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Abstract

We report a set of tools to estimate the number of susceptibility loci and the distribution of their 

effect sizes for a trait on the basis of discoveries from existing genome-wide association studies 

(GWASs). We propose statistical power calculations for future GWASs using estimated 

distributions of effect sizes. Using reported GWAS findings for height, Crohn’s disease and 

breast, prostate and colorectal (BPC) cancers, we determine that each of these traits is likely to 

harbor additional loci within the spectrum of low-penetrance common variants. These loci, which 

can be identified from sufficiently powerful GWASs, together could explain at least 15–20% of 

the known heritability of these traits. However, for BPC cancers, which have modest familial 

aggregation, our analysis suggests that risk models based on common variants alone will have 

modest discriminatory power (63.5% area under curve), even with new discoveries.

Although GWASs have been successful in identifying susceptibility loci for over 125 

complex traits in humans, the variants discovered thus far explain only a modest proportion 

of the heritability of these traits1. The debate over the value of conducting more GWASs 

with current genotyping platforms has contrasted the benefits of discovering new regions for 

understanding biology with the diminishing returns of identifying new loci that have 

progressively smaller estimated effect sizes and thus marginal value for risk prediction2,3. 
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Nevertheless, the research community is converging into consortia for large meta-analyses, 

which promise to discover additional loci missed in the first generation of GWASs owing to 

relatively small sample sizes. Already, large-scale pooling and meta-analyses of common 

diseases and traits have successfully found additional new loci. The falling cost of fixed-

content array genotyping technology is also fueling efforts to launch new GWASs. In 

addition, development of next-generation genotyping and sequencing platforms, together 

with the completion of 1,000 Genomes Project, will soon enable the investigation of 

uncommon and rare variants.

As data from recent GWASs suggest, complex traits are associated with a spectrum of 

susceptibility loci that contribute to heritability. Once the first studies have been conducted, 

a challenge for second-generation GWASs is that the undiscovered susceptibility loci are 

expected to have smaller effect sizes, because those with large effect sizes—the low-hanging 

fruit—have already been detected. How large should future GWASs be to detect a 

substantial number of as-yet-unidentified susceptibility loci?

Standard power calculations are inadequate for addressing the potential discoveries of future 

GWASs because they evaluate the probability of detecting a single susceptibility locus with 

a fixed effect size. Here, in contrast, we calculate the expected number of discoveries for 

future GWASs by integrating power over the number of unidentified susceptibility loci that 

probably exist, accounting for the distribution of relative risk and allele frequency.

One of the early promises of the GWAS approach was more accurate models for risk 

prediction based on genetic profiles4. Theoretical calculations based on estimates of total 

genetic variances have indicated that the potential benefit of such models could be large for 

chronic diseases such as breast cancer5. Recent reports, however, have noted that the known 

common susceptibility loci do not discriminate well for risk prediction6–10. Some have 

speculated as to how many additional common loci, with specific effect sizes, would be 

required to substantially improve the risk model in the future6,7,11. However, no report, to 

our knowledge, has used empirical evidence to assess the number of loci that are likely to be 

associated with a given disease, and the distribution of their effect sizes.

We show here how to use data from existing GWASs to evaluate the power and risk-

prediction utility of future studies. To demonstrate and validate the utility of the method, we 

estimate the distribution of effect sizes for common SNPs identified in several recent 

GWASs. The distribution of effect sizes seen in current GWASs is skewed because of the 

bias in favor of larger effect sizes, for which power is greater. We correct for such bias by 

relying on the observation that the number of susceptibility loci with a given effect size that 

could be expected to be discovered in a GWAS is proportional to the product of the power 

of that study with that effect size and the total number of underlying susceptibility loci that 

exist with similar effect size. We obtain an estimate of the number of susceptibility loci with 

different effect sizes for a trait, using the number and empirical distribution of observed 

effect sizes of known loci and the power of the original discovery samples at those effect 

sizes. We report nonparametric and parametric methods for extracting information from 

published GWASs and describe how to use these estimates to evaluate power and risk-

prediction utility.
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We apply these methods to publicly available data from GWASs of height, Crohn’s disease 

and three cancer sites: breast, prostate and colorectal. On the basis of the estimated 

distribution of effect sizes, we project sample sizes required for a GWAS to identify these 

associations. For Crohn’s disease and the cancers, we estimate the discriminatory accuracy 

of risk models. Our projections provide insight into the scale of effort that GWASs will 

require for both discovery and risk prediction using common variants. Potential applications 

of the methods for studies of rare variants are also discussed.

