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Estimation of elastic constants for HTI media using Gauss-Newton
and full-Newton multiparameter full-waveform inversion

Wenyong Pan1, Kristopher A. Innanen1, Gary F. Margrave1, Michael C. Fehler2,

Xinding Fang2, and Junxiao Li1

ABSTRACT

In seismic full-waveform inversion (FWI), subsurface param-

eters are estimated by iteratively minimizing the difference be-

tween the modeled and the observed data. We have considered

the problem of estimating the elastic constants of a fractured

medium using multiparameter FWI and modeling naturally frac-

tured reservoirs as equivalent anisotropic media. Multiparameter

FWI, although promising, remains exposed to a range of chal-

lenges, one being the parameter crosstalk problem resulting from

the overlap of Fréchet derivative wavefields. Parameter crosstalk

is strongly influenced by the form of the scattering pattern for

each parameter. We have derived 3D radiation patterns associated

with scattering from a range of elastic constants in general aniso-

tropic media. Then, we developed scattering patterns specific to a

horizontal transverse isotropic (HTI) medium to draw conclu-

sions about parameter crosstalk in FWI. Bare gradients exhibit

crosstalk, as well as artifacts caused by doubly scattered energy

in the data residuals. The role of the multiparameter Gauss-New-

ton (GN) Hessian in suppressing parameter crosstalk is revealed.

We have found that the second-order term in the multiparameter

Hessian, which is associated with multiparameter second-order

scattering effects, can be constructed with the adjoint-state tech-

nique. We have examined the analytic scattering patterns for HTI

media with a 2D numerical example. We have examined the roles

played by the first- and second-order terms in multiparameter

Hessian to suppress parameter crosstalk and second-order scatter-

ing artifacts numerically. We have also compared the multipara-

meter GN and full-Newton methods as methods for determining

the elastic constants in HTI media with a two-block-layer model.

INTRODUCTION

Naturally fractured reservoirs are common and play an important

role in current hydrocarbon production (Nelson, 1985). Fracture

properties are among the most valuable data for reservoir charac-

terization. The influence of fractures/cracks in a geologic medium

on the seismic response can be modeled via an equivalent aniso-

tropic solid and the associated elastic stiffness coefficients (Hudson,

1981; Schoenberg, 1983). For transverse isotropy with a horizontal

symmetry axis (horizontal transverse isotropic [HTI] media), the

simplest azimuthal anisotropic model for describing vertical cracks,

reflection seismic signatures can be described by five independent

elastic constants (Rüger, 1997; Tsvankin, 1997a, 1997b). In reflec-

tion seismology, most current methods for estimating fracture prop-

erties focus on amplitude and traveltime methods (Thomsen, 1988;

Tsvankin, 1997b). Full-waveform inversion (FWI) methods make

maximal use of wavefield information to estimate subsurface prop-

erties by iteratively minimizing the difference between the modeled

and observed data (Lailly, 1983; Tarantola, 1984; Virieux and Op-

erto, 2009; Warner et al., 2013). In this research, we consider the

problem of estimating elastic constants in anisotropic media using

multiparameter FWI.

Much current FWI research emphasizes reconstruction of the P-

wave velocity and associated core problems, such as cycle skipping

(Ma and Hale, 2012; Warner and Guasch, 2014; Wu et al., 2014).

Inverting multiple parameters using multiparameter FWI has also,

however, received increased attention in recent years though it is a

more challenging task. Involving several parameters increases the

nonlinearity of the inversion process and also introduces parameter

crosstalk, the conflation of the influence of one physical property on
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the data with another (Operto et al., 2013; Prieux et al., 2013;

Baumstein, 2014; Innanen, 2014a; Métivier et al., 2015; Oh et al.,

2015). Parameter crosstalk is strongly present in steepest-descent

method, wherein updates in each parameter proceed with no ac-

counting for the multiparameter character of the problem. However,

even when the multiparameter character of a system is properly in-

cluded in a FWI update, crosstalk persists if the wavefield variation

caused by one parameter is similar to that caused by another physi-

cal parameter. Hence, the Fréchet derivative wavefields associated

with different physical parameters are crucial to understand the

parameter crosstalk problem in multiparameter FWI. Tarantola

(1986) originally introduces the use of scattering patterns for cross-

talk analysis of different parameter classes in isotropic and elastic

FWI. Inversion sensitivity analysis in anisotropic media has been

studied by many researchers (Gholami et al., 2013a, 2013b; Alkha-

lifa and Plessix, 2014; Kamath and Tsvankin, 2014; Podgornova

et al., 2015).

Multiparameter Hessian in FWI is a square and symmetric matrix

with a block structure. It carries more information than a single-

parameter Hessian. Within the approximate Hessian associated with

a multiparameter Gauss-Newton (GN) update, off-diagonal blocks

measure correlation of Fréchet derivative wavefields with respect to

different physical parameters. They act to mitigate the coupling

effects between these parameters (Operto et al., 2013). Innanen

(2014b), for instance, shows that the diagonal elements internal

to the off-diagonal blocks suppress crosstalk in precritical reflection

FWI in a manner consistent with amplitude variation with offset

inversion and linearized inverse scattering.

The gradient vector is also known to be contaminated by the sec-

ond-order scattered energy in the data residuals. Pratt et al. (1998)

discuss and analyze the second-order term in the single-parameter

Hessian, which accounts for the second-order scattering effects. This

term becomes important when the data residuals or the second-order

scattered energy are very strong (Métivier et al., 2014). Incorporating

this second-order term can eliminate the second-order scattering arti-

facts in the gradient vector. This term in a multiparameter Hessian

becomes more complex. The second-order partial derivative wave-

fields can be caused by the perturbations of different physical param-

eters. The second-order term predicts the change in the gradient due to

the multiparameter second-order nonlinear effects. Here, we include

this second-order term in the multiparameter Hessian, using an ad-

joint-state method to calculate it (Pratt et al., 1998). Involving the first-

and second-order terms in the multiparameter Hessian for precondi-

tioning the gradient is known as the full-Newton (FN) method.

In this research, analytic expressions for the 3D scattering patterns

of the elastic constants in general anisotropic media are derived.

Then, we illustrate the scattering patterns of elastic constants in a

specific HTI medium for parameter crosstalk analysis. Furthermore,

we numerically examine the ability of the multiparameter approxi-

mate Hessian to suppress parameter crosstalk for HTI elastic con-

stants inversion. Pratt et al. (1998) calculate the second-order term

in single-parameter Hessian using an adjoint-state method. In this

paper, we show that the second-order term in multiparameter Hessian

associated with multiparameter second-order scattering effects can

also be constructed with the adjoint-state technique.

The paper is organized as follows. First, we review the theories

for the forward modeling problem and FWI. Then, we discuss the

parameter crosstalk difficulty in multiparameter FWI. The analytic

expressions of 3D scattering patterns for the elastic constants in

general anisotropic media are derived. The physical interpretations

of the first- and second-order terms in multiparameter Hessian are

given. Their roles in suppressing parameter crosstalk and second-

order scattering effects are revealed. We also describe how to con-

struct the second-order term using the adjoint-state method. In the

numerical modeling section, we examine the analytic and numerical

scattering patterns of the elastic constants for parameter crosstalk

analysis. Several numerical examples are presented to illustrate the

role of multiparameter Hessian in mitigating parameter crosstalk

and second-order scattering artifacts. The GN and FN multipara-

meter FWI are finally applied on a two-block-layer model for com-

parison.

THEORY AND METHODS

In this section, we first review the basic principles of forward

modeling in anisotropic media and FWI. We then introduce the is-

sue of parameter crosstalk for inverting the elastic constants in HTI

media using multiparameter FWI. We derive the 3D scattering pat-

terns for elastic constants in general anisotropic media. The roles of

multiparameter Hessian in suppressing parameter crosstalk and sec-

ond-order scattering effects are revealed.

