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SUMMARY

The effective reproduction number of an infection, denotedRe, may be used to monitor the impact of a
vaccination programme. IfRe is maintained below 1, then sustained endemic transmission of the infection
cannot occur. In this paper we discuss methods for estimatingRe from serological survey data, allowing
for age and individual heterogeneity. We describe semi-parametric and parametric models, and obtain an
upper bound onRe when vaccine coverage and efficacy are not known. The methods are illustrated using
data on mumps and rubella in England and Wales.
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1. INTRODUCTION

Mass vaccination programmes against common childhood infections aim both to protect the individu-
als vaccinated, and to control the spread of infection in the population. The phenomenon of herd immunity
makes it possible to eliminate an infection even though not all individuals are vaccinated. Elimination
means reducing the number of susceptibles below a critical threshold, so that spread from an infective
cannot produce a large epidemic.

Whether a vaccination programme is achieving elimination at a particular timet after the introduction
of mass vaccination is determined by the effective reproduction number of the infection at timet . This
quantity, denotedRe(t), is the average number of infectious individuals resulting from a single infective
introduced at timet into the population, given the population mix of vaccine-acquired and naturally
acquired immunity at that time. IfRe(t) � 1, then, while infections still occur, for example by limited
spread from imported cases, they cannot result in large epidemics. If the value ofRe(t) is greater than
1, or below 1 but on the increase, additional control measures may be called for. Such calculations led
to the measles and rubella mass vaccination campaign in 1994 in the UK (Gayet al., 1995). Serological
surveillance aims at monitoring the potential for epidemics by estimatingRe(t) at regular time intervals,
to assess the overall impact of a vaccination programme.

Re(t) may be estimated from data on outbreak size or duration, as described by Farringtonet
al. (2003). However, though convenient, these methods are approximate and take no account of
heterogeneities in the population. In this paper we consider the estimation ofRe(t) from serological survey
data. Existing estimation methods allow for age dependence in contact rates between individuals (Gayet
al., 1995; Wallingaet al., 2001). Our aim is to extend these method to incorporate both age-dependent
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622 C. P. FARRINGTON AND H. J. WHITAKER

Table 1. Paired mumps/rubella antibody test results by age (years),
England and Wales, 1996

Age −/− +/− −/+ +/+ Age −/− +/− −/+ +/+
1 9 0 7 39 23 0 4 2 20
2 4 0 4 35 24 0 2 2 15
3 6 0 6 37 25 0 1 1 11
4 2 1 10 36 26 1 0 2 14
5 0 1 6 42 27 0 2 1 21
6 4 0 4 28 28 2 2 1 16
7 2 1 3 36 29 0 1 0 11
8 2 0 7 40 30 2 3 1 18
9 5 0 11 38 31 0 0 0 11
10 1 0 2 40 32 1 0 1 17
11 2 1 4 32 33 0 2 1 13
12 2 1 8 33 34 1 0 1 16
13 2 1 6 29 35 0 0 0 21
14 0 4 1 38 36 1 2 1 26
15 1 1 2 31 37 0 1 0 15
16 1 3 2 23 38 0 1 1 15
17 1 2 2 24 39 0 0 1 12
18 0 4 4 28 40 0 1 0 9
19 0 5 2 32 41 0 0 0 9
20 0 2 0 16 42 0 1 1 16
21 0 3 0 9 43 0 1 0 11
22 0 1 0 20 44 0 0 0 14

contact rates and random individual heterogeneity: Farringtonet al. (2001) have shown that individual
effects can have a big impact on reproduction numbers.

The paper is organized as follows. In the next section we present the mumps and rubella example we
shall use to motivate and illustrate the methods. In Section 3 we review reproduction numbers and define
more precisely the effective reproduction number. In Section 4 we describe the methods for estimating
Re(t). In Section 5 we illustrate the methods for the mumps and rubella data, and finally in Section 6 we
discuss the methods proposed.

2. MUMPS AND RUBELLA DATA

We illustrate the methods using two sets of serological survey data collected in 1987 and 1996 by
the Public Health Laboratory Service (PHLS). In each survey, residual blood samples from males aged
1–44 years of age were tested for antibodies to a variety of childhood infections, including mumps and
rubella. For each blood sample, the paired test results for measles and rubella are available. The 1987 data
have been published in Farringtonet al. (2001). The 1996 data, listed by completed year of age, are shown
in Table 1.