RESULTS

Height

Adult height is known to be highly heritable, and 80–90% of its variance can be explained 

by genetics12. Three recent large GWASs reported 54 susceptibility loci for height from a 

total of 63,000 subjects of European ancestry13–15. Although many of these 54 detected loci 

reached genome-wide significance in the initial scans of between 13,000 and 31,000 

subjects, others were discovered in follow-up genotyping of promising signals. In this 

report, we have included 30 loci that reached genome-wide significance (P < 10−7) in the 

initial scans, to obtain an unbiased estimate of effect sizes (Supplementary Table 1) based on 

the replication sets. Although this strategy excludes some susceptibility loci, our estimation 

method was not biased for selection of SNPs, as it automatically adjusts for power to 

accommodate the chosen selection strategy.

Figure 1 shows the effect of adjusting for power for the identified susceptibility loci in 

estimating the density of all underlying SNPs. The density of the effect sizes for the 

observed SNPs initially increases with decreasing effect sizes, reaches a peak and then 

decreases at the lowest size range. The estimated density of effect sizes for all underlying 

SNPs, in contrast, continues to increase at an accelerating rate as the effect size decreases. 

The density of the currently identified SNPs is biased, compared to the density of all 

underlying SNPs, owing to the lower probability that SNPs with smaller effect sizes will be 

identified.

We estimate that 201 (95% confidence interval (CI): 75, 494) SNPs exist for height in the 

range of effect sizes observed in current GWASs and that, together, they could explain 

approximately 16% (95% CI: 11%, 31%) of genetic variance for adult height (Table 1). This 

estimated distribution of effect sizes suggests that the cumulative number of loci that could 

be expected to be discovered in future GWASs increases linearly16 with increasing sample 

size, whereas the associated percentage of genetic variance explained increases at a 

decelerating rate, because the additional loci discovered in larger studies will tend to have 

smaller effect sizes (Table 2). Sample size calculations based on the estimated distribution 

of effect sizes suggest that it is important for study designs to account for already identified 

loci from past studies if they are to have sufficient power to detect novel loci (Table 3). For 

example, the calculations show that whereas the first GWAS of height would have required 

a sample size of n = 24,800 for the detection of 25 loci with 80% power, a new study would 

require a sample size of n = 40,100 for the discovery of the same number of new loci with 

similar power, given that many loci are now already known for height. Further, we find that 

the effect on the expected number of discoveries from increasing the density of genotyping 
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platforms is relatively modest for white populations but possibly substantial for African-

American populations (Supplementary Table 2).

Crohn’s disease

Crohn’s disease is a common inflammatory bowel disease that has high heritability, with a 

sibling relative risk (λsib) estimated at between 20 and 35. A recent multistage genome-wide 

association study with 13,532 subjects of European ancestry has identified ~30 independent 

susceptibility loci for this trait17. The first stage was a scan of 3,230 affected individuals and 

4,829 control subjects; in a second stage, 74 independent regions (P < 5 × 10−5) were 

genotyped in 2,325 additional affected people and 1,809 population-based controls, 

alongside 1,339 independent case-parents trios. In the present study, we included 32 

susceptibility SNPs that reached genome-wide significance in the combined analysis of first- 

and second-stage population-based studies, and we obtained estimates of their effect sizes 

from the independent case-parent trios. We calculated the power of the SNPs at the 

estimated effect size, following the two-stage design with alpha levels of 5 × 10−5 for the 

first stage and 10−7 for the second stage (Supplementary Table 3). We excluded five outlier 

SNPs that had extremely small effect sizes compared to the rest (see Supplementary Note 

for sensitivity analysis).

We estimated that a total of 142 (95% CI: 71, 244) independent susceptibility loci exist for 

Crohn’s disease within the range of effect sizes seen in the current GWASs. These loci 

together could explain 20% (95% CI: 16%, 28%) of genetic variance for the trait. On the 

basis of the estimated distribution of effect sizes, we projected that a future risk model for 

Crohn’s disease that could include all of the 142 estimated loci would have an area-under-

curve (AUC) value (Fig. 2) of 79.2% (95% CI: 76.4%, 83.2%). In contrast, the AUC is 

72.8% for a model that includes only ~30 currently known SNPs, and 96.6% for an idealized 

model that could explain the majority of genetic variance of Crohn’s disease.

