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SUMMARY

A method is proposed for estimating effective population size (N) from
data on linkage disequilibrium among neutral genes at several
polymorphic loci or restriction sites. The efficiency of the method
increases with larger sample size and more tightly linked genes; but for
very tightly linked genes estimates of N are more dependent on long-term
than on recent population history. Two sets of data are analysed as
examples.

1. INTRODUCTION

Linkage disequilibrium can, in theory, be produced by a number of factors
operating separately or together: epistatic selection, migration, hitchhiking or
random drift in finite populations (reviewed by Hedrick, Jain & Holden, 1978).
Many estimates of linkage disequilibrium between allozymes at polymorphic loci
have been made both in laboratory and natural populations, particularly in
Drosophila; for references and summaries see, for example, Langley, Smith &
Johnson (1978) and Hedrick et al. (1978). Usually little or no significant disequi-
librium has been found, except where associated with inversions, or in laboratory
populations maintained with small size (Langley et al. 1978; Laurie-Ahlberg &
Weir, 1979), or between very closely linked loci such as those of the HLA system
in man (e.g. Bodmer, 1973). Much additional data on disequilibrium are likely to
come from direct studies on the DNA, from restriction enzyme sites or DNA
sequences directly. Disequilibrium has been demonstrated between a nearby
restriction site and the sickle-cell variant of the ytf-globin structural gene in man
(Kan & Dozy, 1978).

For neutral genes or sites, the disequilibrium can be used to estimate population
size because the variance of the disequilibrium or correlation of gene frequencies
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is a known function of population size (Langley, 1977; Laurie-Ahlberg & Weir,
1979). However, Langley did not go into much detail and Laurie-Ahlberg & Weir
considered only unlinked loci. In this report the methodology is taken further.

2. ANALYSIS

(i) Variance of disequilibrium

Consider first a pair of loci, each with two alleles, neutral with respect to fitness.
At the first locus the frequency of allele A is p and at the second the frequency
of allele B is q. The linkage disequilibrium is D = freq.(.4.B) — pq and the correlation
of gene frequencies is r = D/(p(l— p)q(l — g))i The recombination fraction
between the loci is c.

The population is assumed to be closed, and random mating with constant
effective size N to be of sufficiently long standing that founder effects can be
ignored. Therefore E(D) = E(r) = 0 and, although V{D) declines as homozygosity
increases, V(r) approaches a steady value over populations remaining segregating
(Hill and Robertson, 1968). Although V(r) cannot be predicted exactly, it is well
approximated as a ratio of moments. The variance of r comprises two parts; the
first is a function of the effective population size (N) and c, and reflects the past
finite population history; the second derives from sampling a limited sample of
individuals from the population for estimating gene frequencies and disequilibrium,
and is a function of the sample size (n). The latter contribution is the same whether
a sample of n chromosomes are extracted and identified (possible in Drosophila)
or whether n diploids are analysed in which coupling and repulsion heterozygotes
cannot be distinguished (Hill, 1974); and the method of analysis of diploids,
whether by maximum likelihood or the simpler Burrows' procedure, makes no
difference to variance in random mating populations (Weir, 1979). Putting the
terms together,

(Weir & Hill, 1980). Equation (1) strictly holds only for monoecious populations
or dioecious with no permanent matings; for monogamy (1) should be increased
by l/(2JVc(2 — c)) (Weir & Hill, 1980), but this increment is mostly small and is
not considered here. For very small Nc values (1) is not adequate because E(r2) < 1.
A fully relevant formulation is not available, but (1) almost certainly can be
improved by replacing 2iVc(2 —c) by 1 + 2Nc(2 — c) in the denominator of the first
term following Sved & Feldman (1973). In the following analyses Nc values near
unity are not encountered, and this additional term is ignored.

Generalizing to I loci, there are k = l(l—1)/2 pairs; and let r{, c( and nt,
i = 1, ...,k, denote the correlation, recombination fraction and number of obser-
vations taken on the ith pair. Defining

equation (1) reduces to

, i = l,...,k. (2)
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The variance-covariance structure of r\ has been little studied, but some

information will be needed here for pooling data from different pairs of loci. Some
data are given by Hill (1977), and further analysis and discussion are given in the
Appendix. These analyses can be summarized as follows (a) V(r\) ~ 2ffl(r%) or
CF(rf) ~ 1-4, such as might be expected if rf/2?(rf) were a chi-square deviate with
one degree of freedom; (b) the correlations among the r\ are zero or essentially so
when different loci are involved, e.g. r\B and r\.D, and not more than about 0-25
when there are loci in common, e.g. r\c, r2

BC. Thus in the following analysis the
r\ will be assumed to be uncorrelated with variance double their expected value.
Although more efficient estimates of N could be obtained if the full variance—
covariance structure of the r\ were known, in view of the small correlations the
exact error structure is not critical since the figures are being used mainly to weight
different unbiased estimates of population size or its inverse.

