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Abstract DIC-based identi�cation of the constitutive parameters of an

elastoplastic law is addressed both from a general viewpoint, and applied to

the particular case of dog-bone sample made of commercially pure titanium

and subjected to tensile loading. A two-step procedure (Digital Image Corre-

lation � DIC � followed by weighted Finite Element Method Updating �

FEMU) is �rst presented. These two steps can be merged into a single-step

procedure (i.e., Integrated-DIC or I-DIC). In both cases, the elastoplastic

computations are performed with a commercial code (i.e., non-intrusive iden-

ti�cation). When the suited weighting of FEMU is taken into account, which is

based on DIC-processed image noise, both I-DIC and FEMU methods provide

similar results. It is shown that the addressed experimental case requires the

use of static (load) information to get precise estimates of the sought param-

eters.
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1 Introduction

Various identi�cation methods have been developed through the last

decades [6], some of them following the growing use of full-�eld measure-

ments [26]. Finite Element Model Updating (or FEMU) is the most widely

utilized identi�cation technique [34, 29, 42]). It is usually an iterative method

that relies on the comparison of the measured and computed loads and/or

displacement �elds [34, 17]. However, in this method the measured displace-

ment �elds are treated as would be any point-wise measurement, namely, as

data to post-process. In all the afore-mentioned cases, least squares errors are

considered with no special emphasis on their weighting. Other quantities can

also be considered, for instance by using ��elds� of strain gages [33] or strain

�elds derived from measured displacement �elds [37]. Other metrics have also

been proposed when applied to the measured displacement or derived strain

�elds (e.g., the constitutive equation error [15, 22, 1, 21]).

When dealing with elastic problems, various approaches rely on variational

principles [11, 10]. For instance, the Reciprocity Gap Method [3, 4]) only needs

surface measurements to identify bulk defects. Non-iterative methods have also

been developed, which make use of strain �elds in elasticity (i.e., the Virtual

Fields Method, or VFM [25, 43]) or measured displacement �elds in elasticity

and damage (i.e., the Equilibrium Gap Method [16, 48]). All these methods

have been compared for elastic cases [6], where the noise/signal ratio is the

main di�culty since the displacement and strain levels are very small.

Some of the previous methods have also been applied to the identi�cation

of elastoplastic parameters where the nonlinear dependencies between the pa-
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rameters may be di�cult to handle. For instance, FEMU has been applied to

the case of micro-structural deformations of grains in a metallic alloy [28], or

at the mesoscopic level for quasi static [54] and dynamic [53] loading condi-

tions. Avril et al. [7] discuss an example of plastic law identi�ed for a tensile

specimen with the VFM. Force/displacement FEMU has also been applied to

di�erent types of samples [44]. Cooreman et al. [19] show the advantage of

calculating analytically the sensitivity matrix in these inverse methods.

It is worth noting that in all the studies listed so far, very few have explic-

itly dealt with measurement uncertainties. Conversely, optimized virtual �elds

have been constructed to account for noise sensitivity [5]. Similarly, minimizing

the sensitivity to measurement uncertainties has enabled for the identi�ability

of load and contrast �elds in microcantilevers [2]. Last, Gras et al. [23, 24] have

proposed weighted least squares (or chi-squared) errors based upon the covari-

ance matrix of measurement errors. This proposition will also be considered

hereafter.

In all the listed identi�cation techniques, the measured data are the input

to the identi�cation procedure. Therefore, the measurement step is performed

prior to the identi�cation step. An alternative route to these approaches is

to resort to so-called integrated approaches in which the measurement and

identi�cation steps are performed in a single analysis. The measured (general-

ized) degrees of freedom then correspond to material parameters (e.g., elastic

coe�cients [30, 36], Paris' law parameters [40], damage parameters [46]), or

mechanical parameters (e.g., stress intensity factors [47, 27, 38]). Most of the

results obtained via Integrated-DIC (or I-DIC) have used closed-form solu-

tions [30, 47, 27, 38] even though numerical solutions have also been consid-

ered [36, 46]. The latter ones are more generic when dealing with nonlinear

constitutive models.
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In the following, an integrated DIC code will be used to identify the elasto-

plastic parameters of Ramberg-Osgood's model [45]. The aim of the present

study is not to analyze complex constitutive equations but rather to discuss

the framework of DIC approaches in which the �nite element code (here the

commercial code Abaqus) are used in a non-intrusive way to generate the

sensitivity �elds for the identi�cation procedure. Second, the results obtained

with I-DIC will be compared with those utilizing FEMU in which a weighted

least squares error is introduced. Last, the parameter resolutions are estimated

by assessing the associated covariance matrix.

2 Digital Image Correlation

Digital Image Correlation is a widely used displacement �eld measurement

technique [52, 32]. It relies on the registration of an image f in the reference

con�guration and a series of pictures g in the deformed con�gurations. The

registration operation consists of minimizing the sum of squared di�erences

between the deformed image corrected for its displacement and the reference

image. Many equivalent conventions can be chosen for the functional to be

minimized, and this makes little or no di�erence for the determination of the

displacement �eld. In particular, the scale for the objective functional is free

and does not interfere any further.

In this paper, the choice is made to use this freedom to highlight the crucial

role of noise in many applications of DIC. Successive acquisitions without any

change in the conditions do not lead to identical images. They all di�er from

an inaccessible ideal image by a random noise that can only be described in a

statistical sense. Although the latter is to be evaluated experimentally before

and/or after the mechanical test, the speci�c case of white noise (i.e., uncor-

related from pixel to pixel) is chosen. Moreover, the probability distribution
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function is in many circumstances Gaussian [24]. In such cases, only one pa-

rameter characterizes the noise, namely its standard deviation γf expressed in

gray levels. There are ways to incorporate deviations from the above assump-

tions in di�erent variational formulations of DIC [32] but the present study is

restricted to this generic case of white Gaussian noise.