Breast, prostate and colorectal cancers

BPC cancers are common and are known to have modest heritability, with estimated sibling 

relative risks between 2 and 3 (ref. 18). Recent GWASs have reported susceptibility loci for 

each cancer with comparable ranges of effect sizes. Compared to height and Crohn’s 

disease, however, fewer loci have been discovered. Assuming a similar genomic architecture 

for each, we improved precision by obtaining averaged estimates for the number and 

distribution of effect sizes over these three traits. Our analysis included 20 susceptibility loci 

for cancers, reported in studies based in the UK19–21; five of these loci are associated with 

breast, five with prostate and ten with colorectal cancers (Supplementary Table 4). All three 

case-control studies used selective sampling of cases by family history or age at onset, or 

both, ostensibly rendering standard power calculations inappropriate. We used power 

estimates for the breast cancer SNPs reported in the original publication and obtained effect 

size estimates for the same SNPs using only the third stage of the study. Similarly, for 

colorectal cancer, we used the power estimates for ten SNPs and the corresponding effect 

size estimates from the replication study. As no power estimates were reported in the 

prostate cancer study, we obtained an effective sample size for this study by equating 

expected and observed number of discoveries, under the assumption that the effect size 
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distribution for prostate cancer is the same as that estimated from the pooled colorectal and 

breast cancer susceptibility SNPs, and then used this effective sample size to evaluate the 

power of the five individual prostate cancer SNPs.

We estimated that for each BPC cancer, there exist, on average, 67 (95% CI: 31, 173) 

susceptibility loci within the range of effect sizes seen in the current GWASs, and that these 

loci together could explain 17% (95% CI: 12%, 36%) of genetic variance for each cancer. 

We estimated that a risk model based on 67 loci can achieve an AUC value of 63.5% (95% 

CI: 61.2%, 69.1%). The corresponding estimate of AUC for models that include only the 

five to ten susceptibility loci initially identified for the BPC cancers is, on average, 57.0%.

External validation

We validated the proposed methodology and associated projections using several sources of 

independent data (Table 4). To carry out this validation, we used the estimated distribution 

of effect sizes we obtained in the studies described above to project the number of loci 

expected to be discovered in these additional data sources, on the basis of their sample sizes 

and study designs. We projected the total number of loci expected to be discovered in the 

Cancer Genetic Markers of Susceptibility (CGEMS) two-stage breast and prostate cancer 

studies22,23; these were two US-based studies that we purposefully did not use to select loci 

for estimating distribution of effect sizes of BPC cancers. We also projected the number of 

novel loci expected to be discovered in the most recent Cancer Research UK (CRUK) three-

stage prostate cancer study24, which included additional data beyond that of the two-stage 

study20 we used to select loci for BPC cancers. For height, we projected the number of 

additional loci expected to be discovered after inclusion of the second-stage data in the study 

in ref. 13, from which we had only used the first-stage data for selection of susceptibility 

loci. For each outcome, the projected number of novel signals closely approximates the 

observed number of discoveries. Finally, we prospectively projected the total number of 

height loci expected to be discovered in a meta-analysis of about 130,000 subjects by the 

Genomewide Investigation of Anthropometric Measures (GIANT) consortium. Findings 

from the GIANT consortium (J. Hirschhorn, Harvard Medical School, personal 

communication) are expected to be reported soon.

DISCUSSION

The expected number of discoveries from future GWASs, as well as the projected impact of 

the findings on individualized risk models, depend on the number and distribution of effect 

sizes for underlying susceptibility loci. In this report, we have proposed a method to project 

estimates for the distribution of effect sizes of undiscovered loci using estimates of effect 

sizes of known susceptibility SNPs, together with the power of the studies reporting the loci. 

We show how such estimates can be used to estimate power and sample-size requirements 

for future studies—either new GWAS scans or meta-analyses. We have validated our 

method using existing GWASs of common variants associated with a range of common 

traits—namely, Crohn’s disease, height and three common cancers. It is likely that future 

studies with larger sample sizes will discover a set of variants with effect sizes smaller than 
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those currently seen. When such data become available, our method can be used to project 

additional loci in an extended range of effect sizes.