(ii) Estimation of population size

Equation (2) can be used to estimate N by replacing E(r\) by its observed value.
To avoid inverting r\ before pooling over loci, it is better to estimate N'1 by

(3)

for the ith pair of loci. The d4 can be combined most efficiently using their
variance—covariance structure which, from the preceding arguments, is given
approximately by

Cov (dj, &}) = 0,

Thus the weighted estimate of N~x is, using (2) and (3),

2*

with variance

V{fi-1) = 1/1(1/7(<*,)) = 2/Z(i/N+\/yini)-\ (5)
i i

The estimate of N is obtained by inverting (4) and, to first-order terms,

+
A 7in

Alternatively, the coefficient of variation is

(6)

CV0) = CV(X~l) = [ 2 / E ( I + — ) 'I* (7)
L A 7 V J

which, for illustration, if nt = n, yt = y for all i = 1,..., k, reduces to
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Equation (8) demonstrates that precise estimates of population size can be
obtained only when the sample size, n, is large relative to the ratio N/y ~ 42Vc.
Some values are given in Table 1. For example, with 18 pairs of loci each around
(M map units apart (impossible, of course, but only for illustration), \/2/k = J,
so for a sample size of n = N/10, from Table 1 CV($) = 563/3 = 19. This is
obviously a very imprecise estimate, but if n were about the same size as N,
CV(S) = 0-5. Note that, even with very large sample sizes, CV(N) > y/2/k, or 0-33
for k = 18. Table 1 also shows that, unless the sample size is very much larger than
the population size, unlinked loci (c = 0-5) give little information.

Table 1. Effect of sample size (n) and recombination fraction (c) on sampling error
of estimation of effective population size (N)

(For k pairs of loci, CV(fi) = [1 +N/{ny)W(2/k), where y = [(1 -c)*+c2]/[2c(2-c)].)

N/n

c

0-5
0 1
002
->0

y

0-33
216

1213
l/(4c)

01

1-30
105
101

l+0-4c

1
1

400
1-46
108

l + 4 c

3. EXAMPLES

10
+ N/(ny)

3100
5-63
1-82

l+40c

100

3010
47-3

9-2
l+400c

The analysis will be illustrated for two data sets on Drosophila melanogaster. The
first, published by Langley, Ito & Voelker (1977), is on the September collection
from the wild made in North Carolina (Table 2). Second and third chromosomes
were extracted and analysed from 198 flies, with six loci on the second and five
on the third chromosomes. Thus for these data nt = 198 for all i, and there are
15 pairs of loci on the second and 10 pairs on the third, giving k = 25. From such
data there is no information on unlinked loci. The second set is from the Maine
cage population of Langley el al. (1978), but original data were made available by
C. H. Langley (Table 3). The following analysis is on pooled genotypic data from
634 to 756 flies, depending on the pair of loci, and values of r were estimated using
Burrows' method (Cockerham & Weir, 1977). The data in Table 3 are only part
of that given by Langley et al. (1978) and refer to a single rather than several time
periods of sampling of the cage; also their published values were of rJ2 rather than
rt. Whilst no inversions were found in the Maine cage, they were present in the
wild population, and recombination fractions have been adjusted in Table 2 in
proportion to the inversion heterozygosity, following Langley et al. (1977).

For the wild population (Table 2) the estimate of N'1 from (4) was negative.
This implies that the best estimate of the population size is infinitely large, the
disequilibrium observed being slightly less than that expected by chance (the
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Table 2. Isozyme data on extracted chromosomes from North Carolina wild

population autumn collection (Langley et al. 1977)

(Sample size {nf) = 198 for all pairs of loei. Values of c( computed using observed
karyotypic heterozygosities.)

Chromosome
Locus

II: No.

Allele frequency

Chromosome
Locus

I l l : No.

Allele frequency

Pair
1 2
1 3
1 4
1 5
1 6
2 3
2 4
2 5
2 6
3 4
3 5
3 6
4 5

ct
0-058
0102
0113
0153
0158
0-058
0072
0123
0130
0019
0085
0094
0072

1
a-Gpdh
0-823

7
Est-6
0-621

?i
4 0
21
1-9
1-3
1-2
4 0
31
1-7
1-6

12-8
2-6
2-3
31

2
Mdh
0-975

8
Pgm
0-909

U
0094
0000
0000

-0069
-0076
-0095
-0049
- 0 0 4 3
-0044
-0016

0030
0063

-0008

3
Adh
0-742

9
Odh
0-929
Pair

4 6
5 6
7 8
7 9
7 10
7 11
8 9
8 10
8 11
9 10
9 11

10 11

4
Dip-A
0-914

10
Lap-D
0-687

c<
0081
0013
0029
0049
0148
0152
0022
0135
0140
0124
0129
0011

Hex-C
0-934

11
Acph
0-960

7<
2-7

18-9
8-3
4-7

1

•4
1-3
1-0
1-5
1-5
1-7
1-6

22-4

6
Amy
0-929

U
-0-085
- 0 0 7 3
- 0 1 6 2

0069
0034
0051

- 0 0 4 2
- 0 0 1 6
- 0 0 7 6
- 0 0 1 6

0043
0027

Table 3. Isozyme data on genotypes from Maine cage collection (Langley et al.,

1978)

(Range of sample size (ra() values 634 to 756.)