The noise amplitude sets a natural scale to measure the di�erence in gray

levels between two images. Thus, it is proposed, at variance with standard

practices, to de�ne the objective functional to be minimized by the following

intensive expression (i.e., quantity independent of the ROI area for a homo-

geneous texture)

η2t (u) =
1

2γ2
f |Ω|

∑

Ω

(g(x+ u(x, t), t)− f(x))
2

(1)

This functional is to be minimized with respect to the parametrization of the

sought displacement �eld u(x, t), where x is any considered pixel, and t the

considered time. In this expression Ω designates the Region of Interest (ROI),

|Ω| its area in terms of number of pixels it contains, and γf the standard

deviation of noise expressed in gray levels. Because noise a�ects both images

f and g, the pre-factor 1/(2γ2
f |Ω|) has been chosen in such a way that the

mathematical expectation of the above functional solely due to noise is unity

(i.e., when two consecutive images of the same scene are shot without any

wanted di�erence).

Note that ηt is independent of the gray level encoding. Even if this choice is

not standard, it has no consequence on further results as the displacement that

minimizes ηt does not depend on the scale factor. An a priori displacement

basis must be chosen for u(x, t) to minimize ηt with respect to the associated

amplitudes. Continuous displacement �elds found in �nite element discretiza-

tions are one possible choice [14, 51, 8], which leads to lower uncertainties

in the measured displacement �elds [31], but more importantly can be used
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in �nite element settings. Most of the applications reported so far deal with

regular meshes made of 4-noded elements [51, 8, 48, 54, 53, 20]. However,

unstructured meshes can also be used [14, 36, 55]. In the present analyses,

three-noded (i.e., T3) elements will be considered.

The minimization of ηt is solved by successive linearizations and correc-

tions, using modi�ed Newton's scheme [31]

[M]{δum} = {b(i)} (2)

where [M] is the DIC matrix, {δum} the vector gathering all increments of

measured displacement amplitudes, and {b(i)} the residual column vector

at iteration i, which cancels out when the gray level conservation is satis-

�ed everywhere. When the system is invertible, the matrix [M] is symmet-

ric, positive and de�nite. It can therefore be used to de�ne a scalar prod-

uct (i.e., {a1} • {a2} = {a1}t[M]{a2}) and the corresponding M-norm (i.e.,

∥{a}∥2M = {a}[M]{a}). In a small neighborhood of the actual displacement

�eld {u} separating the two images η2t reads

η2t ({v}) ≈
1

2γ2
f |Ω| ∥{v} − {u}∥2M (3)

Since displacement measurements are corrupted by noise, the DIC matrix is

also of importance when evaluating the covariance matrix [Cu(t)] of the mea-

sured degrees of freedom [8, 31]

[Cu(t)] = 2γ2
f [M]−1 . (4)

The DIC code used herein is run independently for each picture pair. How-

ever, the registration of the n-th image pair is initialized with the measured

displacement �eld of the (n− 1)-th pair. It is worth noting that a spatiotem-

poral approach could also have been used [9].

In fact, it is possible to show that the use of the same reference image,

itself a�ected by noise, leads to a non vanishing covariance for di�erent image
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pairs as they share the same reference image

[Cu(t, t
′)] = γ2

f [M]−1 (5)

for t ̸= t′. However, to limit the usage of memory in the following analyses

these covariances will be neglected.

3 Identi�cation Methods

Several identi�cation methods have been adapted or developed to quantita-

tively use DIC results to identify material parameters [6, 26]. The aim of

the present work is to evaluate the performances of Integrated Digital Image

Correlation (I-DIC) with respect to well accepted methods for the case of plas-

ticity. The most used (i.e., reference) method (FEMU) is chosen herein and

will be compared to I-DIC. However, the standard least squares setting will

be substituted by a weighted approach considering the covariance matrix [Cu],

which is block diagonal gathering all covariance matrices [Cu(t)].

3.1 Weighted Displacement-Based Finite Element Model Updating

(FEMU-U)

The displacement-based Finite Element Model Updating method was devel-

oped for using any measurement result to identify material parameters [17, 42].

In the present case, 2D measured displacement �elds are considered as input

data of such an identi�cation procedure. The measured �eld um is to be com-

pared to the computed one uc by minimizing the weighted square norm (or

chi-squared error)

χ2
u({p}) =

1

Nu

({um} − {uc})t[Cu]
−1({um} − {uc}) (6)
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where {p} is the column vector gathering all unknown material parameters

needed for the computation of uc. The normalization factor 1/Nu, where Nu

denotes the total number of kinematic degrees of freedom, has been introduced

so that χu is an intensive quantity akin to η. In the present case, the covariance

matrix [Cu(t)] is equal to 2γ2
f [M]−1 (see Equation (2)). The weighted chi-

squared error therefore refers to the M-norm

χ2
u({p}) =

1

2γ2
fNu

∥{um} − {uc}∥2M (7)

It is important to note the analogy between the above expression and the

previous DIC functional ηt, see Equation (3). Subsection 3.3 will discuss the

rationale behind such a proximity.