Forward modeling problem

In reflection seismology, the wavelengths of seismic waves are

typically much larger than the fracture size. When considering that

the fractures are closely spaced and parallel, the finite fracture spac-

ings and their detailed spatial distributions can be neglected. The frac-

tured medium can be replaced by effective anisotropic solids. The

reflection seismic signatures are associated with the elastic stiffness

coefficients cIJ through the equation of motion in general anisotropic

media (Hudson, 1981; Schoenberg, 1983). With Einstein summation

notation, it can be expressed as

∂σij

∂xj
þ fi ¼ ρ

∂2ui

∂t2
; (1)

where uiðx; tÞ indicates the ith component of the particle displace-

ment at Cartesian coordinate position x ¼ ðx; y; zÞ and time t, fiðxsÞ
is the source term at position xs, ρ is the density, and σij denotes the

stress tensor, which can be defined using Hooke’s law,

σij ¼ cijklekl; (2)

where cijkl indicates the elastic modulus tensor, ekl ¼
1∕2ðð∂uk∕∂xlÞ þ ð∂ul∕∂xkÞÞ is the strain tensor, and the subscripts

i, j, k, and l take on the values of 1, 2, and 3. Thus, 81 elastic con-

stants are required to characterize the elasticity of the medium. Be-

cause the symmetry of the stress and strain tensors, only 21 elastic

stiffness coefficients are independent and the 3 × 3 × 3 × 3 tensor

cijkl can be represented more compactly using 6 × 6 symmetric ma-

trix cIJ following the Voigt recipe for indexes, where I and J range

from 1 to 6 (Crampin, 1984; Tsvankin and Grechka, 2011).

Models containing parallel vertical fractures are equivalent to

HTI media, which can be characterized by five independent elastic

constants, c33, c55, c11, c13, and c44. We extract the x-z plane with

zero azimuth angle from 3D geometry, which forms the simplified

2D HTI model described by four elastic constants (c33, c55, c11, and

c13). Numerical solutions of the wavefields are calculated using an

R276 Pan et al.



explicit finite-difference method with fourth-order accuracy in

space and second-order accuracy in time (Virieux, 1986; Levander,

1988). A nonsplitting perfectly matched layer boundary condition is

applied on all boundaries of the model (Berenger, 1994; Wang and

Tang, 2003).

GN and FN FWI

FWI estimates the subsurface parameters through an iterative

process by minimizing the difference between the synthetic data

usyn and observed data uobs (Lailly, 1983; Tarantola, 1984; Virieux

and Operto, 2009). The misfit function Φ is formulated in a least-

squares form,

ΦðmÞ ¼
1

2

X

xs

X

xg

X

ω

kuobsðxg; xs;ωÞ − usynðxg; xs;ωÞk
2;

(3)

where m indicates the model parameter, xs and xg denote the posi-

tions of sources and receivers, respectively, ω is the angular fre-

quency, and k · k means the l2 norm. Note that we implement the

algorithms in the time domain, whereas the notations are expressed

in the frequency domain for sake of compactness. The Newton op-

timization approach is developed based on the second-order Taylor-

Lagrange expansion of the misfit function Φ:

Φðmþ ΔmÞ ≈ΦðmÞ þ g†Δmþ
1

2
Δm†HΔm; (4)

where the symbol † represents transpose, Δm is the search direc-

tion, and g ¼ ∇mΦðmÞ andH ¼ ∇m∇mΦðmÞ indicate gradient and
Hessian, respectively. To minimize the quadratic approximation of

the misfit function, the model update at the (nþ 1)th iteration can

be written as the sum of the model at the nth iteration and model

perturbation Δm:

mnþ1 ¼ mn þ μnΔmn; (5)

where μn is the step length, a scalar constant calculated through a

line search method or a trust-region procedure (Gauthier et al.,

1986; Pica et al., 1990; Nocedal and Wright, 2006). Within a New-

ton optimization framework, the search direction Δm is the solution

of the Newton linear system:

HnΔmn ¼ −gn: (6)

Gradient is the first-order partial derivative of the misfit function

with respect to model parameter. It indicates the direction in which

the misfit function is increasing most rapidly (Pratt et al., 1998). It

can be constructed by zero-lag correlation between the Fréchet

derivative wavefield with complex conjugate of the data residuals

Δd:

gðxÞ ¼ ∇mðxÞΦðmÞ

¼ −
X

xg

X

xs

X

ω

R

�

∂u†ðxg; xs;ωÞ

∂mðxÞ
Δd�ðxg; xs;ωÞ

�

;

(7)

where the � symbol represents the complex conjugate, Rð·Þ denotes
the real part, and ∂uðxg; xs;ωÞ∕∂mðxÞ is known as the Fréchet deriv-
ative wavefield or Jacobian matrix. Recalling the generalized Helm-

holtz equation in anisotropic media with matrix form (Marfurt, 1984),

Lðm;ωÞuðxg; xs;ωÞ ¼ fsðωÞ; (8)

where Lðm;ωÞ is the complex impedance matrix, uðxg; xs;ωÞ is the
pressure wavefield vector, and fsðωÞ is the source term. Taking the

partial derivative with respect to the model parameter on both sides of

equation 8 gives

Lðm;ωÞ
∂uðxg; xs;ωÞ

∂mðxÞ
¼ −

∂Lðm;ωÞ

∂mðxÞ
uðxg; xs;ωÞ: (9)

Equation 9 describes the propagation of scattered wavefield due

to the perturbation of model parameter mðxÞ. The interaction of in-

cident wavefield with the model perturbation serves as the first-or-

der virtual source ~fsðx;ωÞ:

~fsðx;ωÞ ¼ −
∂Lðm;ωÞ

∂mðxÞ
uðxg; xs;ωÞ: (10)

Isolating the Fréchet derivative wavefield on the left side of equa-

tion 9 yields (Shin et al., 2001; Virieux and Operto, 2009)

∂uðxg; xs;ωÞ

∂mðxÞ
¼ −L−1ðm;ωÞ

∂Lðm;ωÞ

∂mðxÞ
uðxg; xs;ωÞ: (11)

Inserting equation 11 into equation 7 gives

gðxÞ ¼
X

xg

X

xs

X

ω

R

�

u†ðxg; xs;ωÞ

×
∂L†ðm;ωÞ

∂mðxÞ
L−1ðm;ωÞΔd�ðxg; xs;ωÞ

�

; (12)

where ðL−1Þ† is replaced with L−1 based on the reciprocal property

of Green’s function (Virieux and Operto, 2009). Following equa-

tion 12, the gradient can be efficiently constructed by applying a

zero-lag crosscorrelation between the forward-modeled wavefield

and back-propagated data residuals wavefield using the adjoint-

state technique (Tromp et al., 2005; Plessix, 2006; Virieux and Op-

erto, 2009). Gradient is contaminated by spurious correlations be-

cause of band-limited seismic data. It is also poorly scaled because

of geometric spreading effects and uneven subsurface illumination.

Hessian operator is the second-order partial derivative of the misfit

function with respect to the model parameter:

Hðx; x 0Þ ¼ ∇mðxÞ∇mðx 0ÞΦðmÞ

¼
X

xg

X

xs

X

ω

R

�

∂u†ðxg; xs;ωÞ

∂mðxÞ

∂u�ðxg; xs;ωÞ

∂mðx 0Þ

þ
∂2u†ðxg; xs;ωÞ

∂mðxÞ∂mðx 0Þ
Δd�ðxg; xs;ωÞ

�

; (13)
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where x 0 is the neighboring position around the position x (Valen-

ciano, 2008) and Hðx; x 0Þ indicates one element in Hessian H cor-

responding to two model perturbations at x and x 0. The first term in

equation 13 represents the correlation of two Fréchet derivative

wavefields, and it accounts for the first-order scattering effects. Ne-

glecting the second term in equation 13 leads to the approximate

Hessian used in GN method. The two partial derivative wavefields

are often to a great degree uncorrelated due to finite-frequency ef-

fects, which means that the approximate Hessian is diagonally dom-

inant and banded (Pratt et al., 1998; Valenciano, 2008; Tang, 2009;

Pan et al., 2014b, 2014c). Because of this characteristic of the

approximate Hessian, GN methods can remove finite-frequency ef-

fects and deblur the gradient (Pratt et al., 1998). Furthermore, the

gradient is contaminated by the second-order scattering artifacts

that occur when crosscorrelating Fréchet derivative wavefield with

the second-order scattered energy in the data residuals. The second

term in equation 13 is the correlation of the second-order partial

derivative wavefield with the data residuals. This second-order term

predicts the artifacts caused by the doubly scattered energy in data

residuals. Preconditioning the gradient with the full Hessian H is

known as the FN method.