A positive result for either infection indicates that the individual is immune; a negative result indicates
that the individual is susceptible. The 1987 survey was undertaken prior to the introduction of measles,
mumps and rubella (MMR) vaccine in October 1988; previously, boys were not vaccinated against mumps
or rubella. We shall use the 1987 survey as our first, ‘pre-vaccination’ sample. The 1996 survey constitutes
the second, ‘post-vaccination’ sample.
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Estimation of effective reproduction numbers 623

The MMR vaccination data for each birth cohort from 1987 were obtained from the PHLS website.
The recommended age for MMR vaccination is 12–15 months. However, when MMR vaccine was first
introduced, children aged 1–4 years were vaccinated. We shall assume that 60% of children born in 1984–
86 were vaccinated in the ‘catch-up’ campaign targeted at 2–4 year-olds. In 1994, a nationwide measles
and rubella (MR) campaign was undertaken targeted at children aged 5–16 years. We assume that 90%
coverage was achieved in the corresponding birth cohorts (Wiratunga and O’Brien, 1995). We shall take
mumps vaccine efficacy to be 85%, and rubella vaccine efficacy 95%. Later in the paper, we shall estimate
vaccine coverage in the MMR catch-up campaign and the efficacy of mumps and rubella vaccines.

3. REPRODUCTION NUMBERS

Consider a large population of constant sizeN , with age-specific mortality rateµ(x) and age density
m(x). We write M(x) = Nm(x). Consider an infection in this population, directly transmitted from
person to person, with ignorable infection-related mortality. Transmission depends on contacts between
individuals, the nature of which is determined by the route of infection. For example, measles and rubella
are transmitted by inhalation of airborne droplets or by direct contact, so for these infections ‘close
proximity’ constitutes a contact. For sexually transmitted infections, contact means sexual contact. Later
in the paper we shall exploit the fact that different infections may share similar modes of transmission.

3.1 Heterogeneity and reproduction numbers

Let β(x, y) dx denote the average per-capita number of effective contacts between an individual of agey
and individuals of ages[x, x + dx). An effective contact is a contact between individuals A and B such
that, if A were infective and B susceptible, then A would infect B. We define the cumulative contact rate
to be

β+(x, y) =
∞∫

0

β(x, y + s)
{
1 − Fy(s)

}
exp

−
y+s∫
y

µ(t) dt

 ds

where Fy(s) is the cumulative distribution function of the infectious period for an individual infected
at agey. Thusβ+(x, y) dx is the total number of effective contacts during the infectious period of an
individual who becomes infected at agey, with individuals of age[x, x + dx). We shall assume that the
mean infectious periodD is short and independent of the age at infection, so thatβ+(x, y) � Dβ(x, y).

If the population were totally susceptible, then the total number of individuals directly infected by a single
infectious individual of agey would be

∞∫
0

M(x)β+(x, y) dx .

A fundamental quantity in infectious disease epidemiology is the basic reproduction numberR0,
defined as the expected number of infectious individuals directly infected by a single ‘typical’ infective
in a wholly susceptible population. Diekmannet al. (1990) showed thatR0 = ρ{M(x)β+(x, y)}, where
ρ{A(x, y)} denotes the leading eigenvalue ofA(x, y).

Following Farringtonet al. (2001), we elaborate the model further to include the effect of individual
heterogeneity, represented by a continuous, positive random activity level variableU with mean 1. We
assume that activity levels are independent of age and act multiplicatively on the contact rate. Thus
we expand the contact rate to a functionβ(x, u; y, v) = uvβ(x, y), whereβ(x, u; y, v) dx du denotes
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624 C. P. FARRINGTON AND H. J. WHITAKER

the average per-capita number of contacts between an individual of agey and activity levelv and
individuals of ages[x, x +dx) and activity levels[u, u +du). If the infectious period is independent of the
activity level, we haveβ+(x, u; y, v) � uvβ+(x, y). Let f (u) denote the density ofU . In the presence
of heterogeneity, the basic reproduction number is the leading eigenvalue ofM(x) f (u)uvβ+(x, y)

considered as a bivariate function with arguments(x, u) and(y, v). It follows that

R0 = {1 + var(U )} × ρ{M(x)β+(x, y)}.