The global minimum of χ2
u corresponds to the best set of parameters {p}

that can be found for the selected model. As for DIC, the minimization of χ2
u

is performed by successive linearizations and corrections. In the present case,

the new estimate (i.e., at iteration i) of the computed displacement �eld reads

uc(x, t, {p(i)}) = uc(x, t, {p(i−1)}) + ∂uc

∂{p} (x, t, {p
(i−1)}){δp} (8)

where {p(i−1)} is the set of parameters at iteration i− 1, and {δp} the sought

parameter increment. The computation of the sensitivity �elds ∂uc/∂{p} can

be performed analytically [19, 36] or numerically by computing the �elds for

small variations of each parameter of the considered set, as is the case herein

by resorting to the commercial FE code Abaqus. In practice, forward �nite

di�erences are considered to compute the sensitivity �elds. This set of sensi-

tivity �elds is computed for each iteration of the procedure. Once these �elds

are computed, the corrections to the sought parameters read

{δp} = [H(i−1)]−1[Su
(i−1)]t[M]({um} − {uc

(i−1)}) (9)

where [Su
(i−1)] is the matrix gathering all sensitivity �elds (i.e., {δuc} =

[Su]{δp}) (i.e., each raw gathers all nodal values of the sensitivity �eld for one



Estimation of Elastoplastic Parameters via Weighted FEMU and Integrated-DIC 9

of the considered parameter), [M] the block diagonal matrix with the same

matrix [M] for each considered time t, and [H(i−1)] = [Su
(i−1)]t[M][Su

(i−1)]

the approximated Hessian.

The covariance matrix of the identi�ed material parameters [Cp] is ob-

tained by propagating the measurement uncertainties from the vector of mea-

sured kinematic degrees of freedom {um} to the sought parameters {p}

[Cp] = [H]−1[Su]
t[M][Cu][M][Su][H]−1 = 2γ2

f [H]−1 (10)

where [H] is the Hessian matrix at convergence of the identi�cation procedure.

In practice, a part of the measurement result is selected as Dirichlet bound-

ary conditions for the FE computations. Consequently, the restriction to these

boundaries of the measured displacements, {um}dΩ , is an input (see Figure 1).

The FE description of the measured �eld allows the same mesh to be used for

the measurement and computation, and thus to avoid any reprojection step

between the measurement result and the computation mesh, which would pos-

sibly induce interpolation errors. This is feasible provided the measurement

mesh is �ne enough to ensure small computation errors. It will be assumed in

the following that it is the case. Otherwise, a re�ning step of this mesh can be

necessary [39].

Figure 1 summarizes the di�erent steps of weighted FEMU-U to get the

optimal set of parameters {popt} and the corresponding covariance matrix

[Cp]. First, the in-house DIC code [36] provides the measured displacement

�eld and the DIC matrix [M]. Second the in-house code FEMU-U is run. It

requires an initial set {p0} of the sought parameters. It can be noted that

the commercial FE code is used in a non-intrusive way, namely the only infor-

mation required for the identi�cation step is the computed displacement �eld

with the current estimate of the sought parameters {p}.
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3.2 Integrated Digital Image Correlation (I-DIC)

Integrated digital image correlation (I-DIC) is a global DIC technique that

relies on a speci�c choice for the measured displacement �eld. As the user

possesses a priori knowledge on the sample behavior, it is possible to choose

a better displacement space than the general FE form. The set of parameters

{p} is generally chosen as the space for the degrees of freedom of the corre-

lation problem. This method often yields results with less uncertainty than

those post-processing measured data [47, 36], as it allows to perform the mea-

surement and identi�cation of the sought parameters in one step instead of

two. This is particularly important in the case of small displacements, where

the signal-to-noise ratio can make the identi�cation problem di�cult to handle

(e.g., in elasticity [30, 36]).

The present method also uses the sensitivity �elds [Su] that are de�ned in

Equation (9) if and only if the same discretization is used in both cases. The

boundary conditions are the same in both analyses so that the �nite element

code can also be used in the I-DIC approach to provide the sensitivity �elds.

The registration problem then consists of solving a series of linear systems

[N(i)]{δp} = {B(i)} (11)

with [N(i)] = [Su
(i)]t[M][Su

(i)], which is the projection of the DIC matrix

onto the sensitivity �elds, and {B(i)} = [Su
(i)]t{b(i)} the projection of the

DIC vector {b(i)}, which gathers all vectors {b(i)} since a single spatiotempo-

ral analysis is performed. It is worth noting that Equation (11) uses the same

setting as that given in Equation (2), but expressed directly in terms of the

sought parameters rather than the kinematic degrees of freedom of the DIC

mesh. The only additional information is the sensitivity �elds, which express

the a priori knowledge on the constitutive behavior. Consequently, the general-

ized degrees of freedom only include material parameters. It is also conceivable
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to add boundary conditions to ensure the stability and to limit dependencies

to these prescribed data. The price to pay is related to the computation of the

sensitivity �elds. However, they are also needed in the FEMU-U approach so

that the computation time is equivalent for both approaches.

For the two global DIC approaches developed herein, the quality of the

registration is �rst checked by the mean level η of ηt over the whole series

of pictures. Further, since the corrected image in the deformed con�guration

g(x + u(x, t), t) is computed for each considered time t, it is also possible to

see whether there are some local deviations in terms of registration quality by

computing the correlation residuals g(x+ u(x, t), t)− f(x).

Figure 1 summarizes the di�erent steps of I-DIC to get the optimal set

of parameters {popt} and the corresponding covariance matrix [Cp]. First,

the in-house DIC code provides the measured displacement �eld and the DIC

matrix [M]. From the measured displacement �eld, only the displacements of

the nodes corresponding to the kinematic boundary conditions, {um}dΩ , are

kept (see, for instance, Figure 2). Second the in-house I-DIC code is run. It

also requires an initial set {p0} of the sought parameters. It can be noted that

the commercial FE code is again used in a non-intrusive way.