DETERMINATION OF ANISOTROPIC ELASTIC

CONSTANTS WITH MULTIPARAMETER FWI

Parameter crosstalk and scattering patterns

To be separately constrained by seismic observations, the pertur-

bation of each medium parameter type cause a unique variation in

its Fréchet derivative wavefields over the observed range of scatter-

ing and azimuthal angles. Identical or nearly identical variations are

one of the key mechanisms of parameter crosstalk in multiparameter

FWI (Operto et al., 2013). Interaction of the incident wavefield with

the model perturbation serves as the “virtual source” or “secondary

scattered source.” The scattering, or radiation, pattern of the “virtual

source” governs the amplitude variation of Fréchet derivative wave-

field as a function of scattering and azimuthal angle. An inversion

sensitivity analysis taking these patterns into account is important

(Gholami et al., 2013a). Coupling effects between different elastic

constants are examined. Proper parameterization and optimal ac-

quisition geometry should be calculated (Tarantola, 1986; Gholami

et al., 2013b). Forgues and Lambaré (1997) study different param-

eter classes in acoustic and elastic ray + Born inversion. In this pa-

per, we derive the 3D scattering patterns for elastic constants in

general anisotropic media (see Appendix A).

The 3D geometry for describing the scattering problem due to the

local anisotropic inclusion is presented in Figure 1. We define incli-

nation angle ϑ and azimuth angle φ for describing the incident wave

and inclination angle θ and azimuth angle ϕ for describing the scat-

tered wave. For HTI inclusion, we also define the symmetry axis to

parallel to the x-axis and the isotropic plane to be consistent with the

y-z plane. The scattered wavefield due to model perturbation in gen-

eral anisotropic medium is first given in equation A-10. In this re-

search, we neglect the contribution from density and only consider

the perturbation of elastic constant matrix δč for HTI media. The in-

teraction of the incident wavewith the perturbations of the elastic con-

stants serves as the equivalent source for the scattered wavefield. The

equivalent moment tensor source for the specific HTI media δM̌ is

expressed as (Ben-Menahem and Singh, 1981; Chapman, 2004)

δM̌¼

2

6

4

δc11 ~e11þδc13 ~e22þδc13 ~e33 2δc55 ~e12 2δc55 ~e13
2δc55 ~e12 δc13 ~e11þδc33 ~e22þδν~e33 2δc44 ~e23
2δc55 ~e13 2δc44 ~e23 δc13 ~e11þδν~e22þδc33 ~e33

3

7

5
;

(14)

where the symbol ̌ represents the specification for HTI media and ~eij
indicate the strain components of the incident wave. Considering an

incident plane P-wave (equation A-12), inserting the reduced equiva-

lent moment tensor source δM (see equation A-18) for HTI media into

equation A-19 yields the 3D scattering patterns of the elastic constants,

Rpðϑ;φ; θ;ϕÞ ¼ ĝ†
∂M

∂m
r̂; (15)

where vectors ĝ and r̂ are defined in equation A-17. Perturbing one

elastic constant and leaving all others unchanged, we can obtain the

scattering pattern for the specified elastic constant. For example, con-

sidering the perturbation of elastic constant δc55, the P-P, P-SV, and P-

SH scattering coefficients due to δc55 can be obtained as

RP−Pðϑ;φ;θ;ϕ;δc55Þ¼4p̂1q̂2r̂1r̂2þ4p̂1q̂3r̂1r̂3

¼sin2ϑ sin2φsin2θ sin2ϕ

þsin2ϑ cosφ sin2θ cosϕ: (16)

RP−SVðϑ;φ;θ;ϕ;δc55Þ¼2p̂1q̂2θ̂2r̂1þ2p̂1q̂3θ̂3r̂1

þ2p̂1q̂2θ̂1r̂2þ2p̂1q̂3θ̂1r̂3

¼ sin2ϑ sin 2φ sin θ cos θ sin 2ϕ

þ sin 2ϑ cosφ cos 2θ cosϕ: (17)

RP−SHðϑ;φ; θ;ϕ; δc55Þ ¼ 2p̂1q̂2ϕ̂2r̂1 þ 2p̂1q̂3ϕ̂3r̂1

þ 2p̂1q̂2ϕ̂1r̂2 þ 2p̂1q̂3ϕ̂1r̂3

¼ sin2 ϑ sin 2φ sin θ cos 2ϕ

− sin 2ϑ cos φ sin ϕ cos θ: (18)

Figure 1. The 3D geometry. The function ù indicates normal to the
wavefront of the incident wave; ϑ and φ are the inclination angle
departing from z-axis and azimuth angle departing from x-axis for
describing the incident wave. The HTI inclusion is at the original
point 0. The x-axis is parallel to the symmetry axis of the HTI in-
clusion, and the y-z plane is perpendicular to the axis of symmetry.
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Figure 2a–2c shows the 3D P-P (equation 16), P-SV (equation 17),

and P-SH (equation 18) scattering patterns due to δc55 (ϑ ¼ 135o and

φ ¼ 0o). Figure 3a–3c shows the P-P scattering patterns due to per-

turbations of c33, c11, and c13 respectively. The scattered P-wave, SV-

wave, and SH-wave with incident plane SV-wave and incident plane

SH-wave can be obtained following equations A-24 and A-25. If the

scattering patterns associated with different elastic constants signifi-

cantly overlap a range of scattering angle or azimuth angle, the

parameter crosstalk between these physical parameters will contami-

nate the update. If the update is not properly preconditioned, the in-

version process will be impacted negatively. This difficulty also raises

the parameterization issue for managing parameter crosstalk. Deter-

mining a more proper parameterization for inverting fracture proper-

ties using FWI is beyond the scope of this research. The 3D scattering

patterns of the elastic constants in general anisotropic media given in

this paper can be transformed to the scattering patterns for any param-

eter class using the chain rule.

Multiparameter Hessian

The role of the single-parameter Hessian has been discussed and

analyzed in the previous section. The multiparameter Hessian in

multiparameter FWI has a block structure, and it carries more in-

formation than the single-parameter Hessian. Considering a 2D sub-

surface model with NxNz nodes and Np physical parameters are

assigned to describe the properties of each node, where Nx and Nz

denote the numbers of grid nodes in horizontal and vertical direc-

tions, respectively. The multiparameter Hessian is a NxNzNp×

NxNzNp square and symmetric matrix with Np diagonal blocks

and NpðNp − 1Þ off-diagonal blocks. Each block is a NxNz ×

NxNz square matrix. Hence, the multiparameter Hessian H for

inversing the four elastic constants in 2D HTI media has 16 block

submatrices (Np ¼ 4),

H ¼

2

6

6

6

4

H3333 H3355 H3311 H3313

H5533 H5555 H5511 H5513

H1133 H1155 H1111 H1113

H1333 H1355 H1311 H1313

3

7

7

7

5

; (19)

where the subscripts of the block matrices in H are consistent with

the subscripts of two elastic constants. The multiparameter Hessian

H can be written as the summation of the first-order term ~H and the

second-order term H̄. The element ~Hm1m2
ðx; x 0Þ within multipara-

meter GN Hessian ~H indicates the correlation of Fréchet derivative

wavefields with respect to model parameters m1 and m2:

~Hm1m2
ðx;x0Þ¼

X

xs

X

xg

X

ω

R

�

∂u†ðxg;xs;ωÞ

∂m1ðxÞ

∂u�ðxg;xs;ωÞ

∂m2ðx
0Þ

�

;

(20)

where when m1 ¼ m2, it indicates the element in diagonal block,

and when m1 ≠ m2, it indicates the element in an off-diagonal

Figure 2. Panels (a-c) show the P-P (equation 16), P-SV (equation 17), and P-SH (equation 18) scattering patterns due to the perturbation
of c55.

Figure 3. Panels (a-c) show the P-P scattering patterns due to the perturbations of c33, c13, and c11, respectively.
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block. The multiparameter approximate Hessian ~H is essential in

overcoming the crosstalk difficulty in multiparameter FWI (Operto

et al., 2013; Pan et al., 2015b). As we discussed in the previous

section, the similarity of the Fréchet derivative wavefields with re-

spect to different physical parameters gives rise to the crosstalk

problem. The off-diagonal blocks in multiparameter approximate

Hessian, as indicated by the gray boxes in Figure 4, predict the cou-

pling effects and applying its inverse to the gradient can remove or

mitigate the parameter crosstalk.

The space-type multiparameter Hessian approximation ~Hs given

by Innanen (2014a) neglects the contributions of the off-diagonal

blocks and stresses the correlation of Fréchet derivative wavefields

with respect to the same physical parameter, as indicated by the four

black diagonal boxes in Figure 4. This approximation can scale the

amplitudes of the gradient and deblur the gradient, but cannot sup-

press parameter crosstalk. The parameter-type multiparameter Hes-

sian approximation ~Hp (as indicated by the white dashed lines in

Figure 4) only keeps the diagonal elements of the blocks, which is

also capable of mitigating parameter crosstalk but limited in resolv-

ing the gradient.