Individual heterogeneity induces a frailty on the pre-vaccination hazard of infection. To see this, let
I pre(y, v) denote the number of infectives of agey and activity levelv. The superscriptpre indicates
that the superscripted quantity relates to the period prior to the introduction of mass vaccination. We
assume throughout that, prior to the introduction of vaccination, the population is in endemic equilibrium,
and hence the average number of infectives in each age group is constant over time; ignoring epidemic
fluctuations has a negligible effect on parameter estimates (Whitaker and Farrington, submitted). Thus the
pre-vaccination hazard of infection is

λpre(x, u) =
∞∫

0

∞∫
0

uvβ(x, y)I pre(y, v) dy dv

= uλpre(x).

3.2 The effective reproduction number Re

Suppose now that a vaccination programme is introduced, and some fixed timeτ after its introduction
a proportion P(x) of individuals of agex are susceptible. (P(x) and other quantities to be defined
depend onτ , but we have not made this dependence explicit to avoid cluttering the notation.) The
effective reproduction number is the expected number of infectives that would be directly infected by a
single ‘typical’ infective introduced into this population. Thus, in the absence of individual heterogeneity,
the effective reproduction numberRe is the leading eigenvalue ofM(x)P(x)β+(x, y). The product
M(x)P(x) is just the number of susceptible individuals of agex , which may be estimated directly in
aserological survey, without needing to know who is or is not vaccinated.

In the presence of individual heterogeneity, however, matters are not so simple. As was the case pre-
vaccination, individual heterogeneity induces a frailty on the hazard (or force) of infection. IfI post

t (y, v)

denotes the number of infectives of agey and activity levelv at time t after the introduction of mass
vaccination (whence the superscriptpost), then the hazard of infection acting on individuals of agex and
activity levelu, not protected by vaccination, is

λpost (x, u, t) =
∞∫

0

∞∫
0

uvβ(x, y)I post
t (y, v) dy dv

= uλpost (x, t).

In contrast, the hazard of infection acting on individuals protected by vaccination is zero: we assume here
that vaccination either protects completely against infection, or imparts no protection whatsoever, and in
either case has no effect on infectiousness. Letπ(x) denote the proportion of individuals of agex who
have been vaccinated by timeτ and are protected: that is, the proportion with vaccine-induced immunity.
Wewrite MV (x) = M(x) {1 − π(x)} to denote the number of individuals agedx who are unprotected by
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vaccination. The proportion of unprotected individuals of agex and activity levelu who remain uninfected
at timeτ after the introduction of mass vaccination is

S post (x, u) = exp

−
x∫

0

λpost (s, u, τ − x + s) ds


= {S post (x)}u

whereS post (x) = exp
{− ∫ x

0 λpost (s, τ − x + s) ds
}
. Note that the post-vaccination force of infection is

time-dependent, as the pre-existing equilibrium will have been destroyed by the introduction of mass
vaccination. In the presence of heterogeneity, the effective reproduction numberRe at time τ after
the introduction of mass vaccination is the leading eigenvalue ofMV (x){S post (x)}u f (u)uvβ+(x, y).
As shown in Farrington (2003), this is equal to{1 + var(U )} times the leading eigenvalue of
MV (x)S

post
(x)β+(x, y), where

S
post

(x) =
∫ ∞

0 u2S post (x)u f (u) du∫ ∞
0 u2 f (u) du

. (3.1)

Recall that, in the absence of individual heterogeneity, the effective reproduction numberRe is the
leading eigenvalue ofM(x)P(x)β+(x, y). Here, P(x) is the proportion of individuals of agex who
remain susceptible at timeτ . Since P(x) = {1 − π(x)}S post (x), Re is the leading eigenvalue of
MV (x)S post (x)β+(x, y). Thus, unlikeR0, the effect of heterogeneity is not just to inflate the reproduction
number by 1+ var(U ), but also to replaceS post (x) by S

post
(x), rather than by the expectation of

{S post (x)}U . As aresult, sinceMV (x)S
post

(x) is not the observed number of susceptibles of agex , a
little more work is required in order to estimateRe.

4. ESTIMATION OF Re FROM SEROLOGICAL SURVEY DATA

We consider estimation ofRe at some timeτ after the introduction of mass vaccination. As before,
for clarity we will make no reference toτ in subsequent notation. Two surveys are required: a survey
undertaken prior to the introduction of mass vaccination, and a second survey at timeτ after its
introduction.

In the absence of heterogeneity, the first survey is used to estimateM(x)β+(x, y), and the second
to estimate the age-specific proportion susceptibleP(x). In the presence of individual heterogeneity, the
pre-vaccination survey is also used to estimateM(x)β+(x, y). However, we now need paired data on two
infections transmitted by the same route. The method has been described in Farringtonet al. (2001).