3.3 Relationship between I-DIC and Weighted FEMU-U

Based on the above presentation, [N] = [H] and hence it could be concluded

that both procedures are strictly equivalent. This holds for the resulting eval-

uation of the parameter vector {p} and its covariance matrix. When measure-

ments are performed via I-DIC, the covariance matrix [Cp] is evaluated as in

the global DIC setting (see Equation (4)), as

[Cp] = 2γ2
f [N]−1 (12)
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This identity comes from the fact that the DIC metric, ∥...∥M, is naturally

transported in the FEMU-U identi�cation procedure through the covariance of

the kinematic variables. In the following, it will be shown that both approaches

lead to comparable (although not strictly identical) results. Subtle di�erences

originate from the approximation of the minimum of the registration residuals,

η2, as a harmonic potential (see Equation (3)). When considering the full DIC

problem, it is highly nonlinear because of the generally non-regular image

texture f . When noise can be considered as slight perturbations, it may be

argued that the harmonic approximation is well-founded. However, for larger

levels of noise, the harmonic approximation breaks down.

Moreover, without restrictions on the sought displacement �elds, DIC is

an ill-posed problem. It is the restriction of the trial displacement �elds to

a speci�c vector space that cures this ill-posedness. When more freedom is

given to the displacement �elds (e.g., when using very small �nite-elements)

the proximity of ill-posedness is felt as a degradation of the conditioning of the

problem (i.e., smaller eigen-values in matrix [M] appear). The danger here is to

miss the absolute minimum and get trapped in secondary minima, so that the

measured displacements may reveal erroneous. In the FEMU-U method, the

displacement covariance matrix is computed solely from the reference image,

and hence it will not be a�ected by false convergence to a secondary minima.

A further consequence of poor conditioning/high noise is that large devia-

tions of the displacement �elds may occur. They in turn may require higher or-

der developments of the identi�cation functional itself. This e�ect is especially

pronounced for nonlinear constitutive laws, and for instance large contrasts in

tangent elastic moduli and/or with �ne meshes needed to capture geometric

details [36]. A systematic bias may result from these anharmonic e�ects. The

example discussed in the following will display such a trend.
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3.4 Use of Load Measurements

Up to this point, the emphasis has been put on full-�eld displacement mea-

surements. However, purely kinematic information is not able to provide an

absolute measurement of say Young's modulus as no data set stress scales. In

principle, dimensionless quantities can still be extracted from purely kinematic

data such as the ratio of yield stress to Young's modulus, or Poisson's ratio.

Yet, depending on the test and specimen geometry, constitutive parameters

may show di�erent ability for being estimated.

It is therefore very helpful to use the load data, which are generally avail-

able. From the FEMU-U or I-DIC-U approaches, the global load Fc is cal-

culated (at each state where a picture has been acquired) from a set of con-

stitutive parameters and the experimentally measured boundary conditions.

Independently, the same load is being measured Fm. It is generally impossible

to prescribe strict equality Fc = Fm. The most natural writing, along the same

philosophy as that presented for the proper handling of redundant kinematic

data is to introduce an additional equilibrium gap function

χ2
F ({p}) =

1

γ2
FNF

(Fc − Fm)2 (13)

where γF is the standard resolution of the load measurement, and NF the

total number of load data. Thus the expectation value of χF is unity when

only noise is at play. The identi�cation is then the result of minimizing

χ2
tot = (1− ω)χ2

u + ωχ2
F (14)

summed over all states where an image is captured (together with the mea-

surement of the load). Here 0 < ω < 1 is a (dimensionless) weight.

One di�culty is to set the weight ω because it is assumed to balance data

coming from di�erent sources, as they are coupled in χ2
tot. It is proposed to

use uncertainty as the common gauge to assess each information. The unusual
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introduction of noise variance within the di�erent functionals η, χu and χF

was dictated by the aim of reaching an expectation value of unity for each of

those quantities under the sole action of noise (i.e., ignoring all other sources

of uncertainties or approximations). Thus, this principle naturally leads to the

choice ω∗ = 1 − ω∗ = 1/2, with which again the expectation of χtot is unity.

It means that the credit given to any source of information is gauged by the

uncertainty it provides. This choice can be founded more solidly by considering

Bayesian approaches to inverse problems [49].

The introduction of this new functional requires sensitivity force vectors

to be assessed for each considered parameter. Di�erent choices will be made

hereafter to highlight the contribution of di�erent parameters:

� when ω = ω∗ = 1/2, the above balance between kinematic and static infor-

mation is privileged, hence this choice will be referred to by the acronym UF,

� when ω = 0, the load measurements are disquali�ed and hence only DIC

measurements will be used. The acronym for this case is U,

� when ω = 1, the DIC measurement only comes into play through the

boundary conditions used in the modeling. DIC is not taken into account

for bulk measurements and free edges. Consequently, only gaps from global

equilibrium are assessed. The acronym for this case is F.

4 Test-Case: Performance Evaluation

To quantify the performances of FEMU and I-DIC for elastoplastic materials,

a test case is proposed. A simple Ramberg-Osgood law [45] is to be identi�ed.

Its general expression is

ϵij =
1 + ν

E
σij −

ν

E
σkkδij +

3A

2σ0

(

σeq

σ0

)n−1

sij (15)

where ϵ, σ and s are the Hencky strain, Cauchy stress and deviatoric stress

tensors used in the built-in Ramberg-Osgood law of the commercial code
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Abaqus [50], σeq von Mises' equivalent stress, σ0 and n material parameters.

