping)
combined with rDNA fingerprinting for the purpose of de-
scribing bacterial community structure and diversity. The focus
of our study was a deep-sea, hydrothermal vent microbial mat
community, and we believe that our analytical strategy should
apply equally well in other habitats. In general terms, a

microbial community is defined as an assemblage of co-

occurring microorganisms interacting at given location or

habitat; it is the highest biological unit made up exclusively of
individuals and populations. Each population within a commu-

nity has a distinct functional role or niche. There are a finite
number of niches within a community, and these are filled by
the intrinsic populations of that community (1). In our usage,

the term community structure encompasses the number of
populations within a community and the number of individuals
within each population. A community's diversity describes the
number of individual populations, as well as the relative
genetic relatedness among these populations. Obtaining a

better understanding of bacterial community structure and
diversity is crucial to aspects of microbial ecology where
bacteria interact with one another and with their environment
(e.g., global biogeochemical cycling of matter, risk assessment
related to the release of genetically engineered microorgan-
isms, predator-prey relationships, and trophic-level interac-
tions).
A keystone of our approach was the use of tandem tet-

rameric restriction enzymes to establish OTUs. While any one

of the four tetrameric restriction enzymes by itself yielded too
few recognition sites for OTU analysis (data not shown), either
pair of enzymes (HaeIII plus MspI or AluI plus RsaI) would
have been sufficient for the detection of the majority of the
OTUs present in the hydrothermal bacterial community exam-

ined. The 1.5-kb cloned 16S rDNA inserts yielded restriction
fragments in the size range from 50 bp (lower limit of
detection) to 800 bp. In a perfectly random DNA sequence

that contained 50% G+C, a tetrameric recognition site would
occur every 256 bases. Therefore, the use of two tetrameric
restriction enzymes theoretically would yield 11 or 12 recogni-
tion sites within any given 1.5-kb gene fragment. Because of
the moderately higher G+C contents of 16S rRNA genes

(most bacterial 16S rDNAs have G+C contents between 55
and 65% [52]), we initially used restriction enzymes HaeIII
plus MspI. However, AluI plus RsaI yielded more restriction
fragments within the required size range and were slightly
more discriminating for the bacterial 16S rDNA clones exam-

ined in this study (Table 1; Fig. 2), which resulted in detection
of an additional OTU.
An integral part of our analysis was rDNA fingerprinting

through Southern blotting and 16S rDNA universal oligonu-
cleotide probe hybridizations (Table 1; Fig. 3). In doing this,
we confirmed the occurrence of 12 OTUs and the identities of
the 16S rDNA inserts for each clone. In addition, we detected
a chimeric 16S rDNA clone most likely produced by PCR-
mediated amplification. Without either rDNA fingerprinting
or a complete secondary-structure analysis of the primary-
sequence data from the entire 16S rRNA gene, this PCR-
mediated potential risk could produce erroneous results and
thereby suggest the presence of organisms that in fact do not

exist (24). In our study, the chimeric 16S rDNA clone was
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detected after secondary restriction by hybridization with a
universal oligonucleotide probe. This probing revealed the
presence of dual sites for a universally conserved position that
normally occurs only once in a 16S rDNA gene. This result,
found during an initial inspection of the bacterial clone library
by rDNA fingerprinting, caused us to eliminate this suspect
clone from the final OTU analysis.
The bacterial mat community collected at Pele's Vents was

dominated by two OTUs, which accounted for 72.9% of the
total 16S rDNA bacterial clone library (48 clones), and there
were an additional 10 OTUs present at low levels. Our
estimate of bacterial community structure, consisting of 12
OTUs detected among the 48 bacterial 16S rDNA clones and
their respective levels of abundance, approximates a log-
normal distribution (Fig. 4). This distribution of individual 16S
rDNA clones in OTUs (community structure) for Pele's Vents
is especially interesting because this habitat may be considered
an "extreme" environment because of its low pH (-4.0),
strong thermal gradient, high dissolved CO, content (-300
mM), and elevated trace metal concentrations (e.g., an Fe
concentration of .1 mM). This finding is accentuated by the
ephemeral nature of hydrothermal vent water emissions in
general, which directly affect the temperature of the habitat.