In our results, the projected numbers of common susceptibility SNPs associated with height 

and Crohn’s disease exceed the number for BPC cancers, which is consistent with reported 

heredity for each of these traits. Overall, we observed that the shapes of the estimated 

distributions of effect sizes for each trait were similar across phenotypes—notably, all had 

an increasingly large number of susceptibility loci at decreasing effect sizes25. When we 

considered fitting alternative parametric models (Supplementary Table 5), we observed that 

an exponential distribution, which implies the number of susceptibility loci increases at an 

exponential rate with decreasing effect sizes, estimated a considerably smaller number of 

total susceptibility loci than the nonparametric estimator. In contrast, a Weibull distribution 

with number of loci increasing at a faster-than-exponential rate with decreasing effect size 

provided estimates much closer to that obtained from the nonparametric method. In this 

regard, the results based on current GWASs point toward a model for distribution of effect 

sizes for complex traits that suggests a large number, possibly thousands, of susceptibility 

loci with very small effect sizes3.

Most often, researchers have evaluated the power of studies to detect single SNPs with 

different effect sizes or allele frequencies. Typically, the methods do not account for the 

number of SNPs that are likely to exist with different effect sizes. A few earlier reports have 

described power calculations for genetic association studies that reflect uncertainties 

regarding linkage disequilibrium26,27 and allele frequencies26,28 integrating over empirically 

estimated distributions of the parameters. Our method is designed to assess the number of 

discoveries expected on the basis of power calculations that are integrated over the estimated 

number of loci and their likely distribution of effect sizes. Our sample-size calculations 

show the importance of accounting for previous discoveries (Table 3). The method can use 

results from calculations of power to detect single SNPs with fixed effect sizes, making use 

of standard tools such as CaTS and GWASpower29 together with an estimated distribution 

of effect sizes to assess the integrated power of a study over the catalog of different SNPs.

GWASs are conducted using surrogate markers and rarely identify the functional variant 

directly; one should take this into account when interpreting the estimates of effect size 

distribution and the associated power calculations for future studies. The majority of 

GWASs used in this report used commercial fixed genotyping platforms (Affymetrix, 

Perlegen and Illumina), which provide adequate coverage of HapMap Phase II SNPs with 

minor allele frequency (MAF) > 5%. Select studies14,17 employed imputation, which can 

monitor ~2.5 million SNPs included in HapMap Phase II. So far, fine mapping studies of the 

reported loci have provided no conclusive examples of new common alleles with 

substantially higher effect sizes. Thus, it is unlikely that denser platforms with more 

common variants (MAF > 5%) will substantially alter the risk estimates for common 

variants in people of European background. In contrast, if the same platforms are used for a 

different population, resulting in lower coverage, then we can expect to see substantially 

smaller effect sizes even if the distributions for the underlying causal variants are 

comparable between the populations (Supplementary Table 2). It is possible that next-

generation genotyping and sequencing platforms, which will efficiently interrogate 
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uncommon and rare variants, could magnify the effect sizes for some of the estimated loci 

that are currently being represented by common variants owing to synthetic association30 

(Supplementary Table 6).

There is uncertainty in the estimates of effect size distribution and the associated projections 

for future studies. We provide estimates of uncertainty owing to chance variation in the set 

of existing loci because of the randomness of the data that led to the initial discoveries. 

There can also be systematic errors. To avoid bias, it is crucial that the power of the existing 

studies that led to the discovery of the observed loci is evaluated in an unbiased fashion. 

Steps should be taken to avoid overestimation of effect sizes, as well as of corresponding 

power, owing to winner’s curse31,32. Sometimes precise design and selection criteria may 

not be well defined in published studies. Accordingly, the sensitivity of the estimates should 

be analyzed, and these sensitivity analyses should be consistent with the apparent design of 

the original studies (Supplementary Table 7).

Our method can be performed using only summary data from published GWASs as long as 

there is enough information to allow unbiased evaluation of power to detect loci in the 

observed range of effect sizes. For a simple one-stage or multi-stage GWAS with additional 

replication data, power calculations can be done externally. However, for more complex 

studies characterized by complicated sampling and selection criteria, power calculations by 

independent researchers may not be possible. Thus, we suggest that journals encourage 

inclusion of power calculations with the original findings. To this end, we have developed a 

toolbox, INPower (see Methods), that can integrate the distribution of effect sizes into power 

calculations for future studies.