Last, A is a constant conventionally chosen to be A = 2 × 10−3. When the

Young's Modulus E and Poisson's ratio ν are known, only two parameters have

to be determined, namely, σ0 and n. It is to be emphasized that for large n

values, a very high contrast in tangent moduli is being set between the elastic

and fully developed plastic regime. Such a pronounced nonlinearity (although

representative of reality) is a severe di�culty to address.

To test the sensitivity of the proposed identi�cation procedure to noise, a

series of synthetic pictures in the deformed con�guration is created from a real

image in the reference con�guration and computed displacements �elds. The

chosen reference image is that of the actual experimental case studied in Sec-

tion 5.1. This image is arti�cially deformed with computed displacement �elds

uc(x, t) using Ramberg-Osgood's behavior with chosen values of the constitu-

tive parameters, E = 90 GPa, ν = 0.34, σ0 = 100 MPa and n = 10. Let Φt

denote the transformation from the reference con�guration to the deformed

con�guration at time t (i.e., Φt(x) = x + u(x, t)). To get the series of pic-

tures g(x, t), the gray level conservation relationship f(x) = g(Φt(x), t) has

to be inverted: g(x, t) = f(Φ−1
t (x)). The computed displacement �eld uc(x, t)

is �rst evaluated for each pixel x by using the FE interpolation functions.

Consequently, the transformation Φt is evaluated at each considered position

x. By resorting to linear gray level interpolations, the inverse transformation

Φ−1
t is evaluated for each pixel x. The boundary conditions are set with either

measured displacements of the actual test or free edge as appropriate (Fig-

ure 2). For the sake of computation time, this test case consists of the �rst

35 steps of the actual test. The total load is also computed for each analyzed

image, and the force measurement uncertainty is set to the experimental level

of Section 5.
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Once the arti�cial image series has been built, noise can be added. In the

present case Gaussian white noise is considered whose standard deviation γf is

varied. In the following, the e�ect of the noise level is investigated to evaluate

its in�uence on the identi�cation result, and assess the robustness of the iden-

ti�cation procedure. Two values of γf are chosen, namely, 0.6 % and 3 % of the

dynamic range (i.e., di�erence between maximum and minimum gray levels)

of the reference picture. The �rst value, 0.6 %, corresponds to typical levels

for optical images [32]. The second value is high and is chosen to challenge

robustness as large noise amplitudes could induce violations of the harmonic

approximations used in many instances and the gray level conservation.

I-DIC and FEMU did not reveal signi�cant di�erences, and hence only

I-DIC is used in the following illustration. However, the relative weight of

the load information with respect to the kinematic one was varied. As earlier

mentioned, the three cases, ω = 0, ω = 1/2 and ω = 1 will be considered and

referred to as U, UF and F respectively.

The identi�cation results are presented for n and σ0 as functions of the

number of images used in the analysis in Figure 3. The two noise levels are

shown in di�erent graphs. It is observed that for the standard 0.6 % noise

level, very fast and accurate determinations of the exponent n are obtained

for both I-DIC-U and I-DIC-F limits, and hence also for the UF case. For the

same parameter n, the large noise case reduces the rate of convergence to the

known value n = 10, yet both U and F cases tend to the correct value as the

number of analyzed pictures increases.

Considering the σ0 parameter, it is seen that for both noise levels, the I-

DIC-U procedure leads to systematic underestimations (the same is true for

FEMU-U). This is due to the very high contrast between the elastic and the

plastic behavior and the geometry of the test. This result is explained by the

fact that the reaction forces of the reference FE computation are not matched
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using the I-DIC-U procedure (see Figure 4). With the sole kinematic data

(i.e., case U), only the ratio σ0/E can be determined, and the rapid cross-over

between the elastic and plastic regimes is such that most data are dominated

by either σ0 or E, and very few elements allow to rank one with respect to the

other if no load information is given. As soon as the load information (i.e.,

F) is given, both F and UF procedures lead to correct values for σ0. For the

standard noise level, the known value is reached for a very small number of

analyzed pictures and does not depart from this expected estimate. For large

noise levels, convergence is much slower, but for 35 analyzed pictures, the error

in the evaluation of σ0 is only about 3 % and 5 % for n, which is deemed very

satisfactory given the high level of noise.

The correlation residual ηt de�ned in Equation (1) is the natural tool to

evaluate the registration quality of DIC approaches. Figure 5 shows the change

of the mean residuals for the identi�ed model parameters for the two noise

levels. It is observed that all methods U, F and UF, give indistinguishable results.

With the chosen normalization, high levels of noise lead to residuals of the

order of unity (Figure 5(a)). Conversely, for very low levels they may depart

from 1 (Figure 5(a)). To understand this e�ect, Figure 6 shows the level of

dimensionless residuals with respect to the dynamic range ∆f of the ROI in

the reference picture f

η̃ = η

√
2γf
∆f

(16)

plotted for the di�erent levels of noise, which are represented by straight lines.

