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The bistable Nonlinear Energy Sink (NES) shows high
efficiency in mitigating vibration through Targeted Energy
Transfer (TET). It performs well in low and high energy in-
put cases, whereas, for a cubic NES, TET occurs only above
a certain energy threshold. In this work, the measure of en-
ergy pumping time is extended to a harmonic excitation case
by the application of a particular integration assumption. An
equivalent point in the Slow Invariant Manifold (SIM) struc-
ture can represent the average variation of the amplitudes of
LO and NES. The marked robustness of this semi-analytical
prediction method under parameter perturbation is investi-
gated numerically here. The influence of parameters on the
rate at which the amplitude declines is also investigated for
both impulsive and harmonic excitation. The pumping time
estimation is validated in a low energy input experimental
test.

1 Introduction
In the last two decades, a novel absorber attached to

the primary system by a nonlinear component has shown
good performance in efficiently dissipating energy [1]. This
type of nonlinear absorber, named the Nonlinear Energy Sink
(NES), has been the object of much attention to explore its
potential in vibration mitigation [2, 3] and energy harvest-
ing [4, 5].

The conventional Tuned Mass Damper (TMD), where
the additional mass is fixed to the primary system by lin-
ear springs and damping, has a fixed, narrow absorption fre-
quency. When the external excitation moves away from its

natural frequency or when a disturbance occurs, the TMD
absorbs energy significantly less efficiently. The NES pos-
sesses a more comprehensive range of absorption frequen-
cies than the TMD, and the risk of a resonance peak can
also be avoided thanks to its adaptive stiffness [6]. Non-
constant stiffness indicates that the NES is insensitive to stiff-
ness degradation and is thus robust with respect to changes
in the underlying structure [7]. The mass of a TMD is about
10 % of the principal mass, while the mass of a NES can rep-
resent 1 % of the the principal mass and still maintain good
absorbing performance [8].

One of the distinctive characteristics of the NES is the
Targeted Energy Transfer (TET), where the energy of the pri-
mary system is transferred into the NES and dissipated pas-
sively by damping. There is a threshold energy input to ac-
tivate this highly efficient energy dissipation procedure [9].
The energy pumping phenomenon occurs in the vicinity of
1:1 resonance, which means that the Linear Oscillator (LO)
and the NES oscillate at the same frequency. If harmonic
excitation imposes the primary system, it gives rise to a
relaxation-type of oscillation. This kind of Strongly Mod-
ulated Response (SMR) is determined by the Slow Invariant
Manifold (SIM), which is independent of the energy input.
This kind of motion is not related to the SIM fixed points;
the phase trajectory of the instant amplitude of LO and NES
moves along the SIM. When the slow flow arrives at the sin-
gularity point, it crosses the unstable region, jumps to the
stable branch, and then slides down or climbs up along the
right stable branch. Gendelman describes the necessary con-
dition for the SMR, and the threshold of excitation ampli-
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tude for the existence of fold singularities to be obtained on
the lower and upper fold [10]. The stability of the SMR has
been transformed into a 1-D mapping problem to make the
phase trajectory return to a certain interval [11].

The effect of TET and the feasibility of NES has been
achieved by various experimental implementations [12, 13].
McFarland used a thin rod (piano wire) with no pretension
to produce a cubic nonlinearity. The LO and NES can move
along the air track [14]. In an acoustic system, the targeted
energy transfer also appears between the acoustic medium
and the visco-elastic membrane [9].

SIM is an efficient, fundamental tool to describe the re-
lationship between NES and LO. Every point in the SIM
structure represents one periodic solution for a certain en-
ergy level. So to obtain the SIM, the Multiple Scales Method
(MSM) expands the real-time t, into multiple and indepen-
dent time scales τ0 = t,τ1 = ετ0, ... [15]. The MSM is al-
ways accompanied by the introduction of Manevitch vari-
ables [16]. Manevitch variables offer the tool to separate the
slow variant amplitude information and fast oscillation com-
ponent. This method is also known as CompleXification-
Averaging (CX-A).