Similarly, when correlating the Fréchet derivative wavefields

with the data residuals in multiparameter FWI, the doubly scattered

energy in the data residuals will result in artifacts or spurious

correlations in the gradient. The second-order term H̄ in multipara-

meter Hessian associated with second-order scattering effects works

as a demultiple operator to suppress these artifacts. The second-or-

der partial derivativewavefields for multiparameter Hessian become

more complex. Figure 5 shows a schematic diagram for multipara-

meter second-order scattering effects. Fréchet derivative wavefield

∂uðxg; xs;ωÞ∕∂m1ðxÞ due to the perturbation of model parameter

m1ðxÞ, is scattered secondly due to the perturbation of physical

parameter m2ðx
0Þ, which yields the second-order partial derivative

wavefields ∂2uðxg; xs;ωÞ∕∂m1ðxÞ∂m2ðx
0Þ. Hence, the gradient will

be contaminated by artifacts due to the multiparameter doubly scat-

tered energy. These artifacts can be suppressed by the second-order

term in multiparameter Hessian. Although it is quite expensive to

calculate this second-order preconditioner explicitly, wewill show that

it can be constructed using the adjoint-state method more efficiently.

Constructing multiparameter second-order precondi-
tioner with the adjoint-state method

To calculate the second-order preconditioner for single-parameter

FWI explicitly, ðNxNzÞ
2∕2 forward modeling problems need to be

solved, which is extremely expensive (Pratt et al., 1998). Consid-

ering the first-order partial derivative wavefield in equation 11, we

can take partial derivative with respect to model parametermðx 0Þ on
both sides of equation 11, which gives the equation describing the

propagation of the second-order partial derivative wavefield:

Lðm;ωÞ
∂2uðxg; xs;ωÞ

∂mðxÞ∂mðx 0Þ
¼

~~fsðx; x
0;ωÞ; (21)

where
~~fsðx; x

0;ωÞ indicates the second-order virtual source:

~~fsðx;x
0;ωÞ¼−

∂Lðm;ωÞ

∂mðxÞ

∂uðxg;xs;ωÞ

∂mðx0Þ
−
∂Lðm;ωÞ

∂mðx0Þ

∂uðxg;xs;ωÞ

∂mðxÞ

−
∂2Lðm;ωÞ

∂mðxÞ∂mðx0Þ
uðxg;xs;ωÞ; (22)

where the first term indicates the second-order virtual source con-

structed by the interaction of Fréchet derivative wavefield ∂uðxg;

xs;ωÞ∕∂mðx 0Þ with model perturbation δmðxÞ. Its second term

is the interaction of Fréchet derivative wavefield ∂uðxg; xs;ωÞ∕

∂mðxÞ with model perturbation δmðx 0Þ. In single-parameter FWI,

the third term in equation 22 is zero when x ≠ x 0. Isolating the sec-

ond-order partial derivative wavefield in equation 21 and inserting it

into the second term of equation 13 yields

H̄ðx;x0Þ¼
X

xg

X

xs

X

ω

Rð
~~f
†

sðx;x
0;ωÞL−1ðm;ωÞΔd�ðxg;xs;ωÞÞ:

(23)

It can be observed that equation 23 is similar to equation 12

for gradient calculation using the adjoint-state technique. The term

L−1ðm;ωÞΔd�ðxg; xs;ωÞ serves as the back-propagated residual

wavefield. Thus, the second-order preconditioner can be constructed

by multiplying the back-propagated wavefield with the second-order

c33 c55 c11 c13

c33

c55

c11

c13

Figure 4. The schematic diagram of the multiparameter approxi-
mate Hessian ~H associated with the elastic constants c33, c55, c11,
and c13.

δ m1( )

m2( )
u

δ

Figure 5. Schematic diagram of multiparameter second-order scat-
tering. The indicate wavefields u is first scattered by the model per-
turbation δm1 at x and then scattered again by model perturbation
δm2 at x 0.
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virtual source using the adjoint-state method, which only needsNxNz

additional forward modeling problems (Pratt et al., 1998).

It is more complex to construct the second-order preconditioner

in multiparameter Hessian because the second-order partial deriva-

tive wavefield can be caused by perturbations of different physical

parameters. Considering two different physical parameters m1 and

m2 and following equation 21, we can obtain the wave equation

describing the propagation of multiparameter second-order scat-

tered wavefield:

Lðm;ωÞ
∂2uðxg; xs;ωÞ

∂m1ðxÞ∂m2ðx
0Þ
¼

~~fm1m2
ðx; x 0;ωÞ: (24)

To construct the second-order partial derivative wavefield explic-

itly, ðNpNxNzÞ
2∕2 forward modeling problems need to be solved.

The function
~~fm1m2

ðx; x 0;ωÞ in equation 24 is the multiparameter

second-order virtual source:

~~fm1m2
ðx;x0;ωÞ¼−

∂Lð ~m;ωÞ

∂m1ðxÞ

∂uðxg;xs;ωÞ

∂m2ðx
0Þ

−
∂Lð ~m;ωÞ

∂m1ðx
0Þ

∂uðxg;xs;ωÞ

∂m2ðxÞ
−

∂2Lð ~m;ωÞ

∂m1ðxÞ∂m2ðx
0Þ
uðxg;xs;ωÞ; (25)

where ~m denotes all of the physical parameters considered. The first

term in equation 25 indicates the multiparameter second-order

virtual source caused by the interaction of the Fréchet derivative

wavefield ∂uðxg; xs;ωÞ∕∂m1ðx
0Þ with δm2ðxÞ. The second term

is formed by the interaction of the Fréchet derivative wavefield

∂uðxg; xs;ωÞ∕∂m2ðxÞ with δm1ðx
0Þ. The value of the third term

in equation 25 is determined by the parameterization for describing

the subsurface media. Ifm1 andm2 are independent physical param-

eters, the third term in equation 25 is zero. However, ifm1 andm2 are

not independent physical parameters (e.g., P-wave velocity α and

density ρ), the third term is not zero (Fichtner and Trampert, 2011).

In this research, this term is ignored because the four elastic constants

used to describe the 2D HTI media are independent.

It is also possible for us to calculate the second-order precondi-

tioner for multiparameter FWI using the adjoint-state technique.

Similar to equation 23, the multiparameter second-order precondi-

tioner can be expressed as

H̄m1m2
ðx; x 0Þ ¼

X

xg

X

xs

X

ω

Rð
~~f
†

m1m2
ðx; x 0;ωÞ

× L−1ð ~m;ωÞΔd�ðxg; xs;ωÞÞ: (26)

Thus, additional NpNxNz forward modeling simulations are re-

quired for constructing the multiparameter second-order precondi-

tioner. For example, to inverse the four elastic constants in HTI

media, the off-diagonal block H̄c33c55
in the second-order precondi-

tioner is expressible as

H̄c33c55
ðx; x 0Þ ¼

X

xg

X

xs

X

ω

Rð
~~f
†

c33c55
ðx; x 0;ωÞ

L−1ð ~m;ωÞΔd�ðxg; xs;ωÞÞ; (27)

where ~m indicates all of the four elastic constants c33, c55, c11,

and c13.

NUMERICAL EXAMPLES

In this section, we provide several numerical examples for testing

the proposed strategies. We first examine the scattering patterns of

the elastic constants in HTI media by comparing analytic results with

numerical results and explain the parameter crosstalk problem. We

then introduce the multiparameter Hessian using a 2D HTI model

and illustrate its effectiveness in suppressing parameter crosstalk and

second-order scattering effects. Finally, we enact the GN and FN

multiparameter FWI on a two-block-layer model.

Scattering patterns of the elastic constants: Analytic
versus numerical results

In this numerical example, we examine the analytic and numeri-

cal scattering patterns of the elastic constants for parameter cross-

talk analysis. The x-z plane with zero azimuth angle in 3D geometry

(Figure 1) is extracted, which forms the specified 2D HTI model.