Consider two infectionsi = 1, 2 transmitted by the same route, in an unvaccinated population. To each
individual corresponds a random activity levelU, which applies to the transmission of both infections
since they are transmitted by the same route. We shall assume that the activity levelsU are gamma
distributed with mean 1 and varianceθ−1.

Typically, we assume that contact rates are constant withink age groups, so that theβ+
i (x, y) are

k-dimensional matrices with onlyk distinct entries to ensure identifiability. Since the two infections are
transmitted by the same route, it is reasonable to assume thatβ+

1 (x, y) and β+
2 (x, y) have the same

structure. The functionM(x) describes the age structure of the population and is assumed known.
Given paired serological data from the ‘pre-vaccination’ survey, Farringtonet al. (2001) derive the log

likelihood l pre from which estimates ofM(x)β+
i (x, y) andθ may be obtained.

In order to estimate the effective reproduction numbersRei for each of the two infectionsi = 1, 2, we
combine the pre-vaccination survey data with data from the second, ‘post-vaccination’ serological survey.
Weconsider three cases, according to the information available.
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626 C. P. FARRINGTON AND H. J. WHITAKER

4.1 Semi-parametric estimation of Re

The second survey is conducted at timeτ after mass vaccination was introduced. We assume that, at that
time, the proportion of individuals of agex with vaccine-induced protection against infectioni , πi (x) ,
is known. This is the case, for example, if vaccine coverage and vaccine efficacy are both known. The
probability Pi (x) that an individual of agex remains susceptible to infectioni at timeτ is

Pi (x) = {1 − πi (x)}
∞∫

0

{S post
i (x)}u f (u) du.

Thus, with a gamma frailty,

Pi (x) = {1 − πi (x)}
{

1 + �
post
i (x)

θ

}−θ

where�
post
i (x) = ∫ x

0 λpost (z, τ − x + z) dz is the baseline cumulative force of infection experienced by
an individual of agex in the post-vaccination survey. From equation (3.1) we therefore have

S
post
i (x) =

{
1 + �

post
i (x)

θ

}−(θ+2)

=
{

Pi (x)

1 − πi (x)

}1+ 2
θ

and

{1 − πi (x)}S
post
i (x) = Pi (x)

{
Pi (x)

1 − πi (x)

} 2
θ

.

Note that if there is no individual heterogeneity,θ → ∞ and so{1 − πi (x)}S
post
i (x) = Pi (x).

In the presence of heterogeneity,θ < ∞ and the effective reproduction numberRei is {1 +
θ−1}ρ

{
M(x)Pi (x)

{
Pi (x)

1−πi (x)

} 2
θ
β+

i (x, y)

}
.

Since some individuals are immune as the result of natural infection,Pi (x) � 1−πi (x). If, in the post-
vaccination survey,n0i x individuals of agex out ofnix tested for antibodies to infectioni are susceptible,
then we estimate

P̂i (x) = min

{
n0i x

nix
, 1 − πi (x)

}
.

We then estimate

R̂ei = {1 + θ̂−1}ρ
M(x)P̂i (x)

{
P̂i (x)

1 − πi (x)

} 2
θ

β̂+
i (x, y)


where θ̂ and theM(x)β̂+

i (x, y) are obtained from the ‘pre-vaccination’ survey. Note that this method
does not require paired post-vaccination data on both infections, and hence could be described as semi-
parametric: a parametric model is used to estimateM(x)β+

i (x, y) andθ from pre-vaccination serological
survey data, but no model is assumed for the post-vaccination data. Parametric estimation ofRei is
discussed below.
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4.2 Parametric estimation of Re

If paired data on the same infections are available in both the first and second surveys, then more explicit
modelling of Pi (x) is possible. As before, label the two infections asi = 1, 2 and writeπi (x) for the
proportion of individuals of agex with vaccine-induced immunity to infectioni . Also let π12(x) denote
the proportions of individuals of agex immunized against both infections.

Let S post
00 (x) denote the probability that an individual of agex remains susceptible at timeτ to both

infections,S post
01 (x) the probability of remaining susceptible to infection 1 but not infection 2, and so on.