According to the source of nonlinearity, the NES can
be classified as a cubic NES, bistable NES [17, 18], Vibro-
Impact (VI) NES [19–21], track NES [22], lever-type NES
[23], piecewise NES [24] and rotary NES [25,26]. In a rotary
NES, the rotator mass can rotate with any primary system
frequency, which is totally different from what occurs with
conventional mechanically constructed nonlinearity. How-
ever, the TET only exists in the rotational stage, as validated
by both numerical and experimental methods [27]. The VI
NES contains a ball that can move freely inside the clear-
ance and dissipates its excessive energy through consecutive
impacts [19]. The bistable NES introduces the two equi-
libria, one on either side, and the negative stiffness offers
a higher absorbing efficiency limitation than the same cu-
bic NES case [28]. In the presentation of negative stiffness,
the response regimes under various energy levels are more
complex than in the cubic NES case, especially the chaos
behaviours. The two pre-stretched springs can also achieve
the bistable NES. The various behaviors of multiple symmet-
rical and unsymmetrical in and out of phase backbone under
the effect of varying pre-compression length ratio, varying
stiffness are analysed through frequency–energy plots [29].
A higher order of Taylor series expansion to describe the ac-
curate nonlinear force is addressed. The wavelet frequency
spectrum confirms bistable NES scatters energy at different
frequency levels through multiple resonance captures. Gen-
erally, an intra-well oscillation, inter-well oscillations with
chaotic motion, SMR and stable periodic response occur se-
quentially as the energy increases [30]. If the negative stiff-
ness is optimized, the bistable NES can also possess high
efficiency in the low energy cases, which cubic NES hardly
ever achieves. The occurrence of chaos always results from
the global homoclinic bifurcation, and the Melnikov anal-
ysis provides an approximate criterion to predict the chaos
regime. Based on that, the parameter boundary of chaos in
bistable NES [28,31] and the relative performance of various

Fig. 1. Diagram of bistable NES system

kinds of NES is verified [32].
The method to measure the energy decay rate was estab-

lished [33, 34] for the transient response case. However, fur-
ther adaptation is required to expand its application to a har-
monic force case, which is addressed in this work. This study
is structured as follows. In the second section, the MSM
and CX-A method is used to derive the slow flow dynamics.
The algebraic formulas measure the energy pumping time
for both impulsive excitation and harmonic excitation. In the
third section, a particular assumption is applied to obtain the
expression of energy pumping time for harmonic excitation
for every single SMR cycle. The robustness of this technique
is verified numerically under the influence of parameters. In
the fourth section, an experimental implementation is carried
out. The last section mentions some remarkable conclusions.

2 Model analysis processing
The NES consists of a relatively light additional mass

m2, connected to the main system m1 by negative stiffness
k3, cubic nonlinearity value k2 and linear damping c2 (Fig. 1).
When harmonic excitation xe = Gcos(ωt) is imposed on the
primary system mass m1 by means of linear springs k1 and
linear damping c1, the vibration energy flows to the NES and
is finally dissipated. The equation that describes the system
is as follows:

m1ẍ+ k1x+ c1ẋ+ c2(ẋ− ẏ)
+k2(x− y)3 + k3(x− y) = k1xe + c1ẋe
m2ÿ+ c2(ẏ− ẋ)+ k2(y− x)3 + k3(y− x) = 0

(1)

By introducing the rescaled variables (2) and substitut-
ing the new variable v = x + εy and w = x − y, the corre-
sponding dimensionless equation is expressed in Eqn. (3). v
and w represent the displacement of mass and the relative
displacement of the bistable NES, respectively.
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ε =
m2

m1
,ω2

0 =
k1

m1

K =
k2

m2ω2
0
,δ =

k3

m2ω2
0
,λ1 =

c1

m2ω0

λ2 =
c2

m2ω0
,F =

G
ε
,Ω =

ω

ω0
,τ = ω0t

(2)

v̈+ ελ1
v̇+ εẇ
1+ ε

+
v+ εw
1+ ε

= εF cosΩτ

ẅ+ ελ1
v̇+ εẇ
1+ ε

+
v+ εw
1+ ε

+λ2(1+ ε)ẇ

+K(1+ ε)w3 +δ(1+ ε)w = εF cosΩt

(3)

The study is based on the fact that LO and NES vibrate
at the same frequency, Ω, which refers to 1:1 resonance cap-
ture. The complex averaging method is applied to Eqn. (3) by
introducing the following variables (4), with i the imaginary
unit to investigate the analytical behaviours in the vicinity of
its natural frequency. φ1(τ) and φ2(τ) modulate the ampli-
tude of both LO and NES.

φ1(τ)eiΩτ =
d
dτ

v(τ)+ iΩv(τ)

φ2(τ)eiΩτ =
d
dτ

w(τ)+ iΩw(τ)
(4)

The complex variables will result in secular terms con-
taining the different powers of e and only terms with eiΩτ are
conserved. So the slowly modulated system is obtained in
Eqn. (5).