The acquisition geometry is shown in Figure 6. The model consists

of 320 × 320 grid cells with grid sizes Δx ¼ Δz ¼ 5 m. The back-

ground model is isotropic and elastic with elastic constants

c33 ¼ 14.06, c55 ¼ 6.32, c11 ¼ 14.06, and c13 ¼ 1.42 GPa (P-

wave velocity α ¼ 2651.4 m∕s, S-wave velocity β ¼ 1777.6 m∕s,

density ρ ¼ 2.0 g∕cm3). In total, −10% perturbations are applied

to the elastic constants of the node located at the center of the model,

which forms the anisotropic anomaly (the black circle point in Fig-

ure 6). One source is located at top-left corner of the 2D model, as

indicated by the black star in Figure 6. When the incident P-wave

(ϑ ¼ 135o and φ ¼ 0o) interacts with the HTI anomaly, the scattered

wave will propagate at all directions and its amplitudes change with

varying angle θ. The receivers are deployed along the top surface

of the model for a reflection survey, which means that we can only

record the scattered wave at the range of θ ∈ ½315o; 360o� and

θ ∈ ½0o; 45o�.
We extract the x-z plane from the analytic 3D scattering patterns

for these elastic constants. The bold-black curves in Figure 7a–7d

show the P-P scattering patterns due to δc33, δc55, δc11, and δc13
with incident P-wave (ϑ ¼ 135o and φ ¼ 0o). Perturbations of dif-

ferent elastic constants serve as different types of secondary sources

associated with different scattering patterns. The P-SV scattering

pattern due to δc33 is also plotted as indicated by the blue curve in

Figure 7a. The analytic scattering patterns are overlain by numerical

modeling results for comparison. The amplitude variations of the

analytic scattering patterns are consistent with those of the numeri-

cal results.

In angle regimes where the scattering pattern of one parameter is

indistinguishable from that of another, the influences of the two

parameters are not separable, and crosstalk appears. Comparing

the scattering pattern in Figure 7a with that in Figure 7d, for in-

stance, we observe that the P-P scattering patterns due to δc33 and

δc13 are significantly overlapped at near offset, indicating strong

crosstalk between c33 and c13 for this reflection survey. Further-

more, parameter crosstalk between c55 and c13 is very strong at mid-

offset. In Figure 7c, we also observe that strong scattered wavefields

response due to δc11 can only be recorded at large offset. For invers-

ing the elastic constants using FWI, the parameter crosstalk among

these parameters are strong and complex for this reflection acquis-
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ition survey, which will undermine the inversion process without

proper preconditioning.

Suppressing crosstalk with multiparameter approximate
Hessian

To examine the ability of the multiparameter approximate Hes-

sian to suppress parameter crosstalk, we enact a GN update on a 2D

HTI point scatterer model. The 2D HTI model consists of 900 nodes

(Nx ¼ Nz ¼ 30) with grid size of 5 m in the horizontal and vertical

dimensions and four elastic constants (c33, c55, c11, and c13) are

used to describe each node. The initial model is elastic and isotropic

with elastic constants c33 ¼ 14.06, c55 ¼ 6.32, c11 ¼ 14.06, and

c13 ¼ 1.42 GPa. The true model is built by embedding one HTI

point anomaly at the center position of the background model. Four

elastic constants are all perturbed by −10% at this point scatterer. A

50 Hz Ricker wavelet is used for forward modeling, and the absorb-

ing boundary condition is applied on all of the boundaries of the

model. In these numerical examples presented in this research,

multicomponent data are used for inversion.

First, the multiparameter approximate Hessian ~H is constructed

explicitly with one source located at xs1 = (75 m, 0 m, 0 m). Thirty

receivers are arranged along the top surface of the model with a

spacing of 5 m. As shown in Figure 8, the multiparameter approxi-

mate Hessian is a 3600 × 3600 square and symmetric matrix with

four diagonal blocks and 12 off-diagonal blocks, which are consis-

tent with the schematic diagram shown in Figure 4. Each block ma-

trix is a 900 × 900 square matrix.

It can be seen that the subblocks in multiparameter approximate

Hessian are banded due to finite-frequency effects. Because elastic

constant c33 directly relates to P-wave velocity α (c33 ¼ ρα2) and

the Fréchet derivative wavefield caused by δc33 recorded at the

receivers are much stronger than those due to other elastic constants,

the diagonal block ~H3333 dominates the whole matrix. The four

diagonal blocks ~H3333, ~H5555, ~H1111, and ~H1313 are extracted, as

shown in Figure 9a–9d, respectively (the amplitudes have been re-

normalized). These four diagonal blocks form the space-type multi-
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Figure 6. The 2D numerical model for examining the scattering pat-
terns of elastic constants. The black point at the center of the model
indicates the HTI anomaly at position x0 = (0 m, 0 m, 0 m). The
source is located at xs = (−800 m, 0 m, 800 m). The receivers
(the black squares) are arranged along the top surface for a reflection
survey.

Figure 7. Analytic versus numerical results of the scattering patterns for the elastic constants in 2D HTI media. Panels (a-d) show the scattering
patterns due to elastic constants δc33, δc55, δc11, and δc13, respectively. The symbols “+” and “−” in (b) mean positive and negative polarities of
the scattered wave. The amplitudes have been normalized.
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Figure 8. The multiparameter approximate Hessian ~H for elastic
constants c33, c55, c11, and c13 with the 2D HTI model. The multi-
parameter approximate Hessian is a 3600 × 3600 square and sym-
metric matrix (Np ¼ 4 and Nx ¼ Nz ¼ 30).
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parameter Hessian approximation ~Hs given by Innanen (2014b).

Furthermore, we can see that the energy distributions in the four

diagonal blocks are quite different, which are determined by the

scattering patterns of these elastic constants.

The diagonal elements in the diagonal blocks ~H3333, ~H5555,

~H1111, and ~H1313 are extracted and plotted in model space (as shown

in Figure 10a–10d), and they mainly account for illumination com-

pensation and removing the geometric spreading effects. The

parameter crosstalk between different physical parameters are mea-

sured by the 12 off-diagonal blocks of ~H, as shown in Figure 8.

Stronger amplitudes in the off-diagonal blocks means stronger

parameter crosstalk. Figure 10e–10j shows the diagonal elements

of the off-diagonal blocks ~H3355, ~H3311, ~H3313, ~H5511, ~H5513, and

~H1113, respectively, which mainly account for removing the param-

eter crosstalk (Innanen, 2014b).

We now present a numerical example to show that precondition-

ing the gradient with the multiparameter approximate Hessian ~H

can suppress parameter crosstalk and resolve the gradient. The

search direction Δmn associated with the GN update can be ob-

tained by solving the Newton linear system (equation 6) approxi-

mately using a conjugate-gradient (CG) algorithm, which is known

as the truncated-Newton method (Fichtner and Trampert, 2011; Mé-

tivier et al., 2013). In this paper, the gradient is preconditioned by

the pseudo-inverse of the multiparameter approximate Hessian ~H−1,

which is calculated using singular value decomposition (SVD).

First, the data residual vector Δd33 caused by perturbation of c33
is used to construct the gradients of all elastic constants c33, c55, c11,

and c13. Figure 11a–11d shows the gradient vectors ∇c33
Φ, ∇c55

Φ,

∇c11
Φ, and ∇c13

Φ without multiparameter approximate Hessian

preconditioning, respectively. Only the gradient vector ∇c33
Φ is real

and the gradient vectors for other elastic constants are all artifacts

caused by parameter crosstalk. We then apply the multiparameter

approximate Hessian ~H to precondition the gradient vectors and

the estimated model perturbations for the elastic constants c33,

c55, c11, and c13 are illustrated in Figure 11e–11h, respectively.

It can be observed that the artifacts in Figure 11b–11d have been

obviously removed, and the estimated model perturbation for c33 in

Figure 11a is resolved and deblurred. Figure 11i–11l shows the gra-

dient vectors calculated using the data residual vector Δd55 due to

δc55. Similarly, only the gradient vector ∇c55
Φ in Figure 11j is real

and other gradient vectors in Figure 11i, 11k, and 11l are all spu-

rious correlations. Figure 11m–11p shows the model perturbation

estimations with multiparameter approximate Hessian precondi-

tioning for the four elastic constants, respectively. It can be seen
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Figure 10. The diagonal elements of the block matrices plotted in model space. Panels (a-d) show the diagonal elements of the diagonal block

matrices ~H3333, ~H5555, ~H1111, and ~H1313, respectively. Panels (e-j) show the diagonal elements of the off-diagonal block matrices ~H3355, ~H3311,
~H3313, ~H5511, ~H5513, and ~H1113, respectively. Because the symmetry of the multiparameter approximate Hessian ~H, we only plot the diagonal

elements of six off-diagonal blocks in ~H.

a)

Number of parameters

N
u
m

b
e
r 

o
f 
p
a
ra

m
e
te

rs

1 300 600 900

1

300

600

900

Number of parameters

b)

1 300 600 900

1

300

600

900

Number of parameters

c)

1 300 600 900

1

300

600

900

Number of parameters

d)

1 300 600 900

1

300

600

900

–1

0

1

2
× 10

–4

Figure 9. The diagonal blocks of the multiparameter approximate Hessian shown in Figure 8. Panels (a-d) show the diagonal blocks ~H3333,
~H5555, ~H1111, and ~H1313 of the multiparameter approximate Hessian, respectively.
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that the artifacts in Figure 11i, 11k, and 11l are suppressed, and the

gradient vector ∇c55
Φ in Figure 11j is resolved obviously. These

two numerical examples show the ability of the multiparameter

approximate Hessian in suppressing parameter crosstalk artifacts

and resolving the gradient vectors.