Then,

S post
00 (x) = {1 − π12(x)}

{
1 + �

post
1 (x) + �

post
2 (x)

θ

}−θ

S post
01 (x) = {1 − π1(x)}

{
1 + �

post
1 (x)

θ

}−θ

− S post
00 (x)

S post
10 (x) = {1 − π2(x)}

{
1 + �

post
2 (x)

θ

}−θ

− S post
00 (x)

S post
11 (x) = 1 − S post

00 (x) − S post
01 (x) − S post

10 (x).

Note that, if the post-vaccination survey is conducted at timeτ after the introduction of mass
vaccination, then

�
post
i (x) =

{
�

pre
i (x − τ) + αi (x) x � τ

αi (x) x < τ

where theαi (x) � 0. Suppose now that the post-vaccination survey yieldsn00x individuals of agex
susceptible to both infections,n01x to infection 1 but not infection 2, etc. The kernel log-likelihood is

l post =
∑

x

∑
i, j

ni j x log{S post
i j (x)}.

Given a suitable parametrization of theαi (x), maximizing the joint log likelihoodl = l pre + l post

yields estimates ofM(x)β+
i (x, y), θ , and theαi (x). The estimated value ofS

post
i (x) is

{
1 + �̂

post
i (x)

θ̂

}−(θ̂+2)

and the estimate ofRei is

R̂ei = (1 + θ̂−1)ρ

M(x)β̂+
i (x, y) {1 − πi (x)}

{
1 + �̂

post
i (x)

θ̂

}−(θ̂+2)
 .

So far we have assumed that the quantitiesπ1(x), π2(x) and π12(x) are known. In general, such
information is required because there is no way of distinguishing between vaccine-derived and naturally
induced immunity within each age group, and hence theπi (x) and theαi (x) are not both identifiable.
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628 C. P. FARRINGTON AND H. J. WHITAKER

However, in special cases it may be possible to estimate some of theπi (x). Such estimation is possible,
for example, in the case of several infections with a common multivalent vaccine, since then the vaccine
coverage is the same for all infections. Below we give a further example, where estimation of vaccine
efficacy and catch-up MMR vaccine coverage is possible thanks to a parsimonious parameterisation of
theαi (x).

4.3 A semi-parametric upper bound on Re

Both methods so far described require that theπi (x) be known. This requires accurate data on vaccine
coverage and vaccine efficacy. If no such data are available, then theπi (x) are not known and hence the
Rei cannot be estimated. However, we can obtain useful upper bounds on semi-parametric estimates of
the Rei . We have

{1 − πi (x)}S
post
i (x) = Pi (x)

{
Pi (x)

1 − πi (x)

} 2
θ

� Pi (x).

This holds becausePi (x) � 1 − πi (x) andθ > 0. Thus

Rei = (1 + θ−1)ρ
{

M(x){1 − πi (x)}S
post
i (x)β+

i (x, y)
}

� (1 + θ−1)ρ
{

M(x)Pi (x)β+
i (x, y)

}
.

This inequality follows from the following fact: ifA(x, y) andB(x, y) are non-negative with non-negative
leading eigenfunctions, andB(x, y) = c(x)A(x, y) with c(x) � 1, thenρ{B(x, y)} � ρ{A(x, y)}.

The functionM(x)β+
i (x, y) and the parameterθ are estimated from the first serological survey. The

second survey provides non-parametric estimates ofPi (x). Note that this procedure produces an upper
bound for semi-parametric estimates only: parametric estimates might well exceed this upper bound.

5. APPLICATION TO MUMPS AND RUBELLA DATA

In this application we estimateRe for mumps and rubella in 1996,τ = 8 years after the introduction
of MMR vaccine. We modelβ+

1 (x, y) andβ+
2 (x, y) using 5× 5 contact matrices with the same structure,

and the standard age groups 0–5 years, 5–10 years, 10–15 years, 15–25 years, 25+ years. To illustrate
the impact of model choice we use two matrix structures, which we label A and B. The two stuctures
differ primarily in that A has a single isolated parameterβ2 describing contacts within the 5–10 year age
group, whereas matrix B has two such parameters,β2 andβ3, representing mixing within the 5–10 and
the 10–15 year age groups (the values of theβ j will differ for mumps and rubella). The two structures are
as follows:

A =


β1 β1 β3 β4 β5
β1 β2 β3 β4 β5
β3 β3 β3 β4 β5
β4 β4 β4 β4 β5
β5 β5 β5 β5 β5

 B =


β1 β1 β4 β4 β5
β1 β2 β4 β4 β5
β4 β4 β3 β4 β5
β4 β4 β4 β4 β5
β5 β5 β5 β5 β5

 .