φ̇1 +
iΩ
2

φ1 +
ελ1 (φ1 + εφ2)

2(1+ ε)
− i(φ1 + εφ2)

2Ω(1+ ε)
− εF

2
= 0

φ̇2 +
iΩ
2

φ2 +
ελ1 (φ1 + εφ2)

2(1+ ε)
− i(φ1 + εφ2)

2Ω(1+ ε)
− εF

2

+
λ2(1+ ε)φ2

2
− 3iK(1+ ε)φ2

2φ2

8Ω3 − iφ2δ(1+ ε)

2Ω
= 0

(5)

In the actual dynamics, the variation of the amplitude
is much slower than the rapid oscillation, the system is as-
sumed to contain different time scales and is expressed as
φi = φi (τ0,τ1, . . .), where the fast time scale is τ0 = τ and
the slow time scale is τ1 = ετ. Under this assumption, the
derivation is developed with respect to various time scales
d
dτ

= ∂

∂τ0
+ ε

∂

∂τ1
+ · · · .

In the context of our study, Ω is in the vicinity of 1, a
detuning parameter σ is added to represent the reduced nat-
ural frequency of OL (Ω = 1+ εσ) and the small parameter
ε ≈ 0.01; the terms containing higher powers of ε are omit-
ted. When the complex variables method is applied and the
ε0 terms and ε1 terms are collected together, it follows that:

Order ε0:

d
dτ0

φ1 = 0

d
dτ0

φ2 +
1
2

i(φ2 −φ1)+
1
2

φ2λ2 −
3
8

iKφ2
2φ̄2 −

1
2

iδφ2 = 0

(6)
Order ε1:

d
dτ1

φ1 +
1
2

λ1φ1 +
1
2

i(φ1 −φ2)+ iσφ1 −
1
2

F = 0

d
dτ1

φ2 +
1
2

λ1φ1 +
1
2

φ2λ2 +
1
2

iσ(φ1 +φ2)−
1
2

F

+
1
2

i(φ1 −φ2)−
3
8

iK(1−3σ)φ2
2φ̄2 +

1
2

iδ(σ−1)φ2 = 0
(7)

2.1 Estimation of energy pumping time
The first equation in Eqn. (6) indicates that the φ1 is in-

dependent of the τ0 time scale. It can be demonstrated that
φ1 and φ2 evolve toward an equilibrium state for τ0 → ∞.
Setting the derivative with respect to τ0, the first equation in
Eqn. (7) and the second equation in Eqn. (6) yield:

1
2

i(φ2 −φ1)+
1
2

φ2λ2 −
3
8

iKφ2
2φ̄2 −

1
2

iδφ2 = 0
d

dτ1
φ1 +

1
2

λ1φ1 +
1
2

i(φ1 −φ2)+ iσφ1 −
1
2

F = 0
(8)

The complex variables with polar notation
φ1(τ1) = R1(τ1)eiδ1(τ1), φ2(τ1) = R2(τ1)eiδ2(τ1) and
φ2(τ1) = R2(τ1)e−iδ2(τ1) are substituted in Eqn. (8). R1
and R2 modulate the amplitude envelope of LO and NES.
By separating the real and imaginary terms, the following
set of equations Eqn. (9) is obtained after simple algebraic
manipulation.

2∂R1

∂T1
−R2 sin(δ1 −δ2)+λ1R1 − cos(δ1)F = 0

2R1
∂δ1

∂T1
+R1 −R2 cos(δ1 −δ2)+2σR1 + sin(δ1)F = 0

(1−δ− 3
4

KR2
2)R2 sin(δ1 −δ2)+λ2 cos(δ1 −δ2) = 0

R1 +(
3
4

KR2
2 +δ−1)R2 cos(δ1 −δ2)+R2λ2 sin(δ1 −δ2) = 0

(9)
Resolving the third and fourth equation in Eqn. (9), the

expression of cos(δ1−δ2) and sin(δ1−δ2) can be expressed
as

cos(δ1 −δ2) =− 4(3KR2
2 +4δ−4)R1

R2((3KZ2 +4δ−4)2 +16λ2
2)

sin(δ1 −δ2) =− 16λ2R1

R2((3KZ2 +4δ−4)2 +16λ2
2)

(10)

The above expression satisfies the relation cos(x)2 +
sin(x)2 = 1 and shows an intrinsic property of bistable NES
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system. Substituting (10) into the first two equations in (9),
the variation of LO amplitude is presented as follows in
Eqn. (11), with Z1 = R2

1 and Z2 = R2
2.

Z1 = Z2((δ+
3
4

KZ2 −1)2 +λ2
2)

∂

∂τ1
Z1(τ1) =−λ2Z2 −λ1Z1 +R1 cos(δ1)F

(11)

The first equation of Eqn. (11) is also known as the Slow
Invariant Manifold (SIM). Every point in the SIM branch
indicates a potential steady response solution, the stability
of which can be determined by applying the perturbation
method and observing whether the roots of its characteris-
tic equation lie on the left half of the complex plane.