Using the estimated distributions of effect sizes, we can project the potential utility of risk 

models for Crohn’s disease and BPC cancers by assessing the likely upper bound of 

discriminatory power. Recently, reports7,11 have speculated on the number of susceptibility 

SNPs with certain effect sizes that will be needed to achieve an AUC of ~80% for a risk 

model. Given the paucity of findings thus far, we estimate that such a large number of loci 

with the inferred effect sizes probably do not exist. It appears that for a trait like breast 

cancer, which is known to have a modest genetic component, one could optimistically 

expect to achieve an AUC of approximately 63.5% (95% CI: 61.2, 69.1) for a purely genetic 

risk model with common variants. In contrast, for a trait like Crohn’s disease, which is 

highly familial, a risk model based on the already identified ~30 loci has higher 

discriminatory power (AUC = 72.8%). Discoveries from additional studies can further 

improve the discriminatory power of genetic models, but we project that the AUC for risk 

models that would include these additional discoveries is unlikely to exceed 79.2%. As 

noted above, it is possible that future studies of rare variants will magnify the effect size for 

some of the estimated loci and thus increase the discriminatory power for risk models as 

well.

In this report, we describe the application of this method using data from GWASs. The 

general concepts and principles we outline, however, are potentially applicable to findings 

from future studies with different features, such as those using next-generation sequencing 

and new, denser types of genotyping platforms. Our method can be applied to studies that 
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test rare variants in regions across the genome33,34 if an effect size is used that captures the 

total genetic variance explained by multiple rare variants within a region. Once discoveries 

from the first set of studies of rare variants become available, our method can be potentially 

used to project the number of additional loci containing rare susceptibility variants that 

could be discovered from subsequent studies.

In summary, our method uses existing GWAS data to project the likely number of 

discoveries from future GWASs. Thus, we provide investigators with an additional tool to 

determine the utility of further studies. Accordingly, the method should be useful for 

justifying additional scans as well as meta-analyses designed to identify novel regions that 

can add insights into the genetic epidemiology of a disease or a trait.

ONLINE METHODS

Definition of effect size

Throughout this article, we define the effect size (ES) for a susceptibility SNP marker 

(SSM) as

where the coefficient β measures the regression effect—for example, log odds-ratio in a 

logistic model—of the locus per copy of the variant allele, and f denotes the MAF. The 

effect size, as defined above, corresponds to the contribution of the locus to the genetic 

variance of the trait under Hardy-Weinberg equilibrium and an additive polygenic model. 

Notably, under modest assumptions, the power to detect the locus using the commonly 

employed trend test can be shown to depend on β and f only through the quantity ES. Thus, 

the effect size for an SSM, as defined above, determines its contribution to the total genetic 

variance of the trait as well as the statistical power to detect it in an association study.

Estimation of the distribution of effect sizes

The basic idea behind the proposed approach can best be seen by considering the problem of 

estimating a histogram to describe the frequency distribution of the effect sizes for the 

underlying SSMs. Suppose ES1, … , ESK are the observed effect sizes for K known SSMs 

for a trait. Suppose we divide the range of the effect sizes into l = 1, … , L bins and our goal 

is to estimate Ml for l = 1, … , L, the total number of underlying SSMs that fall into the 

different bins. Now suppose a GWAS (or a group of such studies) has detected Kl for l = 1, 

… , L loci in these L bins. Now if pow(N, l) denotes the power of the study to detect an SSM 

in the lth bin, assuming that power for all the SSMs within a bin is approximately the same, 

then it is evident that for each bin, the observed count Kl follows a binomial distribution 

with n = Ml and P = pow(N, l), with the expectation that E(Kl) = Ml pow(N, l). Thus, we can 

naturally estimate Ml as
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With this basic ingredient in mind, we consider a modification of the estimation method 

using parametric and nonparametric smoothing techniques that avoid the arbitrary definition 

of ‘bins’ required in the histogram approach.

Parametric method

We assume a parametric form—for example, exponential or Weibull distribution—for the 

density of effect sizes of all underlying susceptibility SNPs. Let fθ (ES) represent such a 

parametric density, where the associated parameters θ need to be estimated from the data. 