We shall assume a uniform age distribution on[0, 75], so thatm(x) = 75−1; results are insensitive to
reasonable assumptions about age structure. Fitting these matrices to the 1987 paired serological survey
data using the methods described by Farringtonet al. (2001), assuming (a) no individual heterogeneity
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Table 2. R0 for rubella and mumps from pre-vaccination survey,
with bootstrap 95% confidence intervals

No individual With individual
heterogeneity heterogeneity

Rubella Mumps Rubella Mumps
Matrix A 3.26 3.77 4.95 5.65

(2.63, 5.66) (3.57, 5.20) (3.40, 9.59) (4.57, 9.43)
Matrix B 3.36 10.61 5.06 19.70

(2.67, 5.78) (3.76, 18.16) (3.55, 9.99) (5.57, 50.21)

Table 3.Re for rubella and mumps: semi-parametric upper bounds and central estimates, with
bootstrap 95% confidence intervals

No individual With individual heterogeneity
heterogeneity Upper bounds Central estimates

Rubella Mumps Rubella Mumps Rubella Mumps
Matrix A 0.27 0.67 0.40 0.99 0.27 0.87

(0.20, 0.44) (0.52, 0.86) (0.26, 0.78) (0.70, 1.40) (0.19, 0.49) (0.60, 1.18)
Matrix B 0.27 1.49 0.41 2.76 0.28 1.93

(0.21, 0.47) (0.58, 2.88) (0.28, 0.81) (0.87, 7.73) (0.20, 0.52) (0.73, 5.17)

and (b) individual heterogeneity with a gamma distribution, gives the estimates ofR0 shown in Table 2.
The log-likelihood ratio statistic for individual heterogeneity, common to both matrices, is 15.42 on one
degree of freedom,p < 0.001. The estimated frailty variance iŝθ−1 = 0.1336. Note that the values ofR0
with individual heterogeneity are greater than 1+ θ̂−1 times those without heterogenity. This is because
the estimates ofM(x)β+(x, y) change: if there is heterogeneity but the model is fitted assuming none, the
estimated matrix is biased. The age-specific proportions immunised in 1996 were calculated as follows.
Let i = 1 denote mumps, andi = 2 denote rubella. Thus, for mumps,π1(x) = CM M R(1996− x) × 0.85,
whereCM M R(t) is the MMR vaccine coverage achieved for children born in yeart and 0.85 is the mumps
vaccine efficacy. For rubella,π2(x) = 1− (1−CM M R(1996− x)×0.95)× (1−CM R(1996− x)×0.95),
whereCM R(t) is the MR vaccine coverage and 0.95 is the rubella vaccine efficacy. The assumptions about
vaccine coverage and efficacy were described in Section 2. For the parametric model, we also needπ12(x).
Assuming that both the uptake of MMR and MR vaccines, and the responses to the mumps and rubella
components of MMR are independent within individuals, this is 1− (1 − CM M R(1996− x) × 0.95 ×
0.85) × (1 − CM R(1996− x) × 0.95).

Table 3 shows the estimates ofRe in 1996, both with and without individual heterogeneity. For the
estimates with individual heterogeneity, Table 3 gives the semi-parametric upper bounds and central
estimates, with confidence intervals. The parametric estimates are shown in Table 4. These were obtained
by assuming that, after the introduction of MMR in 1988, the force of infection was reduced to some low
constant value. Thus

αi (x) =
{

αi x x < τ

αiτ x � τ .

The first two columns of Table 4 shows the estimates obtained using an assumed ‘catch-up’ MMR
vaccine coverage of 60% in the 1984–86 birth cohorts and assumed vaccine efficacies of 85% for mumps
and 95% for rubella. Using this model,̂θ−1 = 0.1669,̂α1 = 0.0469 (mumps) and̂α2 = 0.0198 (rubella).
Wealso fitted a model using the published MMR vaccine coverage from 1987, but with free parameters for
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630 C. P. FARRINGTON AND H. J. WHITAKER

Table 4. Re for rubella and mumps: parametric estimates, with
profile likelihood 95% confidence intervals

With assumed efficacies With estimated efficacies
and catch-up coverage and catch-up coverage
Rubella Mumps Rubella Mumps