The right-hand side of the second equation of Eqn. (11)
indicates that the amplitude of LO is naturally decreasing be-
cause its derivation is always negative if there is no external
force (F = 0). A Hamiltonian system indicates that Z1 has
a derivative of zero and the amplitude of LO remains con-
stant. It results in the energy exchange without dissipation in
the Hamiltonian system. The targeted energy transfer from
LO is an inherent property of the system in the presence of
damping. With the existence of the term cos(δ1)F , whose
positivity or negativity is not fixed, the derivative of Z1 can
be positive. This gives rise to a relaxation-type oscillation.

2.2 Energy pumping time for transient response
For the sake of simplicity, the response of transient ex-

citation (F = 0, v̇(0) ̸= 0) is considered first. In this case, the
right-hand side of the second equation of Eqn. (11) is always
negative, and the energy localized in LO decreases continu-
ously. The derivation of Z2 with respect to τ1 is obtained by
deriving the SIM with respect to Z2 and then combining it
with the second equation of Eqn. (11).

∂

∂τ1
Z2 =

−λ1Z1 −λ2Z2
27
16

K2Z2
2 +3KZ2(δ−1)+(δ−1)2 +λ2

2

(12)

It is difficult to separate the variables and integrate the
Eqn. (12). However, if the damping of the primary system is
not considered (λ1 = 0), the separation of variables leads to a
possible integration, as follows:

C+λ2τ1 =
27
32

K2Z2
2 +3KZ2(δ−1)+ ln(Z2)((δ−1)2 +λ2

2)

λ1τ1,p = I (Z2(1))− I (Z2(0))
(13)

The right-hand side of the first equation of Eqn. (13) is
marked as I (Z2), describing the state of the systems. When
the initial Z2(0) decreases to Z2(1), the slow time interval,
τ1,p, of this process can be obtained by calculating the state
variables I (Z2(0)) and I (Z2(1)) from initial state to end

state. This process is visualized with the red dashed line in
the SIM structure in Fig. 2.

For the condition that λ1 ̸= 0, the pumping time τ1,p
from initial state and end state can be solved according to
the following equation.

∫ τ1,p
0 (− 9

16
λ1K2Z2

2 +
3
2

λ1K(1−δ)Z2)dτ1

−(λ1(1−δ)2 +λ1λ2
2 +λ2)τ1 = I (Z2(0))− I (Z2(1))

(14)

While the trajectory descends from Z2(0) to Z2(1), Z2
is the function of τ1, which is hard to express in an explicit
form. However, Z2, which represents the amplitude of NES,
is almost constant. This assumption that Z2 remains constant
during the TET has been verified numerically [33]. So, in the
integration term in Eqn. (14), Z2 is assumed to be a constant
Z2,c. Z2,c measures the average value of Z2 during TET. It is
determined by slow flow dynamics in the undamped condi-
tion λ1 = 0.

Z2,c =

∫ τ1
0 Z2dτ1

τ1,p

=

∫ Z2(0)
Z2(1)

(
27
16

K2Z2
2 +3KZ2(δ−1)+(δ−1)2 +λ2

2)dZ2

λ2τ1,p

=
[

9
16

K2(Z3
2)+

3
2

K(δ−1)(Z2
2 )+(δ−1)2Z2 +λ2

2(Z2)]|
Z2(0)
Z2(1)

λ2τ1,p
(15)

Finally, the energy pumping time τ1,p between two states
from Z2(0) to Z2(1) is found by solving the following equa-
tion.

τ1,p =
I (Z2(1))− I (Z2(0))

λ1(
3
4

KZ2,c +δ−1)2 +λ1λ2
2 +λ2

(16)

2.3 Energy pumping time for harmonic force response
The integration of second equation of Eqn. (11) involves

complex terms in which the expressions for the phase δ1(τ1)
and the amplitude R1(τ1) are hard to describe analytically,
when harmonic excitation F exists. It causes the integral
F
∫ τ1,p

0 R1(τ1)cos(δ1(τ1))d(τ1) to fail. The terms R1 cos(δ1)
represent the real part of φ1. From an engineering interpreta-
tion point of view, Re(φ1) is considered as amplitude infor-
mation of LO. Based on this concept, an essential assump-
tion is proposed as R1(τ1)cos(δ1(τ1)) =

√
Z1. This assump-

tion will be verified numerically in the following subsection.
So the energy dissipation ratio in the harmonic force case is
expressed as:

∂

∂τ1
Z2 =

−λ1Z1 −λ2Z2 +F
√

Z1
27
16

K2Z2
2 +3KZ2(δ−1)+(δ−1)2 +λ2

2

(17)
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Fig. 2. The SIM structure (blue line) and transient phase trajectory
(green line), which describes the descending motion from initial state
to end state. The red dashed line with the arrow means the equivalent
ideal slow flow motion.