Chromosome
II III

Locus no.
Locus
AUele
frequency*

Pair
1
1
2
4
4
5
5
5
6

2
3
3
5
6
7
6
7
7

1 2
a-Gpdh Mdh
0-930 0-927

Linked

0071
0112
0057
0033
0067
0057
0040
0029
0013

3
Adh

0-589

loci

yt
3-2
1-9
4 0
7-2
3-4
40
5-9
8-3

18-9

4
Est-6
0-579

- 0 0 8 5
- 0 0 4 9
- 0 0 9 3

0125
0128

-0-028
0-291

- 0 0 0 3
0-247

5
Pgm
0-920

(c<

6
Est-C
0-945

Unlinked
= 0-5, y(

Pair
1
1
1
1
2
2
2
2
3
3
3
3

4
5
6
7
4
5
6
7
4
5
6
7

7
Odh
0-969

loci
= 0-33)

U
0015
0001
0021
0089
0014

- 0 0 1 4
- 0 0 6 3
- 0 0 8 3
- 0 0 3 4

0026
- 0 0 2 4

0017

* Frequencies varied slightly from pair to pair because of different sample sizes.
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chi-square value for testing rt = 0 from Table 2, Zn(rf, is 193 with 25 d.f.). For
the Maine cage population (Table 3), equation (4) gave N~* = 0002755 and thus
an estimate of population size of 363. From (6), SD0) = 170 or CV(N) = 047,
approximately. The estimate is below the census figure of 1000 (Langley et al. 1978),
but has a very large standard error.

4. DISCUSSION

There are clearly difficulties in getting estimates of effective population size with
much precision, as the examples show. As seen in Table 1, most information comes
from tightly linked loci, but the problem with these is that any disequilibrium
could be due to long-past founder effects or migration. (Indeed, if precision were
not limiting, it would be possible to estimate N separately from loosely linked or
unlinked loci and from tightly linked loci, and thereby get some information on
population history, for example the presence of annual bottlenecks during
overwintering.) In practice, it should be possible to obtain reasonably reliable
estimates from laboratory populations, where sample sizes of the same order as
effective population sizes can be obtained, or from isolated small colonies, but not
from natural populations of effective size in the tens of thousands or more.

There is additional information available which could be exploited, notably on
loci taken in threes, fours and so on. Some results for predicting random
disequilibrium among multi-locus neutral models are available (Hill, 1976), but
they lack the precision of the analyses of loci in pairs. There are also clearly
correlations between, for example, r\B and the relevant quantity involving loci
A, B and C, so the extra information may not be in proportion to the number of
additional terms, but the problem needs investigation. Similarly multiple allelic
information needs to be incorporated; this might occur not only with isozymes but
with multiple restriction sites in a region or with complete DNA sequencing.

Some assumptions and limitations of the analysis need to be emphasized.
Populations are assumed to be random mating. (There was some evidence of
non-random mating in the Maine Cage data (Langley et al. 1978), but this has been
ignored in using the data for illustration). The variance—cova"riance structure of
the r\ is not known precisely; and if their correlations are higher than indicated
in the examples of the appendix, variances of population size estimates are
increased. Simulation (T. Maruyama and W. G. Hill, unpublished) shows that, if
gene frequencies are very close to zero or one, the correlation (r) of gene frequencies
conditional on the observed frequencies does not have a mean of zero. Thus biased
estimates of population size would be obtained, but the relevant analysis has not
yet been done. The data used in the examples have several gene frequencies in
excess of 0-9, so such biases may have occurred in the analysis.

The basic model used has been of neutrality at each locus. If, however, loci are
maintained segregating in the population at intermediate frequencies by hetero-
zygote superiority, without epistasis, r has a mean of zero, and variance essentially
the same as in the neutral case (Felsenstein, 1974; Avery, 1978). If the joint
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distribution of the rt were known more precisely in the neutral case, perhaps normal
as suggested by the Appendix, it would be possible to test whether they were
compatible with neutrality.

I am grateful to Dr C. H. Langley for access to unpublished data, to him and Dr B. S. Weir
for helpful comments, and to an anonymous referee for valuable, albeit destructive, criticism
of an earlier version.