For low and zero image noise levels, gray level interpolations become an impor-

tant source of error whereas for larger noise levels they become negligible. The

large noise case shows quasi-constant η values close to unity. This is typical of

residuals mainly in�uenced by noise, and not by modeling errors or gray level

interpolations.
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In all cases, a strong correlation between the two parameters σ0 and n is

observed. This is consistent with the covariance matrix that can be estimated

from the previous analysis,

[Cp] =





0.16 0.43

0.43 1.4



 (17)

when {p} = {n σ0}t. The corresponding correlation matrix reads

[R] =





1 0.89

0.89 1



 (18)

where (no index summation used)

Rij =
(Cp)ij

√

(Cp)ii(Cp)jj

(19)

To further analyze this e�ect, the sensitivity of the two residuals, namely,

correlation residual η (Equation (1)) and load residual χF (Equation (13))

are evaluated in the vicinity of the reference solution. More precisely, for the

chosen range of n and σ0, the two residuals (DIC and global equilibrium)

are computed. Figure 7(a) illustrates the previous result, namely, there is a

very shallow valley along one direction in the (σ0, n) plane when the mean

correlation residual alone is considered. Conversely, the equilibrium residual,

Figure 7(b), is very sensitive to σ0 and less to n. Let us stress the di�erence in

scales for both functionals. The levels can be compared as 1 would correspond

to the e�ect of noise in both cases. This trend explains the reason for the

better estimation of σ0 than n in the presence of very severe noise levels.

Last, the computation time is nearly identical for both methods, for the

same number of iterations. The most expensive operations being the FE com-

putations of the sensitivity �elds (Figure 1), the time for the construction of

the global matrix is negligible in the present case. To compute all the results
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presented in this test case, around 15 hours have been necessary on a regu-

lar PC (i.e., from 2 to 40 minutes per analysis depending on the number of

analyzed pictures).

5 Analysis of an Experiment

The sample geometry being simple, 40-pixel elements are used as in the test

case (Figure 2). This is not always possible (i.e., when the geometry of the

sample is more complex than in the present case [36]). The true images are

processed for the identi�cation of elastic and plastic parameters.

5.1 Test Con�guration

A tensile test is performed on dog-bone sample made of commercially pure

(T35) titanium. The region of interest is approximately 100 mm long, its lig-

ament is 8 mm wide, and the sample is 0.3 mm thick. The reference image

is shown in Figure 2. An 8-bit camera (de�nition: 2320× 1728 pixels) is used

with telecentric lens. The speckle is applied onto the sample with an ink-jet

printer.

Unloading/reloading sequences are used for the identi�cation of the Pois-

son's ratio ν and Young's modulus E, and the `plastic' loading for the identi-

�cation of the Ramberg-Osgood parameters σ0 and n. The load level and dis-

placement �elds are stored for each analyzed image. Figure 8 indicates which

parts of the loading history are selected for the identi�cation.
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5.2 Elastic Unloading/Reloading Sequences

Ten unloading/reloading sequences are processed for the evaluation of the elas-

tic parameters. In an unloading/reloading sequence, both loading directions

are treated the same way, the images being sorted by load amplitude only.

The �rst parameter to determine is the Young's modulus. This is possible

only if the load information is considered either during the identi�cation per se,

or subsequently when I-DIC-U is performed. Figure 9 shows that a stable value

is reached very quickly with reasonable small �uctuations when the number

of analyzed pictures is greater than 5. The mean value of E = 90 GPa is in

good agreement with reported levels (i.e., 102 GPa [13]), considering the fact

that the sample is machined from 0.3-mm thick rolled sheets.

For the Poisson's ratio, the (plane stress) results show a rather stable value

close to the incompressible limit, ν = 1/2. Note however that this parameter

is not allowed to go beyond the upper limit of 1/2, as this is a strict ther-

modynamic constraint. This result is in con�ict with the classically accepted

value [18] of 0.34. A closer inspection shows that this is not due to a lack of ac-

curacy. Three independent codes (i.e., the one developed herein in addition to

two others [36, 24]) have been used for this determination and they all provided

the same estimate. A di�erence of about 0.15 in Poisson's ratio is expected to

give rise to a maximum transverse displacement of the order of 0.02 pixel (or

500 nm). This di�erence albeit small can be resolved by the DIC procedure.

However, because the specimen is very thin (i.e., 0.3 mm), an axial rotation

proportional to the load cannot be excluded, and about 10−2 rad-rotation is

su�cient over the load increment in the elastic domain to account for such

an o�set in the Poisson's ratio. This rotation was not anticipated, and hence

not prevented nor measured. Consequently the fact that transverse displace-

ments cannot be considered as reliable forbids to give credit to the elastic
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Poisson's ratio. However, it should be noted that the axial displacement is

much more signi�cant than the transverse one (because of axial loading and

elongated geometry), and there is no ambiguity about isochoric strains in the

plastic regime. Thus, the disquali�cation of the Poisson's ratio does not lead

to negative consequences for further identi�cation of the other parameters.

To determine a possible signature of damage with respect to the number

of unloading/reloading sequences, Figure 10 shows the identi�ed values for a

series of 15 images for each sequence. A progressive decrease for the larger

strain levels suggests the relevance of damage e�ects. The uncertainty for E

being directly linked to that of the measured force, it is estimated of the order

of 0.3 GPa so that the degradation of sti�ness is considered as real. Yet it only

a�ects the last load levels. At most a 5% decrease in the Young's modulus is

observed at the very end of the test. Thus, in spite of these observations, this

e�ect is discarded from the analysis to preserve the low number of parameters

of the model.

5.3 Plastic behavior

One hundred images of the yielding material are used to determine the

Ramberg-Osgood coe�cients. The unloading and reloading cycles are excluded

from this analysis. To estimate the in�uence of the chosen procedures, the three

(U, F and UF) variants are run with the two proposed identi�cation methods

(FEMU and I-DIC).

Of the three variants, only U leads to slight di�erences in the results between

FEMU and I-DIC. The results are presented in Figures 11 to 14 with respect

to the number of images used in the U analyses. As for the test-case, the results

are similar for both methods in terms of correlation residuals (Figure 11). One

interesting feature is to observe the drift of the mean correlation residuals
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with the number of analyzed pictures. The typical level is at least three times

that of noise. These results are clear indications that a model error occurs.