Figure 12a–12d shows the gradient vectors obtained using the

data residuals Δd due to the perturbations of four elastic constants

with three sources. The three sources are located at xs1 = (75 m, 0 m,

0 m), xs2 = (0 m, 0 m, 0 m), and xs3 = (150 m, 0 m, 0 m), respec-

tively. Figure 12e–12h shows the estimated model perturbations

with multiparameter approximate Hessian preconditioning. Fig-

ure 12i–12l shows the estimated model perturbations of the elastic

constants using GN multiparameter FWI after three iterations. It can

be seen that the four elastic constants can be inverted simultane-

ously very well with multiparameter approximate Hessian precon-

ditioning.

Suppressing multiparameter second-order scattering
effects

In this numerical example, we show the effectiveness of the sec-

ond-order preconditioner in suppressing multiparameter second-

order scattering effects. The second-order term H̄ is constructed by

correlating the second-order partial derivative wavefields with the

data residuals. When considering multiple physical parameters, the

second-order partial derivative wavefields can be caused by differ-

ent physical parameters. Furthermore, it is quite expensive to cal-

culate the second-order term directly. In this research, we use the

adjoint-state method for calculating the second-order term H̄ in the

multiparameter Hessian H.

Considering the elastic and isotropic background model used in

previous example, two HTI point anomalies are embedded in the

background model as shown in Figure 13. The two HTI points

anomalies are located at x1 = (80 m, 0 m, 65 m) and x2 = (90 m,

0 m, 75 m). At position x1, the elastic constants c33, c55, c11, and c13
are perturbed by þ10%, þ10%, 0%, and þ10%, respectively. At

position x2, the four elastic constants are perturbed by −10%,

−10%, −10%, and 0%, respectively. The normalized true model

perturbations for elastic constants c33, c55, c11, and c13 are illus-

trated in Figure 13a–13d, respectively.

Figure 14 shows the elements of the first- and second-order terms

of the multiparameter Hessian plotted in model space. Considering

the model parameter position x2, the correlation of the Fréchet

derivative wavefield due to δc33ðx2Þ with the Fréchet derivative

wavefields due to δc33ð~xÞ (~x indicate all positions in the model)

forms the 555th row in diagonal block ~H3333,

as shown in Figure 14a. Figure 14b–14d shows

the 555th rows in the off-diagonal blocks ~H3355,
~H3311, and ~H3313, respectively. Stronger ampli-

tudes mean stronger correlations of the Fréchet

derivative wavefields.

The Fréchet derivative wavefield due to

δc33ðx2Þ can be further scattered due to δc33ð~xÞ
or δc55ð~xÞ, δc11ð~xÞ, and δc13ð~xÞ. Correlating the

multiparameter second-order scattered wavefield

with the data residuals forms the 555th rows of

diagonal block H̄3333, off-diagonal blocks H̄3355,

H̄3311, and H̄3313, as shown in Figure 14e–14h,

which are obtained using explicit perturbation

method with additional 900 forward modeling

simulations (Pratt et al., 1998). Stronger ampli-

tudes mean stronger correlations between the

second-order scattered wavefields with the data

residuals. Figure 14i–14l shows the 555th rows

in blocks H̄3333, H̄3355, H̄3311, and H̄3313 calcu-

lated using the adjoint-state method following

equation 27 with additional one forward model-

ing simulation. Constructing the multiparameter

second-order preconditioner with the adjoint-

state method, an additional 3600 forward model-

ing simulations are required.

We give a numerical example to show the

artifacts caused by the second-order scattering

effects. Figure 15a–15d shows the GN updates

for δc33 when the true model perturbation δc33
was increased from 10% to 20%, 30%, and 40%,

respectively. Larger model perturbation means

stronger second-order scattered energy in the

data residuals. It can be seen that the artifacts be-

come stronger with increasing the model pertur-

bation. Figure 15e–15h shows the GN updates

for c55 when increasing the model perturbation

a) b) c) d)

e) f) g) h)

i) j) k) l)

m) n) o) p)

Figure 11. Panels (a-d) show the gradient vectors ∇c33
Φ, ∇c55

Φ, ∇c11
Φ, and ∇c13

Φ con-
structed by the data residual vector Δd33. Panels (e-h) show the perturbation estimations
after multiparameter approximate Hessian preconditioning for the corresponding elastic
constants. Panels (i-l) show the gradient vectors constructed by data residual vectorΔd55
for the corresponding elastic constants. Panels (m-p) show the perturbation estimations
for the corresponding elastic constants with multiparameter approximate Hessian pre-
conditioning.
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δc33. We can see that the artifacts become very strong in Figure 15g

and 15h. It is difficult to recognize the anomalies at positions x1 and

x2. This means that the second-order scattered energy caused by one

physical parameter also generates artifacts in the estimations of

other physical parameters. Figure 15i–15l shows the inverted model

perturbations for elastic constants of c33, c55, c11, and c13 using GN

method. Figure 15m–15p shows the inverted model perturbations

for the elastic constants using FN method after five iterations when

model perturbation δc33 is 30%. For GN method, the elastic con-

stants c33 and c55 can be determined very well (Figure 15i and 15j).

However, for c11 and c13 (Figure 15k and 15l), we can still observe

some unwanted artifacts, which are caused by the second-order

scattered energy in the data residuals due to δc33 and δc55. The FN

method incorporates the second-order term in the multi-parameter

full Hessian for preconditioning. The artifacts in the estimated

model perturbations δc11 and δc13 (Figure 15o and 15p) have been

mitigated.

Applying GN and FN multiparameter
FWI on a two-block-layer model

Finally, we apply the GN and FN multipara-

meter FWI on a two-block-layer model for com-

parison. The model consists of 50 × 50 grid

points with Δx ¼ Δz ¼ 10 m, and a 20 Hz

Ricker source wavelet is used for forward mod-

eling. The initial model used in this numerical

example is elastic and isotropic. The properties

of the initial model are consistent with those used

in previous numerical examples. We distribute

three sources at x̂s1 = (0 m, 0 m, 0 m), x̂s2 =

(250 m, 0 m, 0 m), and x̂s3 = (500 m, 0 m,

0 m). In total, 50 receivers are arranged from

10 to 500 m at the top surface with an interval

of 10 m. Two anisotropic block layers are em-

bedded in the isotropic background and the true

perturbations for elastic constants c33, c55, c11,

and c13 are shown in Figure 16a–16d. For the

first block layer, the perturbations for elastic con-

stants c33, c55, c11, and c13 are −4.218 GPa

(−30%), −0.632 GPa (−10%), −1.406 GPa

(−10%), and 0 GPa (0%). For the second block

layer, the perturbations for these elastic constants

are þ4.218 GPa (þ30%), þ0.632 GPa (þ10%),

0 GPa (0%), and þ0.142 GPa (þ10%). The dou-

bly scattered energy between the two block layers

can cause artifacts in the estimated model pertur-

bations. A total of 10 iterations are applied for in-

version using GN and FN methods. A multiscale

approach is used by increasing the frequency band

from [1 Hz, 10 Hz] to [1 Hz, 19 Hz] by 1 Hz every

iteration (Pratt andWorthington, 1990; Sirgue and

Pratt, 2004). To evaluate the quality of the inver-

sion results, we use the relative least-squares error

(RLSE) ε,

εn ¼
kmn −mtk

km0 −mtk
; (28)

wherem0,mt, andmn indicate the initial model, true model, and the

inverted model at nth iteration.

Figure 16e–16h shows the inverted model perturbations for elas-

tic constants c33, c55, c11, and c13 using GN multiparameter FWI.