In examining the cumulative OTU distribution of 48 bacte-
rial 16S rDNA clones (Fig. 5), we interpreted the significant
decrease in the rate of OTU detection as evidence that most of
the diversity in the clone library was detected by the RFLP
analysis. We detected 11 of the 12 OTUs among the first 27
bacterial 16S rDNA clones examined. The remaining 21 bac-
terial 16S rDNA clones yielded only 1 additional OTU. As
there certainly must be rarely occurring bacteria in the mat
community, an examination of additional 16S rDNA clones
may have detected more OTUs. It is clear, however, that the
level of analysis was sufficient to detect the community's
predominant OTUs and infer their distribution within the
microbial mat community at Pele's Vents.
A crucial factor to address in an analysis of microbial

community structure and diversity when 16S rRNA biomarkers
are used is whether the focus of study should be on the
potential genetic diversity represented at the DNA level or on

physiologically active genetic diversity represented at the RNA
level. No habitat can optimally support the growth of all of the
bacteria that it contains (25, 26), and in marine environments
it is likely that starvation-survival processes are a common
metabolic strategy for a majority of the bacteria (27-29). When
in a starvation survival-state, marine bacteria lose viability as
well as cellular DNA and RNA disproportionally, depending
on the prestarvation growth rate (29-32). The rRNA content

decreases predictably during starvation-survival, with loss rates

that depend on the physiological state at the onset of starvation

(11, 21). A positive correlation between cellular ribosomal
(rRNA) content over a wide range of growth rates for bacteria
is a long-standing axiom in microbial physiology (8, 17, 35, 39).
Recently, this relationship was demonstrated elegantly by
using fluorescent 16S rRNA-targeted hybridization probes for
single cells of E. coli B/r (7) and for single cells of sulfate
reducers found in biofilms (34). Direct analysis of 16S rRNA
can potentially bias diversity estimations in favor of rapidly
growing populations of cells and can underestimate the genetic
diversity present in a given habitat. Therefore, the 16S rRNA
of a natural microbial community better estimates the physio-
logically active microorganisms that are present than the
absolute genetic diversity and community structure. Conse-
quently, estimating diversity at the DNA level, rather than at

the RNA level, theoretically provides a more accurate mea-

surement of taxonomic group variability by potentially detect-

ing slowly growing or dormant microorganisms present within
the community.

Estimating community structure and diversity at the DNA
level is an invaluable tool for microbial ecology, but this
strategy also has potential problems and limitations. The
oligonucleotide primers used to amplify the 16S rRNA genes
from the bacterial mat community are complementary to
regions conserved over the entire bacterial domain. Therefore,
we assumed that the clone library contained an array of 16S
rDNAs approximately as diverse as that of the bacterial mat
community at Pele's Vents. Furthermore, the distribution of
16S rDNA clones within a library ultimately should approxi-
mate the relative distribution of cells in the habitat. However,
the possibility of selection during the DNA extraction process
exists, and care must be taken to achieve the highest possible
level of efficiency in cell extraction and DNA recovery to avoid
selection prior to PCR amplification of the cloned 16S rDNA.
It is also possible that "cell-free" detrital DNA, which may
have been adsorbed onto the mineral-rich microbial mat
material found at Pele's Vents was extracted. The potential for
bias at the level of the PCR and ligation reactions also exists,
which is why care was taken to use multiple PCR and ligation
reactions to construct the bacterial clone library. Finally, as
shown previously, when conducting community structure and
diversity analyses with these techniques, workers must be
especially alert to and test for the possibility of PCR-mediated
chimeric gene amplification.

In summary, in this study we demonstrated a novel approach
for estimating microbial diversity and community structure
from environmental samples by using recently developed mo-
lecular biological techniques. We used tetrameric restriction
endonuclease pairs to detect OTUs by an RFLP analysis of a
PCR-amplified 16S rDNA bacterial clone library. Using this
technique coupled with rDNA fingerprinting, we estimated the
number of OTUs and the abundance of each OTU. We
applied this approach to the bacterial mats at Pele's Vents, a
deep-sea hydrothermal vent system, and showed that the
bacterial community is dominated by 2 OTUs and contains at
least 12 OTUs, entities analogous to bacterial species. Phylo-
genetic analyses of the 16S rRNA genes from each of the
bacterial OTUs, as well as archaeal community structure and
diversity analyses of the microbial mats at Pele's Vents, are
currently under way.
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