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Abstract

An inverse radiation analysis is presented for estimating the wall emissivities for an absorbing, emitting,
scattering media in a two-dimensional irregular geometry with di6usely emitting and re7ecting opaque bound-
aries from the measured temperatures. The 8nite-volume method was employed to solve the radiative transfer
equation for 2D irregular geometry. The hybrid genetic algorithm which contains local optimization algorithm
was adopted to estimate wall emissivities by minimizing an objective function, while reducing computation
time. It was found that an increase in the standard deviation in measurements signi8cantly deteriorated the
estimation of wall emissivities. Thus, a very accurate measurement was required in inverse radiation for better
estimation of wall emissivities, especially, in a high temperature environment.
? 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Inverse radiation analysis is very practical and useful in optimizing the system, in which radiation
plays an important role in manufacturing and materials processing, since the condition applied to
the system can be determined from the observable results, while forward analysis only predicts the
result for the input condition [1].
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Various inverse radiation analyses have been reported for determining the extinction coeIcient, the
absorption coeIcient, the single-scattering albedo, the phase function, or the optical thickness from
radiation measurements at exit in parallel and cylindrical geometries [2–5]. Especially, the inverse
source problem has been applied to parallel, spherical, cylindrical, rectangular and three-dimensional
complex geometries [6–10], while the inverse analysis of the estimation of wall emissivities have
been reported only in parallel plane so far [11].
Not only exit radiation measurements but also temperature measurements have been used to es-

timate the absorption coeIcient and the scattering coeIcient in three-dimensional geometry [12],
while Zhou et al. [13] used exit intensity measurement for estimating temperature and radiative
parameters.
In exercising inverse analysis, optimization method is usually used to minimize the errors between

measured and estimated data. Among others, the least-squares method [4,11,13] and the conjugate
gradient method [2,5–9,12] have been adopted. On the other hand, the genetic algorithm (GA), which
is based on natural selection concept [14], is also one of the optimization methods. It has been used
for parameter estimation in such applications as chemical laser modeling [15], kinetic model [16],
groundwater contaminant transport model [17] and thin 8lms [18]. Park and Froment [16] used
hybrid genetic algorithm (HGA) to diminish the e6ects of genetic parameters such as the population
size, the probability of crossover and the probability of mutation on the performance of GA. GA
is di6erent from aforementioned methods in that gradient information of objective function is not
required. Li and Yang [3] applied GA to inverse radiation analysis for determining the scattering
albedo, optical thickness and phase function in parallel plane.
Most of the inverse radiation analyses have been performed in cartesian coordinates. In com-

plex geometry, the discrete ordinate method (DOM) and the 8nite volume method (FVM) are usu-
ally used to solve radiative transfer equation. Liu et al. [19] recommended the use of the FVM,
which has advantages in selecting control angles and guaranteeing conservation of radiant energy,
even though DOM and FVM are accurate and eIcient in complicated high-temperature combustion
systems.
In this study, the hybrid genetic algorithm is adopted for improving the eIciency of GA and

reducing the e6ects of genetic parameters on the performance of GA. After verifying the per-
formance of HGA, it is applied to inverse radiation analysis in estimating the wall emissivities
in a two-dimensional absorbing, emitting and scattering irregular medium when the measured tem-
peratures are given. The e6ects of measurement errors on the estimation accuracy are also
examined.

2. Analysis

2.1. Model Description

Fig. 1 shows an irregular quadrilateral enclosure (all dimensions are in meters) which is 8lled with
an absorbing, emitting, scattering and gray gas with �a =0:5 m−1 and �s=0:5 m−1. The nonradiative
volumetric heat source is Q̇ = 5:0 kW=m3. The walls are gray walls, and their emissivities and
temperatures are all �w = 0:7 and T = 1000 K. The spatial and angular domains are discretized into
10 × 10 control volumes and 4 × 20 control angles which corresponds S8 quadrature scheme [19].
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Fig. 1. Schematics of the physical system and the position of four measurement points.

The temperature distribution is determined from the energy equation [21].