We can see that for elastic constants c33 and c55, GN method can

get acceptable results even though the two block layers are not

deblurred very well. While for elastic constants c11 and c13, the es-

timated model perturbations are contaminated by strong artifacts.

Figure 16i–16l shows the inverted model perturbations for these

elastic constants using FN multiparameter FWI. It can be observed

that the two block layers for c33 are deblurred better and the artifacts

for elastic constants c11 and c13 have been suppressed. Figure 17a–

17d shows the RLSE (equation 28) ε33, ε55, ε11, and ε13 for elastic

constants c33, c55, c11, and c13 as the iteration proceeds. The solid

lines and dashed lines indicate that the RLSE obtained using GN

and FN methods. FN method can estimate the model perturbations

more efficiently than GN method by incorporating the second-order

term in multiparameter Hessian. Furthermore, Figure 17c and 17d

a) b) c) d)

e) f) g) h)

i) j) k) l)

Figure 12. Panels (a-d) show the gradient vectors ∇c33
Φ, ∇c55

Φ, ∇c11
Φ, and ∇c13

Φ con-
structed by Δd using three sources. Panels (e-h) show the perturbation estimations with
multiparameter approximate Hessian preconditioning for the corresponding elastic con-
stants. Panels (i-l) show the estimated perturbations for elastic constants after three iter-
ations. The amplitudes have been normalized.
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amplitudes have been normalized.

GN and FN multiparameter FWI R285



reveal that the effectiveness of FN method is more obvious in es-

timating elastic constants c11 and c13.

DISCUSSION

We have developed techniques of inversion for the properties of

naturally fractured reservoirs using FWI. Robust technology of this

kind is expected to have a significant impact in areas like reservoir

characterization. Fractured reservoirs can be described using many

different parameters, such as fracture spacing, fracture density, frac-

ture orientation, weakness, compliance, etc. Our current study fo-

cuses on inverting for the elastic constants of equivalent HTI media.

Different parameterizations impact the inversion process greatly, in

large part because of parameter crosstalk. Comparison of the stabil-

ity and efficiency given different parameterizations is an important

area of future research. In this paper, we have ignored the contri-

bution from density, which is also very important for characterizing

the fluid-filled reservoirs. The 3D scattering patterns for elastic con-

stants in general anisotropic media given in this paper can be used to

analyze the parameter crosstalk problem when inverting for the

elastic constants. These can subsequently be transformed to any pa-

rameterization following the chain rule. The analytic 3D scattering

patterns have been examined using a 2D HTI numerical example.

Three-dimensional examples for more complex media (such as or-

thorhombic media) can be carried out in future studies. We ignore the

detailed spatial features of the fractured reservoirs by using the long-

wavelength approximation and describe the fractured media using

anisotropic elastic constants. It will be valuable to consider the frac-

ture size when using FWI for fractured reservoir characterization

(Fang et al., 2013; Pan and Innanen, 2013; Zheng et al., 2013).

FWI is an ill-posed problem, which means that an infinite number

of models matches the data (Virieux and Operto, 2009). A regulari-

zation technique can alleviate the nonuniqueness of the ill-posed

inverse problem and make FWI better posed (Menke, 1984). In this

paper, no regularization technique is used. Hence, for further re-

search, introducing a regularization technique, such as Tikhonov

regularization (Asnaashari et al., 2013) and total-variation regulari-

zation (Lin, 2015), in the objective function is necessary for improv-

ing the performance of the proposed strategies.

Most current inversion strategies for multiparameter FWI are

hierarchical methods, with parameterization and acquisition geom-

etry having been selected to mitigate or avoid parameter crosstalk

problem. Prieux et al. (2013) consider viscoacoustic multiparameter

FWI using the l-BFGS (named after Broyden, 1970; Fletcher, 1970;

Goldfarb, 1970; and Shanno, 1970) optimization method with si-

multaneous strategy, compared against a hierarchical strategy. In
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this paper, to implement the GN and FN methods for estimating

elastic constants simultaneously, the multiparameter Hessian matrices

are constructed explicitly and then inversed based on SVD. However,

these strategies are extremely expensive for large-scale inverse prob-

lems. A better choice for large-scale multiparameter FWI is the trun-

cated-Newton method (Métivier et al., 2014, 2015). Instead of

constructing the Hessian matrices explicitly, truncated-Newton method

only needs Hessian-vector products and obtains the search direction by

solving the Newton equation iteratively with CG algorithm.

In the numerical section, we have restricted our selection to 2D

numerical examples for examining the possibilities of inverting for

the elastic constants. For large 2D or 3D practical applications, it

will be much more computationally expensive to carry out GN and

FN optimization methods for multiparameter FWI. One possible

recourse is target-oriented FWI, in which we only need to calculate

one portion of the multiparameter Hessian aiming at the target area.

We could potentially also restrict the inverse Hessian construction

to the diagonal elements of the off-diagonal blocks, i.e., the param-

eter-type approximation (Innanen, 2014a) for reducing the compu-

tational cost, for which an adjoint-state method would need to be

developed. Phase-encoding methods have been widely studied for

calculating the gradient (Vigh and Starr, 2008; Tang, 2009; Anagaw

and Sacchi, 2014; Pan et al., 2014a) or Hessian approximations

(Castellanos et al., 2015). The phase-encoding methods can also

be used in multiparameter FWI to calculate the gradient and multi-

parameter Hessian for reducing the computational burden (Pan et al.,

2015a). In this paper, the numerical experiments are used to exam-

ine the abilities of multiparameter Hessian, whereas the cycle-skip-

ping difficulty of the inverse problem is ignored. Compared with the

quasi-Newton l-BFGS method, GN and FN methods are expected

to be more effective for mitigating parameter crosstalk. However,

according to Nash (2000), when nonlinearity of the inverse problem

becomes very high, the l-BFGS method is more efficient. Hence, an

important future step would be to compare the performances of

Newton-type methods (GN and FN methods) and l-BFGS method

for multiparameter FWI with high nonlinearity.

CONCLUSIONS

In this paper, we have applied the GN and FNmultiparameter FWI

to invert for the elastic constants of a HTI media. The parameter

crosstalk difficulty in multiparameter FWI is introduced, and we also

derive the 3D scattering patterns for the elastic constants in

general anisotropic media for parameter crosstalk analysis. The role

of the multiparameter Hessian in mitigating parameter crosstalk and

reducing second-order scattering effects has been revealed. We also

explain how to construct the multiparameter second-order precondi-

tioner using the adjoint-state method. In the numerical section, we

give examples to testify the effectiveness of the multiparameter Hes-

sian in suppressing parameter crosstalk and second-order scattering

effects. The GN and FN FWI are finally applied on a two-block-layer

model for comparison. The FN method gave better inversion results

for incorporating the multiparameter second-order preconditioner.
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APPENDIX A

3D SCATTERING PATTERNS OF

ELASTIC CONSTANTS IN GENERAL

ANISOTROPIC MEDIA

The solution of equation 1 can be expressed

using the integral form of the Green’s tensor vec-

tor in the frequency domain (Ben-Menahem and

Singh, 1981; Aki and Richards, 2002; Kamath

and Tsvankin, 2014):

ūiðx;ωÞ¼

Z

ΩðxsÞ

Z

ωs

fjðxs;ωsÞ

Gijðx;ω;xs;ωsÞdΩðxsÞdωs; (A-1)

where Gijðx;ω; xs; tsÞ indicates the ith compo-

nent of the Green’s tensor vector at position x

due to a point source fjðxs;ωsÞ in jth direction

at position xs. The function ΩðxsÞ indicates the
volume including all of the sources.