REFERENCES

AVERY, P. J. (1978). The effects of finite population size on models of linked overdominant loci.
Genetical Research 31, 239-254.

BODMER, W. F. (1973). Population genetics of the HL-A system: retrospect and prospect. In
Histocompatibility Testing 1972 (ed. J. Dauset and J. Colombani). Copenhagen: Munksgaard.

COCKERHAM, C. C. & WEIR, B. S. (1977). Digenic descent measures for finite populations.
Oenetical Research 30, 121-147.

FELSENSTEIN, J. (1974). Uncorrelated genetic drift of gene frequencies and linkage disequilibrium
in some models of linked overdominant polymorphisms. Oenetical Research 24, 281-294.

HEDRICK, P., JAIN, S. & HOLDEN, L. (1978). Multilocus systems in evolution. Evolutionary
Biology 11, 101-184.

HILL, W. G. (1974). Estimation of linkage disequilibrium in randomly mating populations.
Heredity 33, 229-239.

HILL, W. G. (1976). Non-random association of neutral linked genes in finite populations. In
Population Genetics and Ecology (ed. S. Karlin and E. Nevo), pp. 339-376. New York:
Academic Press.

HILL, W. G. (1977). Correlation of gene frequencies between neutral linked genes in finite
populations. Theoretical Population Biology 11, 239-248.

HILL, W. G. & ROBERTSON, A. (1968). Linkage disequilibrium in finite populations. Theoretical
and Applied Genetics 38, 226-231.

KAN, Y. W. & DOZY, A. M. (1978). Polymorphism of DNA sequence adjacent to human
/J-globulin structural gene: relationship to sickle mutation. Proceedings of the National
Academy of Sciences of USA 75, 5631-5635.

LANOLEY, C. H. (1977). Nonrandom associations between allozymes in natural populations of
Drosophila melanogaster. In Lecture Notes in Biomathematics. 19. Measuring Selection in Natural
Populations (ed. F.B.Christiansen and T. M. Fenchel), pp. 265-273. New York:
Springer-Verlag.

LANGLEY, C. H . , ITO,K. &VOELKER, R. A. (1977). Linkage disequilibrium in natural populations
of Drosophila melanogaster. Seasonal variation. Genetics 86, 447-454.

LANOLEY, C. H., SMITH, D. B. & JOHNSON, F. M. (1978). Analysis of linkage disequilibrium
between allozyme loci in natural populations of Drosophila melanogaster. Genetical Research
32, 215-229.

LAURIE-AHLBERG, C. & WEIR, B. S. (1979). Allozyme variation and linkage disequilibrium in
some laboratory populations of Drosophila melanogaster. Genetics 92, 1295-1314.

SVED, J. A. & FELDMAN, M. W. (1973). Correlation and probability methods for one and two
loci. Theoretical Population Biology 4, 129-132.

WEIR, B. S. (1979). Inferences about linkage disequilibrium. Biometrics 35, 235-254.
WEIR, B. S. & HILL, W. G. (1980). Effect of mating structure on variation in linkage

disequilibrium. Genetics 95, 477-488.

https://doi.org/10.1017/S0016672300020553 Published online by Cambridge University Press

https://doi.org/10.1017/S0016672300020553


216 W. G. HILL

APPENDIX

Variance-covariance structure of r\ over 'pairs of loci

To investigate this, Monte Carlo simulation of random mating monoecious
populations with four loci of two alleles were undertaken. Initial gene frequencies
were taken as 05 at each locus, but simulation was continued until E(r\) in
segregating populations remained constant. Several runs were made, but those
used for illustration had map lengths in the ratios 1:3:2 between adjacent loci AB,
BC, CD which also gave distances of 4:5:6 between AC, BD and AD. Results are
given in the Appendix Table and these are typical of others. Note that the
coefficients of variation are close to \/2 (averaging 134 in these data). The
standard errors of the correlations equal 006 for r = 0.

Appendix Table 1. Coefficient of variation (CV) and correlations (corr) of r2 from
Monte Carlo simulation with N = 50 and map length I between loci specified

(400 replicates initially, observations at generation 40 over replicates segregating at
all four loci (296 and 292 replicates for runs with Nl = \ and 2 respectively for AB.)

Loci AB AC AD BC BD CD AB AC AD BC BD
Nl I 2 3 1| 2J 1 2 8 12 6 10

CD
4

CV(ri) %

113 133 133 155 134 131 130 135
Corr(r?,r|) %

135 131 134 150

AB
AC
AD
BC
BD

9
—

—

11
15

1
27

1

3
2

23
11

9
2
5
2
9

— 4
— —
— —
— —

10
9

—
—

8
5
0

—

4
- 2
18
4

- 1
7

14
2

_ 1
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