Substituting the first equation of Eqn. (11), the Z1 in the
above equation and separating the special integrals I (Z2(0))
and I (Z2(1)), it gives:

∫
τ1,F

0
(−λ1

Z1

Z2
−λ2 +F

√
Z1

Z2
)dτ1 = I (Z2(0))− I (Z2(1))

(18)
Z1 can be expressed with respect to Z2 according to the

SIM function. This leads to failure to integrate the left side
of equation Eqn. (17), if Z2(τ1) is treated as a time variable.
However, the case of damping without force provides a sim-
pler way to calculate this hardly-separate integral term, if
Z2(τ1) is equal to a constant, Z2,c. The subsequent numerical
calculation results will verify the validity of this hypothesis.
Although the energy pumping time of the transient response
and harmonic force cases are not the same, the average value
of Z2 is almost identical. (Z2,c, Z1,c) represents the equiva-
lent point (state) in the amplitude decline process along with
the SIM. So the energy pumping time for the harmonic force
case τ1,F can be obtained as

τ1,F =
Z2,cI (Z2(0))− I (Z2(1))

−λ1Z1,c −λ2Z2,c +F
√

Z1,c
(19)

Figure. 3 is presented to better understand the calcula-
tion procedure of energy pumping time for a harmonic force
case. Firstly, the parameters of the system, for example, ε,
λ1, λ2, K and δ, are required for the determination of the ge-
ometry of the SIM. The height of initial state is chosen by the
usually maximum absolute value of Z1 of phase trajectory in
a given SMR cycle. Meanwhile, end state is referred to as
a singularity of the right stable branch of the SIM, which is
already fixed in the first step. So, in the second step, the
height difference is decided. Z2,c, and special state integral
terms I (Z2(0)) and I (Z2(1)) for the transient response case

Determination of parameters 

of system

Choice of initial jump Z1(0) and 

calculation of integrals I(Z2(0)),I(Z2(1))

Calculation of energy pumping time

1p and average value of Z2, Z2c

for the transient response case

Substitution of Z2c, I(Z2(0)), 

I(Z2(1)) for harmonic excitation 

force case

Solution of 1F

Fig. 3. Flow diagram of the calculation of energy pumping times for
harmonic forces

are still the foundation of the estimation of pumping time
with harmonic force in the third step. In the fourth step, the
average value Z2,c and Z1,c and the other two state integrals
are re-substituted into Eqn. (18) to finally solve τ1,F .

3 Robustness of semi-analytic method
3.1 Influence of parameters on transient response

From Eqn. (16), it is clear that the energy pumping time
depends on the initial position of the right branch of the SIM.
The pumping time of various energy levels was compared by
both numerical and analytical methods to demonstrate the
correctness of the analytical prediction. When LO is ap-
plied by various but sufficiently intensive impulse excitation,
the trajectory has a snap-through motion and immediately
jumps to the right stable branch of the SIM, where NES is
governed by 1:1 resonance and vibrates in the vicinity of
the natural frequency of LO. The initial quantitative condi-
tions of Z1 needed to trigger an efficient dissipation of en-
ergy have been discussed [35]. The influence of damping
λ2, cubic nonlinearity parameter K and negative stiffness δ

are considered in the following subsection in order to opti-
mise the energy dissipation rate. The whole of the follow-
ing simulation development is based on parameter sets for
ε = 0.01,λ1 = 1.67,λ2 = 0.167,δ =−0.435,K = 1742.

3.1.1 Influence of initial heights
Figure. 4 presents two typical examples of energy pump-

ing from LO to NES. The Wavelet transform (WT) results
show that the dominant frequency equals the natural fre-
quency of the LO. The NES performs 1:1 resonance occu-
pying the whole TET period. So the energy pumping time is
defined as the moment that the yellow bar disappears, which
means that the trajectory crosses the saddle point in the end
state (Z2(1),Z1(1)) in Fig. 2.
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Considering the variety of initial heights, a new vari-
able is proposed to measure the velocity of descent, which is
shown in Fig. 5-b. The trajectory oscillates and slips along
the right branch; Vτp shows the average velocity of slow flow
descent.

Vτp =
Z1(0)−Z1(1)

τp
(20)

The energy pumping time found by simulation is repre-
sented by a dashed line in Fig. 5a. As the initial height in-
creases with the end state ((Z2(1),Z1(1)) = (1.09e-3,3.052e-
5) remains constant), the time that it requires for the system’s
trajectory to reach the saddle point at end state also rises. The
relatively high energy input case simulation always gives a
more significant value than the analytical prediction. The
time required to descend is proportional to the height differ-
ence, which explains the phenomenon of the rate of descent
remaining essentially constant for different energy inputs in
Fig. 5b. Thus, it is concluded that the rate of decline of Z1 is
mainly determined by the system parameters and is indepen-
dent of the impulsive input energy value (above the threshold
energy for triggering the TET).