∇ · qr = �0(1− !0)


4
Ib −

N�∑
n=1

N�∑
m=1

ImnR�mn


= Q̇: (1)

2.2. Radiative Transfer Equation (RTE)

The RTE governing radiation intensity for a gray medium at any position r along a path s through
an absorbing, emitting, and scattering medium is given by

1
�0

dI(r; s)
ds

+ I(r; s) = (1− !0)Ib(r) +
!0
4


∫
S′=4


I(r; s′)�(s′ → s) d�′; (2)

where �0 = �a + �s is the extinction coeIcient, and !0 = �s=�0 is the scattering albedo. �(s′ → s)
is the scattering phase function for radiation from incoming direction s′ to scattered direction s and
is approximated by a 8nite series of Legendre polynomial as

�(s′ → s) =�(cos�) =
J∑
j=0

CjPj(cos�); (3)

where Cj’s are the expansion coeIcient, and J is the order of the phase function.
The boundary condition for a di6usely emitting and re7ecting wall can be written as follows:

I(rw; s) = �wIb(rw) +
1− �w



∫
s′·nw¡0

I(rw; s′)|s′ · nw| d�′; (4)

where �w is the wall emissivity and nw is the unit normal vector to the wall.

2.3. Finite-Volume Method (FVM) for Radiation

To derive the discretization equation, Eq. (2) is integrated over a control volume, RV , and a
control angle, R�mn as shown in Fig. 2. By assuming that the magnitude of the intensity is constant
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Fig. 2. Schematics of (a) control volume and (b) control angle.

but its direction varies within the control volume and control angle given, the following 8nite-volume
formulation can be obtained∑

i=e;w;n; s

Imni RAiD
mn
ci = �0(−Imn + SmnR )PRVR�

m; (5a)

where

Dmn
ci =

∫ �n+

�n−

∫ � m+

� m−
(s · ni)sin � d� d�; (5b)

s = sin � cos� ex + sin � sin� ey; (5c)

ni = nx; i ex + ny; i ey; (5d)
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SmnR = (1− !0)Ib +
!0
4


∫
�′=4


Im
′n′�m′n′→mn d�′; (5e)

R�m =
∫ �n+

�n−

∫ � m+

� m−
sin � d� d�: (5f)

To relate the intensities on the control-volume surfaces to a nodal one, the step scheme, which
is not only simple and convenient, but also ensures positive intensity, is adopted. Then, the 8nal
discretized equation for FVM is obtained by

amnP ImnP =
∑

I=E;W;S;N

amnI ImnI + bmnP ; (6a)

amnI =−RAiDmn
ci; in; (6b)

amnP =
∑

I=e;w; s;n

RAiDmn
ci;out + �0;PRVR�mn; (6c)

bmnP = (�0SmnR )PRVR�
mn; (6d)

where

Dmn
ci;out =

∫
R�mn

(s · ni) d� s · ni ¿ 0; (6e)

Dmn
ci; in =

∫
R�mn

(s · ni) d� s · ni ¡ 0: (6f)

A more detailed derivation of the transformation relations from the Cartesian coordinate to a
general coordinate or other geometric relations can be easily found in the literature [20,21] so that
it is recommended to refer to them for details.

2.4. Hybrid Genetic Algorithm (HGA)

Genetic algorithm (GA) is a robust parameter search technique based on the concept of natural
selection. It represents and manipulates individuals at the genotype. At 8rst generation, an initial
population, which is a set of individuals that are represented in binary or 7oat-point, is randomly
generated within the range of parameters. After evaluating the 8tness of each individual, 8tter indi-
viduals are selected for reproducing o6spring for the next generation. Selection pressure is determined
by objective function values. Some of the selected individuals are chosen to 8nd mates and undergo
the crossover operation, which is a reproduction process that makes o6spring by exchanging their
genes to improve the 8tness of the next generation. Then, some of o6spring are chosen for mu-
tation operation that keeps diversity of a population, while searching the design space that cannot
be represented with present population by changing some of genes of selected individual within the
range of design space. Because there is no guarantee that GA produces monotonic improvement in
objective function value with variance of generation due to its stochastic nature of GA, an elitist
strategy is used to ensure a monotonic improvement by copying a best individual of the present
generation onto the next generation.
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Unlike the calculus-based method, GA does not depend on the existence of derivatives as well
as initial values. Thus, GA is very attractive for application when the objective function is highly
nonlinear and multimodal like in this study. Even with these attractive features, GA has some
drawbacks such as inability to perform 8ne local tuning and premature convergence to a non-global
optimum [14]. To overcome these diIculties, improved genetic operators of selection, crossover
and mutation are adopted. Additionally, a local optimization algorithm is included in GA, which is
thereby called HGA.
A detailed description of the technique adopted in this study is as follows. Since the 7oat-point