The observed effect sizes in a study are typically left-truncated, as power to detect loci with 

effect sizes below a certain threshold, say C, is practically zero. In our method, we choose 

the truncation point C in such a way that the power for the existing studies below this 

threshold is less than 1%. We then obtain an estimate of θ based on all the observed effect 

sizes above this threshold by maximizing the weighted truncated log-likelihood

Once an estimate of θ is obtained, then an estimate of M, the total number of loci in the 

observed range of effect size (ES > C) is obtained by equating the observed number K and 

expected number of discoveries under the estimated distribution of effect sizes, using the 

equation

Finally, the estimates of the number of underlying loci for each of the observed effect sizes 

are obtained as

Nonparametric method

We used the kernel smoothing technique to obtain a nonparametric estimate of effect size 

distribution. For each of the identified SSMs with a unique effect size ES, we first estimate 

the number of underlying SSMs with similar effect sizes as 1/pow(N, ES) where pow(N, ES) 

denotes the power to detect the SSM having the effect size ES with sample size N, and then 

smooth these ‘raw counts’ using the locally linear kernel smoothing technique to reduce the 

variability of the estimates. In this procedure, the estimate for the number of SSMs at each 

of the observed effect sizes ES is obtained as
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which is a weighted average of 1/pow(N, ESk) for all the identified SSMs in a neighborhood 

Nλ (ES) of ES where the weights decrease smoothly according to a specified function w(x) 

with the increasing distance between ESk and ES. Once we obtain estimates of M̂ (ESk), k = 

1,…, K for the observed effect sizes, we can obtain an estimate of the total number of 

underlying SSMs in this range simply as .

Power calculations for existing studies

For the above calculations for estimation of effect size distribution, it is crucial that the 

power of the studies that have led to the discovery of existing loci is evaluated in an 

unbiased fashion. It is particularly important to avoid the problem of ‘winner’s 

curse’31,32,35,36, which could lead to overestimation of effect sizes and powers. When the set 

of identified SNPs comes from multiple studies, published separately without any meta-

analysis, the power for an identified SSM should be defined as the probability of it being 

detected in at least one of those studies. Assuming the studies are independent, such 

probabilities can be computed as

Evaluating power of a new GWAS using estimates of the distribution of SSMs

Let X denote the random variable indicating the total number of SSMs that could be 

identified in a GWAS of sample size N. Given the estimates of the range of effect sizes, ES1, 

… , ESK, and the corresponding estimates of the frequencies of total number of SSMs that 

exist with those effect sizes, M̂ (ES1),…, M ̂ (ESK), we can write

where each Xk, the number of SSMs that could be identified with the particular effect size 

ESk, can be shown to follow a binomial distribution with n = M ̂ (ESk) and P = pow(N,ESk). 

We note that standard power calculation tools can be used to evaluate pow(N,ESk), which 

denotes the power of the study to detect a fixed SSM with effect size ESk. In this step, one 

can also account for coverage of a genotyping platform with known r2 distribution. One can 

analytically calculate power for a fixed SNP and fixed r2 as p(r2) = pow(N,r2 × ESk) and 

then integrate it over the known r2 distribution for a genotyping platform. We can evaluate 

the probability distribution of X, decomposed as a sum of independent binomial random 

variables as above, to obtain an assessment of power that automatically accounts for the 

distribution of effect sizes. For example, we evaluated Pr (X ≥ k) to estimate the power of a 
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study to detect at least k loci. We also estimated  to assess 

the number of loci expected to be discovered in a study of size N. Moreover, one can 

evaluate the power of a GWAS for identifying ‘novel’ loci by simply subtracting the number 

of already identified loci from M ̂ (ESk), k = 1,…,K in all the calculations of the binomial 

probabilities.

Evaluating total genetic variance explained

Estimating the distribution of effect sizes for SSMs is also useful for evaluating the 

percentage of heritability that could potentially be explained using findings from future 

GWASs. Letting  be the total genetic variance (GV) of a trait, we use

to estimate how much of the GV can be explained by all of the SSMs that potentially exist in 

the range of effect sizes that has already been observed in the current generation of 

association studies.

Genetic risk distribution and its discriminatory power

To evaluate the AUC for discriminatory power of risk, we followed ref. 5 by assuming that 

the genetic risk follows a log-normal distribution with mean μ and s.d. σ for the general 

population and with mean μ + σ2 and s.d. σ for affected individuals. We set μ = −σ2/2 so that 

the expected mean of the population risk is equal to 1 and the risk distributions are 

characterized by only one parameter σ. For each trait, three sets of receiver operating 

characteristic curves are obtained for three different choices of σ2: (i) the total genetic 

variance that could explain all the familial risk for a trait; (ii) the genetic variance explained 

by the estimated susceptibility loci; and (iii) the genetic variance explained by currently 

known susceptibility loci. We use the relationship λ2
sib = exp(σ2), where λsib denotes sibling 

relative-risk, to obtain an estimate of the total genetic variance that could explain all the 

familial risk of a trait.