Matrix A 0.28 1.01 0.29 1.04
(0.19, 0.46) (0.76, 1.38) (0.19, 0.47) (0.78, 1.43)

Matrix B 0.29 3.32 0.29 3.16
(0.20, 0.47) (0.80, 7.19) (0.19, 0.47) (0.81, 7.08)

the mumps and rubella vaccine efficacies and for the average MMR vaccine catch-up campaign coverage
in the 1984–86 birth cohorts. This produced a slight reduction in the deviance of 4.363. The values of
Re obtained with this model are shown in columns 3 and 4 of Table 4. The estimated vaccine efficacies
were 0.851 for mumps and 0.977 for rubella. The catch-up coverage was estimated to be 73.9%, rather
higher than the 60% figure we had assumed. We also obtainedθ̂−1 = 0.1642,̂α1 = 0.0379 (mumps) and
α̂2 = 0.0000 (rubella).

Figure 1 shows the observed and fitted serological profiles in 1987 and 1996 using this parametric
model. The irregularities in the fitted seroprevalence in the 1996 survey reflect the changes in vaccine
coverage. The published vaccination coverage data may be inaccurate, and further exploration of coverage
levels using parametric modelling might be possible. Our assumption that post-MMR infection rates are
constant is probably simplistic, though we doubt that relaxing it would make much difference since most
older people are immune. Overall, we recommend using either the semi-parametric upper bounds onRe,
or the parametric estimates incorporating estimation of any unknown vaccine coverage or vaccine efficacy.
For the present data, these methods produce broadly similar results.

The confidence intervals forR0 and the semi-parametric upper bounds and central estimates ofRe

are bootstrap percentile intervals based on 599 samples. Bootstrapping proved too time-consuming for
the parametric models forRe. For these we used profile likelihood 95% confidence intervals, which we
calculated using the method of Critchleyet al. (1988).

Individual heterogeneity, as expected, has a big impact onRe, particularly for mumps, though less
than its impact onR0. Ignoring individual heterogeneity produces estimates that are too low. As with
R0, estimates ofRe are very sensitive to the choice of model matrix; it was suggested in Farringtonet
al. (2001) that the evidence favoured matrixB. The conclusion from this analysis is that rubella was
well-controlled in 1996 in the UK, but that mumps may not have been.

This interpretation is supported by surveillance data, obtained from the PHLS website. In 1996
there were 94 laboratory confirmed cases of mumps in England and Wales, rising steadily to 759 in
2001, in spite of the introduction of a second dose of MMR vaccine. Notifications, both confirmed and
unconfirmed, show a similar trend. In contrast, rubella outbreaks in universities in 1996 did not lead to
substantial spread in the wider community (Milleret al., 1997), and the number of cases has declined
steadily since 1996. These observations are consistent withRe < 1 for rubella andRe > 1 for mumps in
the period after 1996.

6. DISCUSSION

In this paper we have extended methods for estimating the effective reproduction numberRe from
age-stratified serological survey data to include the effect of individual heterogeneity. As illustrated by
the mumps and rubella example, individual heterogeneity can have a substantial effect on the estimates of
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Fig. 1. Observed and fitted serological profiles. Top: 1987 survey, bottom: 1996 survey. Left: rubella, right: mumps.

both R0 andRe. Allowing for individual heterogeneity, however, calls for greater modelling complexity.
The parametric models we described require paired data from two surveys, conducted before and after

the introduction of mass vaccination. In view of the non-identifiability of vaccine-induced and naturally
acquired immunity, accurate data on vaccine coverage and vaccine efficacy are also generally required.
Ideally, serological surveys should be supplemented by vaccine coverage surveys, which could be carried
out relatively easily using vaccination databases. In some circumstances, however, some of the parameters
describing vaccine-induced immunity levels can be estimated, including vaccine efficacy and coverage, as
illustrated in our example. Thus, the parametric model makes optimal use of all the information available.

If paired data are not available in the post-vaccination survey, then a semi-parametric estimate of
Re may be obtained. We used the raw observed proportions susceptibleP(x), adjusted to avoid conflict
with the immunization data; it might be better to smooth the data a little. The semi-parametric method,
however, still requires information on age-specific immunisation rates.

If such data are unavailable, or of dubious quality, then we propose an upper bound on semi-parametric
estimates of the effective reproduction number, which can be calculated without any assumptions about
vaccination coverage or efficacy. In the absence of individual heterogeneity, this upper bound and the
semi-parametric estimate are identical.
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