representation, that renders GA closer to the problem space, is used, the string length is reduced to
the number of design variables. In the 7oat-point representation, all parameters are represented by
a vector of real numbers. In this study, the population size is 8xed on 10 to reduce computation
time so that GA can be converged to a super-individual which is superior to the other individu-
als. To prevent this possibility, the stochastic universal sampling, which maintains the diversity of
individuals, is adopted. For a crossover operation, the blend crossover (BLX-+) is used. BLX-0.5
is usually used, since both exploration of good solutions and exploitation of the design space are
equally performed. Nonuniform mutation is also adopted here to improve local tuning. After deter-
mining the elite individual, a LOA is applied to only elite individual to reduce computation time.
EIciency is also improved by giving the chance that GA searches a better solution which LOA
cannot 8nd. Following process, which is used for non-uniform mutation having local tuning ability in
[14], is adopted for LOA used in this inverse radiation study. If s= 〈v1; v2; : : : ; vm〉 is a chromosome
of elite individual and the gene vk is selected for local optimization, the resulting gene v′k is as
follows:

v′k =

{
vk +R(t; UB− vk);

vk −R(t; vk − LB);
(7)

where LB and UB are lower and upper domain bounds of the gene vk .
The function R(t; y) returns a value in the range [0; y] such that the probability of R(t; y) be-

ing close to 0 increases as t increases. This property causes the operator to uniformly search the
space initially (when t is small), and very locally at later stages. The following function is used for
R(t; y) [14].

R(t; y) = y · (1− r(1−t=Tmax)); (8)

where r is a uniform random number, Tmax is the maximum generation number, and b is a system
parameter for determining the degree of dependency on generation number, t (b=1 here). In LOA,
using Eq. (7) v′k is calculated for each gene of elite individual. If v

′
k is 8tter than v′k , gene of

elite individual is changed to v′k . Otherwise, v
′
k is maintained. The algorithm used in this study is

presented in Fig. 3.

2.5. Inverse Analysis Procedure

In this inverse radiation analysis, the emissivities are regarded as unknown while other values
such as the absorption coeIcient, the scattering coeIcient, the temperatures at boundaries, and
nonradiative volumetric heat source are assumed to be known. They can be estimated by minimization
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Fig. 3. The 7owchart of hybrid genetic algorithm.

of objective function, which is expressed by the sum of square errors between estimated and measured
temperatures at only four measurement data positions as in Fig. 1. The number of measured data
points is minimized to avoid averaging error e6ect such that a large error of one point can average
out to a reasonably small overall error when the other data is very well matched [15]. The position
of data points is also selected not only to avoid averaging error e6ect but also to represent this
system e6ectively with only four data points. The objective function for minimization is de8ned as
follows:

f =
4∑
i=1

(Ti;measured − Ti;estimated)2: (9)

A HGA is adopted for minimization of objective function, (9). Therefore, the emissivities are
variables to be estimated in HGA.
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3. Results and discussion

3.1. The performance of Local optimization algorithm (LOA)

First of all, without measurement errors, the performance of LOA is investigated. The performance
of GA with/without LOA is compared with for a test that is conducted with three di6erent initial
guesses, i.e., with three di6erent random seeds. As shown in Fig. 4, the GA with LOA minimizes
the objective function, i.e., best 8tness faster than the GA without LOA. In other words, the LOA
improve the local tuning ability of GA. Additionally, it has a stronger dependence on random seed
than the GA without LOA due to its dependence on uniform random number.
In Fig. 5, the e6ect of probability of crossover on HGA is examined with various probabilities of

crossover of 0.25, 0.45, and 0.6. There are no signi8cant di6erences among the results of various
probabilities of crossover in best & average 8tness. This is due to the fact that the LOA reduces
the e6ect of probability of crossover on performance of GA.
Various probabilities of mutation of 0.1, 0.3, and 0.55 are applied to investigate the e6ect of

probability of mutation on HGA. In Fig. 6, a lower probability of mutation seems to perform better
in average 8tness. However, the 8nal best 8tness converged is observed to be regardless of the
mutation due to the LOA. Thus, it is again con8rmed that the LOA diminishes the e6ect of GA
parameter on its performance.
The e6ects of population size on best and average 8tness and computation time are repre-

sented in Figs. 7 and 8, respectively. As in Fig. 7, the population size of 10 shows a best per-
formance in a reduction of best and average 8tness due to LOA. As population size decreases,
the average 8tness is easily a6ected by best individual so that the average 8tness for popula-
tion of 10 7uctuates more than those for any others. Population size is also proportional to
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Fig. 4. Comparison of best 8tness of GA without LOA and with LOA for di6erent random seeds.
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Fig. 6. Best and average 8tness history for various probabilities of mutation.

computation time in GA as shown in Fig. 8. The shortest computation time again corresponds to
the population size of 10. Based on these facts, a population size of 10 is chosen in forthcoming
analyses.
Because the moving distance of each gene of elite chromosome in LOA is randomly determined

by a ratio of generation to maximum generation, maximum generation has to be decided in advance.
Since the maximum generation is also proportional to computation time in GA as shown in Fig. 9, the
e6ect of maximum generation on the performance of GA is investigated together with computation
time required in order to select a proper maximum generation. In Fig. 10, the results for maximum
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Fig. 7. Best and average 8tness history for various population size.
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generation bigger than 100 show a good performance so that the maximum generation of 100 is
selected for analysis below.