Parametric bootstrap for variance estimation

A parametric bootstrap method was implemented to obtain variability for the estimates 

presented in this paper. In each bootstrap (BS) replication, we generate a random number of 

‘observed’ loci, say denoted by KBS(ESk), for each effect size ESk, by sampling from a 

binomial distribution with n = M̂ (ESk) and P = pow(N,ESk), where M ̂ (ESk) are estimates of 

the total number of susceptibility loci from the original data. For each BS replicate, we then 

recompute all of the estimates of interest based on the new random draw of observed loci. 

The 95% confidence intervals presented with the estimates in the Results and Discussion 

were constructed by selecting the 2.5th and 97.5th percentiles of bootstrap estimates 

obtained from 100 replicates.
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Figure 1. 

Nonparametric estimates for distributions of effect sizes for susceptibility loci. (a) Curves 

based only on observed susceptibility loci; these curves are distorted because loci with larger 

effect sizes are more likely to have been detected. (b) Curves based on estimated 

susceptibility loci, representative of the population of all susceptibility loci. (c) Estimated 

nonparametric distributions after normalization over the common observed range for the 

three traits.
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Figure 2. 

Receiver operating characteristic curves for genetic risk models. (a,b) Curves for Crohn’s 

disease (a) and BPC cancers (b). AUC is a measure of the discriminatory power of the risk 

model. Blue, a theoretical genetic risk model that explains all of the known familial risk of 

the trait. Green, a risk model that includes all of the susceptibility loci (142 for Crohn’s 

disease and 67 on average for BPC cancers) estimated to exist within the range of effect 

sizes seen in the current GWASs. Red, a risk model that includes only known susceptibility 

loci (~30 for Crohn’s disease and ~7 on average for each of the BPC cancers), which we 

used to estimate the distribution of effect sizes of these traits. Black, reference line 

corresponding to a model without discriminatory power in which cases have the same 

distribution of risk as controls.
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Table 1

Estimated numbers of common susceptibility SNPs, and associated genetic variances explained, for three 

complex traits

Estimated number
of total loci

(95% CI)

Total GVa explained
by estimated
loci (95% CI)

Observed range
of effect sizes

(% GV)

Height 201 (75, 494) 16.4 (10.6, 30.6) 0.04–1.13

Crohn’s disease 142 (71, 244) 20.0 (15.7, 28.0) 0.07–1.96

BPCb cancers 67 (31, 173) 17.1 (11.6, 35.8) 0.14–1.82

All the projections were performed using a nonparametric method and are restricted to the range of observed effect sizes for known susceptibility 

SNPs (shown in the last column).

a
All genetic variances (GV) are shown as a percentage of the total variance of the trait attributable to heritability. For Crohn’s disease and BPC 

cancers, the variance due to heritability is computed from estimates of sibling relative risk using a log-normal model for risk5.

b
All estimates should be interpreted as averages over the three cancers.
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Table 4

Expected and observed numbers of discoveries in external data sets

Expected number

of discoveriesa
Observed number

of discoveries

Cancer

Total number of discoveries in CGEMS prostate two-stage study 2.7 5

Total number of discoveries in CGEMS breast two-stage study 3.0 3

Number of additional discoveries in the latest CRUK prostate studyb 9.5 7–9c

Height

Number of additional discoveries in ref. 13 after inclusion of stage 2d 9.3 11

GIANT consortiume 186 Not available

Data sets used for this validation exercise were not used in selection of loci for estimating effect size distribution. All calculations are based on a 

genome-wide significance of 10−7.

a
Obtained using the externally estimated distributions of effect sizes, along with sample size and study design of the specified studies.

b
Data from only five prostate cancer loci discovered from the original CRUK prostate study contributed to the estimation of the distribution of 

effect sizes of BPC cancers. Here, expected number of additional discoveries is calculated as the difference between expected number of 

discoveries with and without the third-stage data.

c
Study reported discovery of nine independent susceptibility SNPs from seven different chromosomal regions.

d
Data from only 20 loci discovered in the first stage of this study contributed to estimation of the distribution of effect size for height.

e
Prospective projection for a meta-analysis of GWAS data for 130,000 subjects.
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