In contrast with the arti�cial case that was treated in Section 4 and where

the constitutive law was prescribed, it is very likely that the simple algebraic

expression of Ramberg-Osgood law has too little freedom to precisely account

for the entire data set. More advanced models can be considered (e.g., Ludwig's

or Voce's propositions if isotropic hardening is still considered).

Figures 12 and 13 show the changes of the identi�ed exponent n and stress

parameter σ0. Similar trends are observed for the two methods and both pa-

rameters. The standard deviations are systematically lower for the integrated

approach compared with FEMU. Further, the strong cross-correlation between

the two parameters that is observed in Figure 14 makes their identi�cation very

delicate. Last, the identi�ed values of σ0 are much lower than expected (from

classical stress/strain curve analyses that yield levels from 150 to 200 MPa).

As expected from the test-case, the consideration of the load information

in the global functional is necessary to match the measured load with the

computed reaction forces. The in�uence of each variant (U, F or UF) is shown in

Figures 15 to 18. It is chosen to present results only for I-DIC, as they are very

similar for FEMU. Figure 15 shows that the mean correlation residual is only

slightly degraded by the inclusion of the load information in the identi�cation

procedure. As in the previous analyses, its drift with the number of analyzed

pictures leading to a two-fold increase is an indication that the chosen model

is not able to properly describe the experimental results.

This result is con�rmed when the dimensionless residual η̃ is compared

with the results obtained in the previous section (Figure 16). The residuals

for the real experiment are drifting when the number of analyzed pictures is

increased thereby indicating that image noise is no longer the only in�uential

factor so that the chosen model is not suited to the studied experiment. The
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gray level interpolations are not believed to be the cause of drift since the

residual levels are too high.

Figure 17 shows that the use of the load measurement allows σ0 to reach

levels that are closer to the usual estimations of this parameter, and with

lower resolutions. Remarkably, the change of σ0 with the number of pictures

is signi�cantly lower in the present case when compared to the U variant (Fig-

ure 13). Further, as the number of pictures increases, the evaluation of the

yield stress σ0 become very close for the UF and F variants. The change of

the identi�ed power n with the number of pictures is shown in Figure 18. Its

variation is completely di�erent when the equilibrium gap is considered or not.

These similar trends observed for n and σ0 can be explained by the map of

Figure 7(a) and the corresponding strong cross-correlations, which are only

counter-balanced by the load information (Figure 7(b)).

When analyzing the measured and computed load levels (Figure 19), it is

concluded that the correlation residuals alone are not su�cient to ensure the

quality of the identi�ed result. In the present case, the global equilibrium gap

has to be considered as well. However, the fact that the correlation residuals

experience signi�cant deviations from the value corresponding to noise only is

an indication that Ramberg-Osgood's model is a crude approximation of the

behavior of the studied material.

Figures 15 to 18 show di�erent results for procedures F and UF. With the

chosen weight ω = ω∗ = 1/2, the design of the test and the quality of the load

measurement leads to di�erent in�uences of η and χF in the identi�cation

results as shown in Figure 20 when the standard deviations of the identi�ed

parameters with respect to noise corresponding to the two contributions are

plotted.
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6 Conclusion

The present study aimed at showing that when the proper metric is considered

in FEMU identi�cation procedures, the result should ideally coincide with I-

DIC. However, that coincidence is limited to some conditions to be ful�lled,

such as small noise amplitudes so that a harmonic approximation for the DIC

objective functional is appropriate, and good conditioning of the DIC matrix.

When coupled with identi�cation, it is also necessary that the sought consti-

tutive law accounts well for the actual displacement �eld.

It has been shown that I-DIC could be validated for arti�cial test cases

where the constitutive parameters of Ramberg-Osgood's law could be retrieved

accurately. The same procedure has been applied to real experimental data,

and the elastic parameters and Ramberg-Osgood parameters have been eval-

uated. Over a large range of strains (i.e., up to 18 %), the displacement �eld

determined from the identi�ed constitutive law has led to DIC residual levels

greater than 5 times that corresponding to acquisition noise. This comparison

constitutes a way of assessing the model error in comparison with measurement

errors associated with noise.

An important point to note is that the identi�cation can be carried out

based on computed displacement bases from the non intrusive use of (commer-

cial) �nite element softwares. Such coupling has already been proposed [12] for

digital volume correlation based on elastic computations. Here an extension

to elasto-plastic behaviors is considered in two dimensions. Such a procedure

opens up new pathways, where one can bene�t from the almost unlimited ca-

pabilities of nowadays FE softwares coupled with 2D-DIC, stereoDIC or DVC.

Last, the main aim of the present analyses was to validate the I-DIC pro-

cedures against more classical identi�cation techniques (i.e., FEMU in the

present case). Being validated, more complex meshes and geometries, which
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require a signi�cant decrease of the spatial resolution, will be considered. It

was already shown that standard DIC analyses become less secure or can even

diverge when aiming for meshes at the scales of the pixels [36, 41, 55]. The

subsequent identi�cation breaks down even when DIC results can be used [36].