3.2. Parameter estimation of emissivities

Now, using HGA, the e6ect of measurement errors on accuracy of the estimation is examined. For
estimating measurement error, the following relations have been usually used in inverse radiation
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analysis [9].

(Ti)measured = (Ti)exact + �st3 i = 1; 2; 3; 4; (10)

where �st is a standard deviation of measurement data, and 3 is a standard normal distribution random
variable. Thus, the probability that 3 is included between −2:576 and 2.576 is 99% [22]. �st can be
related to relative measurement error, �rel, as follows:

�st =
Texact × �rel
2:576

: (11)
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Table 1
Estimated emissivities and averaged relative errors for di6erent standard deviations

Parameter True value � = 0 � = 0:05 � = 0:1

HGA �rel(%) HGA �rel(%) HGA �rel(%)

�1 0.7 0.7003 0.04 0.6843 2.25 0.6711 4.13
�2 0.7 0.7015 0.21 0.6876 1.76 0.6752 3.54
�3 0.7 0.6991 0.13 0.6908 1.31 0.6811 2.70
�4 0.7 0.7001 0.01 0.6905 1.35 0.6807 2.75

X�rel 0.097 1.67 3.28

Parameter True value � = 0:5 � = 1 � = 2

HGA �rel(%) HGA �rel(%) HGA �rel(%)

�1 0.7 0.5718 18.31 0.4844 30.80 0.3642 47.96
�2 0.7 0.5905 15.65 0.5189 25.87 0.3999 42.87
�3 0.7 0.6177 11.76 0.5447 22.18 0.4476 36.05
�4 0.7 0.6076 13.20 0.5294 24.38 0.4403 37.09
X�rel 14.73 25.81 40.99

For error analysis, the relative and averaged relative error are de8ned by
Relative error

�rel; i =
�estimated; i − �exact; i

�exact; i
× 100; i = 1; 2; 3; 4: (12)

Averaged relative error

X�rel =

4∑
i=1

�rel; i

4
: (13)

After 8ve independent computations with di6erent initial values, the values for each parameter
are averaged, since HGA is strongly dependent on random seed. Without measurement errors, the
averaged relative error becomes almost negligible.
The e6ect of measurement error on the accuracy of the estimation is examined for various standard

deviations. Table 1 shows that the accuracy of estimation of wall emissivities is sensitive to an
increase in standard deviation. A typical computation time required is about 8 minutes on a personal
computer with an Intel Pentium IV 2 GHz processor. According to Table 1, the standard deviation
of 2 corresponds to a possible maximum measurement error of 0.5%. However, the averaged relative
error for the wall emissivities is found to be about 40% for this case. In this study, the standard
deviation is comparatively bigger than measurement relative error, while it is vice versa in other
studies. This di6erence is due to the very high temperature involved in this study, i.e. about 1000 K.
Thus, a more accurate temperature measurement is required to predict the wall emissivity in a high
temperature environment.
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4. Conclusions

An inverse radiation analysis was carried out for estimating the wall emissivities for an absorbing,
emitting and scattering media in a two-dimensional irregular geometry with di6usely emitting and
re7ecting opaque boundaries, when the measured temperatures were given.
The 8nite-volume method was employed to solve the radiative transfer equation for 2D irregular

geometry. A hybrid genetic algorithm, which is known for reducing the e6ect of genetic parameters
on the performance of genetic algorithm, was adopted to estimate wall emissivities by minimizing an
objective function, which is expressed by the sum of square errors between estimated and measured
temperatures at only four data positions. The local optimization algorithm was applied to reduce
computation time.
The e6ects of measurement errors on the accuracy of estimation were carefully examined. It was

found that without measurement errors, the wall emissivities were accurately estimated. However,
even with small measurement errors, the estimation error in predicting wall emissivities could become
signi8cant when the temperature involved was rather high. Also the result indicated that the accuracy
in the estimation of wall emissivities was sensitive to increase in measurement errors. Consequently,
in inverse radiation analysis a more accurate measurement in temperature was indispensable for
better estimation of wall emissivities, especially, in a high temperature environment.
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