3.1.2 Influence of damping
The previous subsection briefly revealed that λ2 has an

essential impact on Vτp. However, the modification of λ2 also
results in a change of shape of the SIM, which is presented in
Fig. 6a. An impact Z1(0) = 1.5e−4 is assumed to be applied
to the system so that this mid-energy maintains the error of
analytical prediction at an acceptable level in different damp-
ing conditions.
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Fig. 5. Influence of parameters on the energy pumping time and the
velocity of descent. (a, c, e, g) analytical prediction and simulation
results, (b, d, f, h) descent rate.

As λ2 increases, the folding point of end state, moves
upwards. This implies that the system possesses a higher
critical amplitude of LO when the TET disappears. The path
between the initial height Z1(0) and the fold point Z1(1) de-
creases, which helps systems to terminate TET in a shorter
time. In addition to the shortening of the path, another fac-
tor affects the duration of the TET: damping. According to
Eqn. (12), a higher value of λ2 enhances the rate of descent.
With shorter paths and greater damping value, the energy
pumping time is apparently reduced in Fig. 5c, and the aver-
age descent rate increases linearly with higher λ2 in Fig. 5d.

Through the second equation of Eqn. (11), both parts,
λ1Z1 and λ2Z2, contribute to the descent rate. When the
Z2,c is selected, whose values are almost constant during the
different descent processes, at about 1.14e-3, for the case
λ2 = 0.167. The corresponding Z1 value in the SIM right
branch is 3.55e-5. The different contribution of damping is
calculated such that λ1Z1 = 0.6e− 4 and λ2Z2 = 1.9e− 4.
The latter component mainly governs the descent rate value,
because of its much larger value. To maximise the descent
rate in transient response, increasing the λ2 value can be an
effective alternative. However, it also causes the LO optimal
design to have a larger stable response amplitude in harmonic
excitation.

3.1.3 Influence of stiffness
To investigate the role of cubic nonlinearity parameter K

and negative stiffness δ, the energy pumping time and corre-
sponding descent rate are presented in Fig. 5(e-h). The sys-
tem has the same initial impact as in the previous investiga-
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Fig. 6. Modification of SIM shape under various (a) λ2 (0.1, 0.2, 0.3)
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indicates the case with the largest (absolute) values of corresponding
parameters

tion Z1(0) = 1.5e−4. Firstly, increasing the value of the cu-
bic nonlinearity parameter and negative stiffness causes the
SIM to change shape in the direction of the arrow in Fig.6b-
c. The end state rises, reaching a larger value of Z1(1), which
means a shorter path to cross. So the energy pumping time
is longer in the case of lower nonlinear stiffness. Accord-
ing to the previous description, the equivalence point is lo-
cated near the fold point, and an increase in K allows the
fold point (or equivalence point) to have a smaller Z1,c,Z2,c.
Equation. (11) indicates that the smaller Z1,c,Z2,c values lead
to a decrease in instantaneous velocity. So the decrease in
average velocity with increasing K design can be explained.

When the absolute value of δ rises while the value of K
remains constant, the end state, in the SIM structure moves
in the direction of a higher Z2(1) value. Meanwhile, Z1(1)
is almost unchanged and remains in a horizontal line while δ

varies in Fig. 6c. The decrease in the average descent rate is
due to the smaller Z2(1) value of the fold point. So, systems
with smaller absolute δ values take a longer time to dissipate
energy in Fig. 5g. The variation in the descent rate is almost
linearly related to the change in δ in Fig. 5g. This feature is
not the same as the quadratic decrease in decay rate as K in-
creases. The analytical prediction shows a good fit of results
in the middle interval of the δ range. In a small negative
stiffness case, the analytical result is much larger than the
simulated value.

It can be concluded that the variation of energy pumping
time depends on the modification of the SIM shape. The rate
of decline of the system is mainly due to the effect of K, δ

on the position of the fold point of the SIM, which causes

50

-50

/m
m

Fig. 7. Time-displacement of (a) Z1, (b) w and (c) WT for w. The
intervals of energy pumping time are identified and marked in yellow
shaded areas

the average Z1,Z2 values to ultimately change the average
velocity.

3.2 Influence of parameters on harmonic force response
3.2.1 Various heights of initial descent

The parameters of a bistable NES for the numerical sim-
ulation are classified as modest ones. The negative stiffness
introduces chaos behaviours and the snap-through motion is
triggered by the chaos. The initial height at which the phase
trajectory begins to descend is different and unpredictable for
each complete SMR cycle. The various maximum local val-
ues of Z1 are marked with the diamond dots in Fig.7a. These
different Z1 values are used as the initial height of descent to
predict the energy pumping time for each SMR cycle.