Considering that a general anisotropic inclu-

sion with density ρ and elastic constants cijkl is
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Figure 17. Comparison of the RLSE (equation 28) for different elastic constants using
GN and FN methods. Panels (a-d) show the RLSE ε33, ε55, ε11, and ε13 for elastic con-
stants c33, c55, c11, and c13 as the iteration proceeds.
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embedded in an infinite isotropic elastic background with properties

~ρ and ~cijkl, the differences between the perturbed and unperturbed

model properties are defined as (Stolt and Weglein, 2012)

δρ ¼ ρ − ~ρ; δcijkl ¼ cijkl − ~cijkl; (A-2)

where δρ and δcijkl denote the density and elastic constant pertur-

bations. Assuming that the size of the anisotropic obstacle is rather

small compared with the wavelength of the incident wave, the per-

turbed wavefields corresponding to these model variations can be

written as

δu ¼ u − ~u; (A-3)

where ~u and δu indicate the unperturbed wavefields and scattered

wavefields, respectively. Plugging equations A-2 and A-3 into

equation 1 and ignoring the high-order terms based on the Born

approximation, the equation of motion splits into two equations:

∂

∂xj

�

~cijkl
∂ ~uk
∂xl

�

− ~ρ
∂2 ~ui
∂t2

¼ −fi; (A-4)

∂

∂xj

�

~cijkl
∂δuk

∂xl

�

− ~ρ
∂2δui

∂t2
¼ δρ

∂2 ~ui
∂t2

−
∂δMij

∂xj
; (A-5)

where δM in equation A-5 is the equivalent moment tensor source

(Ben-Menahem and Singh, 1981; Chapman, 2004) that indicates

the perturbations of the elastic constants:

δMij ¼ δcijkl ~ekl; (A-6)

where ~ekl are the strain components of the incident wave. We notice,

first, that equation A-4 is equivalent to equation 1, meaning that the

unperturbed wavefield ~u propagates in the isotropic background

media. Further examination reveals that equation A-5 describes

the propagation of the scattered wavefield δu in the isotropic back-

ground media. The right side of the equation A-5 is referred to as

“scattered sources.” It underlines the fact that the scattered wave-

fields due to the perturbations of the model parameters (e.g., δρ

or δcijkl), can be interpreted as the wavefields generated by a set

of secondary body forces, which propagate in the current (or un-

perturbed) medium (Dietrich and Kormendi, 1990).

According to equation A-1, the solution of equation A-5 can be

written as an integral formulation in the frequency domain:

δūnðx;ωÞ ¼

Z

Ωðx 0Þ

Z

ω 0
δρω2 ~ui ~Gniðx;ω; x

0;ω 0ÞdΩðx 0Þdω 0

þ

Z

Ωðx 0Þ

Z

ω 0

∂δMij

∂x 0
j

~Gniðx;ω; x
0;ω 0ÞdΩðx 0Þdω 0; (A-7)

where ~Gijðx;ω; x
0;ω 0Þ indicates the Green’s tensor in the unper-

turbed background medium due to the scattered source at position

x 0 ¼ ðx 0; y 0; z 0Þ. Ignoring the contribution from density (here, we

only consider the perturbations of the elastic constants) and apply-

ing integration by parts with a far-field approximation, the scattered

wavefields can be obtained as

δūnðx;ωÞ ≈ −
R

Ωðx 0Þ

R

ω 0 δMij
∂ ~Gniðx;ω;x

0;ω 0Þ
∂x 0

j

dΩðx 0Þdω 0;

(A-8)

or a more compact form:

δūn ≈ −δMij
~Gni;j: (A-9)

Taking the partial derivative of the scattered wavefields with re-

spect to the variations of the model parameters yields the Fréchet

derivative wavefield,

∂ūnðx;ωÞ
∂m

¼−
R

Ωðx0Þ

R

ω0
∂δMij

∂m

∂ ~Gniðx;ω;x
0;ω0Þ

∂x0
j

dΩðx0Þdω0; (A-10)

where m denotes elastic constants cijkl in general anisotropic

medium. Equation A-10 is known as the Fréchet derivative (or in-

version sensitivity kernel) which is widely analyzed and utilized in

the linearized inversion framework (Tarantola, 1984, 1986; Pratt et

al., 1998; Virieux and Operto, 2009).

Applying Voigt recipe of indexes to the elastic constants pertur-

bation matrix δc, equation A-6 can be written in matrix form:

2

6

6

6

6

6

6

4

δM11

δM22

δM33

δM23

δM13

δM12

3

7

7

7

7

7

7

5

¼

2

6

6

6

6

6

6

4

δc11 δc12 δc13 δc14 δc15 δc16
δc22 δc23 δc24 δc25 δc26

δc33 δc34 δc35 δc36
δc44 δc45 δc46

δc55 δc56
δc66

3

7

7

7

7

7

7

5

2

6

6

6

6

6

6

4

~e11
~e22
~e33
2~e23
2~e13
2~e12

3

7

7

7

7

7

7

5

:

(A-11)

Thus, the information of incident wave is encoded in the equiv-

alent moment tensor source δM. First, we can consider an incident

plane P-wave,

ùp ¼ U exp½iðωt − kα · nÞ�p̂; (A-12)

where U is the amplitude of the incident P-wave, “·” means inner

product, and n ¼ ðx; y; zÞ indicates the unit vector in Cartesian co-

ordinates. The value kα is the P-wave wavenumber vector in Spheri-

cal coordinates and p̂ is the polarization vector indicating the

positive direction of the particle motion:

kα¼kαq̂¼kαðsinϑcosφxþsinϑ sinφyþcosϑzÞ; (A-13)

p̂ ¼ sin ϑ cos φxþ sin ϑ sin φyþ cos ϑz; (A-14)

where ϑ is the inclination angle of incident wave, which departs

from z-axis and φ departing from x-axis indicates the azimuth angle

of the incident wave. The value q̂ is the unit vector within spherical

coordinates. Thus, the strain components can be obtained as

~eij ¼ −ikαUp̂iq̂j exp½iðωt − kα · nÞ�: (A-15)

Inserting equation A-15 and the analytic expression of the

Green’s function tensor in 3D isotropic and elastic media (Aki
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and Richards, 2002; Chapman, 2004) into equation A-10, we can

get the analytic expressions of the 3D Fréchet derivative wavefield

with the incident-plane P-wave,

∂up

∂m
¼ −

ω2U expð−ikξrÞ

4πραξ3r
ðĝ†

∂M

∂m
r̂Þ; (A-16)

where ξ can be α or β for P-wave velocity or S-wave velocity, re-

spectively. kξ can be kα or kβ for P-wave wavenumber or S-wave

wavenumber. The vector ĝ can be r̂, θ̂ and ϕ̂ for scattered P-wave,

SV-wave, and SH-wave:

r̂ ¼ ½sin θ cos ϕ; sin θ sin ϕ; cos θ�†;

θ̂ ¼ ½cos θ cos ϕ; cos θ sin ϕ;− sin θ�†

ϕ̂ ¼ ½− sin ϕ; cos ϕ; 0�†; (A-17)

where θ indicates the inclination angle departing from z-axis and ϕ

indicates the azimuth angle departing from x-axis for describing the

scattered wave. δM in equation A-16 indicates reduced moment

tensor source by taking the terms of ikαU and exp½iðωt − kα · nÞ�

out of δM:

δM ¼ ikαUδM exp½iðωt − kα · nÞ�: (A-18)

In this research, the scattering coefficient (or scattering pattern) due

to perturbation of model parameterm is defined as (Chapman, 2004)

Rpðϑ;φ; θ;ϕÞ ¼ ĝ†
∂M

∂m
r̂; (A-19)

where Rp is associated with four angles, which are used to describe

the incident wave and scattered wave. Similarly, for incident plane

SV-wave, we have

ùSV ¼ USV exp½iðωt − kβ · nÞ�p̂
SV; (A-20)

where USV is the amplitude of the incident SV-wave, kβ ¼ kβq̂ and

p̂SV ¼ cos θ cosϕxþ cos θ sinϕy − sin θz. Its strain components

can be expressed as

~eSVij ¼ − 1
2
ikβUSVðp̂

SV
i q̂j þ p̂SV

j q̂iÞ exp½iðωt − kβ · nÞ�:

(A-21)

For incident plane SH-wave, we have

ùSH ¼ USH exp½iðωt − kβ · nÞ�p̂
SH; (A-22)

where USH is the amplitude of incident SH-wave, and p̂SH ¼

− sin ϕxþ cos ϕy and its strain components can be expressed as

~eSHij ¼−1
2
ikβUðp̂SH

i q̂jþp̂SH
j q̂iÞexp½iðωt−kβ ·nÞ�: (A-23)

Inserting the strain components in equations A-21 and A-23 into

equation A-11 and then equation A-10, we can obtain the scattered

wavefields with incident plane SV-wave and SH-wave:

∂uSV

∂m
¼ −

ω2USV expð−ikξrÞ

4πρβξ3r

�

ĝ†
∂MSV

∂m
r̂

�

; (A-24)

∂uSH

∂m
¼ −

ω2USH expð−ikξrÞ

4πρβξ3r

�

ĝ†
∂MSH

∂m
r̂

�

: (A-25)

The scattering patterns given in this research are consistent with

the 3D scattering patterns of the isotropic parameters by Wu and

Aki (1985).
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