Conversely, regularized and integrated DIC can be performed at such �ne res-

olutions and still yield reliable displacement �elds [41, 55] and material param-

eters [36]. Such route constitutes one of the next steps to be investigated. This

is particularly important when investigating localized phenomena associated

with plasticity [54, 53, 35].
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Fig. 1 Flowchart showing the di�erent steps of weighted FEMU-U (left) and I-DIC-U

(right). Both approaches need di�erent results of a �rst DIC analysis, where {um}dΩ denotes

the restriction of the measured displacement displacements to the nodes where kinematic

boundary conditions are prescribed, and FE simulations



36 Florent Mathieu et al.

Fig. 2 Horizontal displacement for image 4 (expressed in pixels, whose physical size is

27 µm). The green points indicate the nodes where displacements are prescribed in the FE

computations. The remainder of the boundary is free. The notch radius is equal to 100 mm,

and the ligament width 8 mm



Estimation of Elastoplastic Parameters via Weighted FEMU and Integrated-DIC 37

0 5 10 15 20 25 30 35
9

9.5

10

10.5

11

Number of images

n

 

 

I−DIC − U
I−DIC − UF
I−DIC − F
Prescribed

(a) 0.6% noise

0 5 10 15 20 25 30 35
8

8.5

9

9.5

10

10.5

11

11.5

12

Number of images

n

 

 

I−DIC − U
I−DIC − UF
I−DIC − F
Prescribed

(b) 3% noise

0 5 10 15 20 25 30 35
80

85

90

95

100

105

110

115

120

Number of images

σ 0
 (

M
P

a
)

 

 

I−DIC − U
I−DIC − UF
I−DIC − F
Prescribed

(c) 0.6% noise

0 5 10 15 20 25 30 35
80

85

90

95

100

105

110

115

120

Number of images

σ 0
 (

M
P

a
)

 

 

I−DIC − U
I−DIC − UF
I−DIC − F
Prescribed

(d) 3% noise

Fig. 3 Identi�ed parameters n (top row (a) and (b)) and σ0 in MPa (bottom row (c) and

(d)). The left graphs ((a) and (c)) correspond to standard noise level (0.6 % of the dynamic

range of f). The right graphs ((b) and (d)) show the corresponding identi�ed values for a

high noise level (3% of the dynamic range of f)
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Fig. 4 (a) Elongation history of the experiment reported hereafter. The blue circles are

used as input for the test case. (b) Computed sum of the reaction forces of the numerical

specimen for the reference computation, for the I-DIC-U and I-DIC-UF procedures. The

reaction forces are computed using the parameters identi�ed with 35 images. The use of χ2

F

is necessary to match the reference reaction forces. The load �uctuations are due to the fact

that actual displacements are prescribed on the two boundaries shown in Figure 2
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Fig. 5 Correlation residuals η obtained for the identi�ed parameters using the three U, F

and UF procedures. The left graph (a) corresponds to a standard noise level (0.6 % of the
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the identi�ed model is that used to deform the pictures, the error sources are image noise

and gray level interpolations. For zero and low noise levels, the gray level interpolation error

is predominant
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Fig. 7 Correlation residual η (a) and load residual χF (b) as functions of the value of

the plastic parameters σ0 and n when the reference values are equal to 100 MPa and 10,

respectively, and 0.6 % noise is applied
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are selected for the determination of elastic parameters, the blue parts for plastic parameters



42 Florent Mathieu et al.

0 5 10 15 20 25
0

50

100

150

200

250

Number of pictures

E
 (

G
P

a
)

 

 

FEMU − U

I−DIC − U

Fig. 9 Identi�ed Young's modulus for 10 unloading/reloading sequences. Each point rep-

resents an evaluation of E based on the two proposed identi�cation methods and using

di�erent numbers of images in each sequence
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Fig. 10 Identi�ed Young's moduli, for 15 images, for each of the 10 unloading/reloading

sequences. A slight decrease may be observed and may be attributed to damage. However,

because of the small amplitude of decrease, damage will not be considered
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Fig. 11 Correlation residual η after convergence of the algorithms. For FEMU-U, the

level is an equivalent residual computed for one iteration of the I-DIC procedure after its

convergence
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Fig. 12 Identi�cation results for Ramberg-Osgood parameter n, and corresponding stan-

dard deviation due to noise. There are few di�erences between the results of both methods,

except with a large number of images
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Fig. 13 Identi�cation results for Ramberg-Osgood parameter σ0, and corresponding res-

olution. The standard deviation due to noise being directly dependent on the parameter

level, the inverse shape of the σ0 curve can be observed in the standard deviation
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Fig. 14 Cross-correlation of the (n,σ0) pair. As in the test-case, its level is very high

(around 0.9) and in�uences the identi�cation of both parameters
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Fig. 15 Correlation residual η after convergence of the algorithms. The residual is very

similar with or without the use of load information
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Fig. 16 Dimensionless correlation residuals η̃ for the test-case and the actual experiment.

The results for the actual experiment show a signi�cant drift that is not to be expected for

this level of noise except if a model error arises
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Fig. 17 Identi�cation results for parameter σ0, and corresponding resolution. The use of

the equilibrium gap functional χF allows a steadier value of σ0 to be identi�ed and a lower

standard resolution
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Fig. 18 Identi�cation results for parameter n, and corresponding resolution. The use of

the force function χF changes signi�cantly the identi�ed values of n but not its standard

resolution



Estimation of Elastoplastic Parameters via Weighted FEMU and Integrated-DIC 51

0 20 40 60 80 100
0

200

400

600

800

1000

Number of pictures

F
 (

N
)

 

 

Reference
I−DIC − U
I−DIC − UF

Fig. 19 Measured force and computed sum of the reaction forces for the I-DIC-U and

I-DIC-UF procedures. The reaction forces are computed using the parameters identi�ed with

90 images. This result shows that using only η can lead to poor results in the present case
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Fig. 20 Standard resolutions derived from the covariance matrices of η and χF for param-

eters n and σ0