The energy pumping process describes the energy of LO
as transferred into NES and dissipated by the damping. En-
ergy pumping is referred to as the phase trajectory descends
along the righ stable branch the SIM and does not include
snap-through motion. So the energy pumping time is counted
from the moment the NES amplitude reaches its maximum
and ends when the NES re-enters chaos. In other words, it
implies a phase in which the amplitudes of LO and NES drop
simultaneously. The interval of energy pumping time in each
SMR cycle is identified in Fig.7b.

Based on the calculation process in the force case and
initial Z1 value, the predicted pumping time can be calcu-
lated, and is summarized in Tab. 1, where the unit of Z1(0) is
1e-5. τ0,a are the analytical energy pumping times. τ0,s are
the simulated values, which are calculated by time intervals
marked in Fig.7b. Each energy pumping interval starts with a
green dot and ends with a red triangle. Er means the relative
error between τ0,s and τ0,a. From an intuitive point of view,
a higher initial Z1(0) causes a greater distance to slide down,
when the end point Z1(1) is fixed. So a longer energy pump-
ing time is required for the same energy input level. Com-
paring the analysed value with the simulated value shows the
analysed value to be smaller than the simulated value. An er-
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Table 1. Pumping time estimation for given amplitude input G =
0.3mm

Z1(0) 8.23 8.15 7.70 7.73 7.75

τ0,s 70.6 70.7 64.3 64.4 64.7

τ0,a 69.4 68.4 62.6 62.9 63.2

Er(%) 1.73 3.36 2.72 2.38 2.37

Table 2. Pumping time estimation for various energy inputs

G (mm) 0.25 0.275 0.3 0.325 0.35

Z1(0) 7.23 8.052 8.04 8.23 8.075

τ0,s 39.1 57.35 68.67 83.42 109.35

τ0,a 39.8 55.42 67.02 87.58 115.56

Er(%) -1.76 3.5 2.46 -4.75 -5.68

ror of less than 5% between the two values can be accepted.
When predicting energy pumping time, this semi-analytical
method is robust with respect to the uncertainty of initial
height caused by chaos.

3.2.2 Various energy inputs
The initial descent height of Z1 for each SMR changes

as time varies. So, to compare the influence of energy input
level, the average Z1 value was chosen within a time inter-
val of [0,1000](τ). The excitation interval was selected in
the range [0.25 mm,0.35 mm] to ensure the occurrence of
SMR, for which the interval of occurrence is theoretically
[0.22 mm,0.44 mm].

For each excitation case, the initial height Z1(0) where
each SMR starts to descend is different, as is the time it re-
quires to descend. To calculate the average initial height, a
time interval of response, which contains 5 complete SMR
cycles, is selected. The upper line of Z1(0), τ0,s and τ0,a in
Tab.2 represents the average value of the corresponding pa-
rameter in these five SMR cycles. This method of calculating
the mean height and the mean time was also applied in the
study of the relationship between descent rate and negative
stiffness.

Although the perturbation exists in the average initial
height (average Z1(0) does not increase for a higher input
energy in the second line of the Tab.2), the extension of the
analytical and simulated pumping time shows a strong rela-
tionship with increasing excitation. Increasing the amplitude
of the excitation leads both the simulated and analytical en-
ergy pumping times to show an increasing tendency in Tab.2.
When the system is maintained at a low energy input, the er-
ror level is perturbed but is acceptable. However, the analyt-
ical result is larger than the simulated value in a high energy
case, G = 0.35 mm. In the transient response, the high en-
ergy state also leads to a similar error distribution, i.e., a large

Table 3. Pumping time estimation for various negative stiffness
cases for G = 0.3mm

k3(N/m) -25 -50 -75 -100 -125

Z1(0) 8.86 8.04 9.34 1.12 1.04

τ0,s 108.85 68.67 56.82 53.76 37.84

τ0,a 122.5 67.02 58.52 57.74 39.93

Er(%) -11.1 2.46 -2.9 -6.9 -5.23

analytical value, and a more significant excitation results in
failure of the method. So low or modest energy inputs are
necessary to ensure the validation of this method.

3.2.3 Various negative stiffness cases
Five cases with different k3 values were examined fur-

ther to investigate the robustness under various negative stiff-
ness designs. Like various energy input cases, the aver-
age energy pumping times, obtained by numerical and semi-
analytical methods, are compared in Tab. 3. With the varia-
tion of δ, the perturbation in average initial height Z1(0) be-
comes more severe. As the negative stiffness declines, more
time is needed to dissipate the same energy input level. In the
transient response case, the larger value of δ causes the defor-
mation of the SIM structure, where the fold point moves to
a position with higher value. So the equivalent point, which
is close to the fold point, has a more significant value. This
variation significantly improves the decline rate, regardless
of the initial height perturbation by Eqn. (11).

A bigger value of negative results in a faster dissipa-
tion ratio also leads to a larger force threshold to trigger the
SMR. The analytical prediction is always larger than the sim-
ulated value. A more significant error is found in a weak
bistable NES that still conserves some characteristics of a
cubic NES, where the snap-through motion is triggered by
crossing the singularity of SIM instead of being triggered
by chaos. Those cases, with errors below 5%, are classi-
fied as modest bistable NES. This method predicts the energy
pumping time more accurately in the modest bistable NES.

3.3 Validation of assumption
During the TET, Z2,c is almost constant, and it can

be observed that the amplitude of NES remains constant
in Fig.7 for each energy pumping period. The assumption
of R1(τ1)cos(δ1(τ1)) =

√
Z1 is a prerequisite for the semi-

analytical method. Acquiring exact expressions of integrals
is challenging, but the two sides of the equation are equiv-
alent in the integration process. To better demonstrate this
point, a numerical example for case G = 0.3 mm can provide
an explanation.

When the initial maximum Z1(0) is equal to 8.15e-5, the
distance in the Z1 direction, between initial states and end
state, ∆Z1 is -5.1e-5. The analytical energy pumping time
τ1 = ετ0 = 0.684. The positions of the equivalent points are
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Table 4. Experimental parameters of environment

Physical m1 m2

parameters 5.5kg 0.05kg

c1 c2 k1

5N·s/m 0.54N·s/m 1.15e4N/m

Reduced ε λ1 λ2 f0

parameters 0.91% 2.18 0.24 7.27Hz

Z1,c = 3.54e−05,Z2,c = 1.14e−3, which is close to the end
state. Substituting these parameters into the second equation
of (11), the average value of R1(τ1)cos(δ1(τ1)) during the
whole TET equals 5.83e-3, while

√
Z1,c equals 5.95e-3. The

approximation produces an error level on the integral of 2%.
Although the other parameters, for example, excitation

amplitude and negative stiffness, also influence the accu-
racy of integral, the good agreements between simulation
results and analytical predictions verify the equivalence of
integrals. Thus, the following equation is valid during the
energy pumping time.

1
τ1

∫
τ1

0
R1(τ1)cos(δ1(τ1))dτ ≈

√
Z1|Z1=Z1,c (21)

4 Experimental validation for estimation
A bistable nonlinearity device was constructed and is

presented in Fig. 8. A linear oscillator is connected to a 10
kN electrodynamic shaker and is excited by a harmonic exci-
tation with its natural frequency. The NES mass is embedded
through a track and a four spring device. The latter provides
the cubic nonlinearity and negative stiffness through adjust-
ment of the pre-compression length of the linear spring. The
two contactless displacement sensors are installed vertically
to measure the absolute displacement of LO and NES. An ac-
celerometer is also installed in the shaker to measure its ac-
celeration. The extra digital oscilloscope and a bandpass fil-
ter can correct bias and attenuate high-frequency noise. The
mass of the primary system, the NES mass and their corre-
sponding damping are presented in Tab. 4. The dimension-
less parameters (mass ratio, damping, and natural frequency)
are fixed to design the optimal stiffness.

k0 is the linear phase stiffness. a1 and a3 are the linear
stiffness and cubic nonlinearity rate in the nonlinear phase
of the conical spring. l0l and lc are the lengths of the linear
spring and connector respectively. kl is the stiffness of the
linear spring. By adjusting the pre-compression length lp,
the system can process different negative stiffnesses k3 and
cubic nonlinearity parameter k2 to shift from the cubic NES
and bistable NES. A description of the displacement-force
relation is given by:

LO with linear
springs

NES with nonlinear 
springs

Laser
Shaker

LO

NES

Electrodynamics shaker

Conical spring

Pre-compression

cylindrical spring

Pre-stretched spring

Measurement of 

displacement 

m2,c2,k2,k3

m1,k1,c1

F cos( t)

(b)

(a)

Fig. 8. (a) Detailed view of experimental setup (b) Scheme of sys-
tem

Table 5. Experimental stiffness parameters of NES system

k0 a1 a3 kl

187N/m 280N/m 3.4e5 N/m3 1100 N/m

l0l lp1 k2 k3

50 mm 16.4 mm 6.94e5 N/m3 -109.4 N/m

F = k2u+ k3u3

k2 =

(
a1 + k0 −2kl

lp

l0l +2lc − lp

)
k3 =

(
a3 + kl

l0l +2lc
(l0l +2lc − lp)

3

) (22)

The linear stiffness part k2 is adjusted to be zero and a
cubic NES is built when the lp = 14.3 mm for the stiffness
parameter, which is presented in Tab. 5.

4.1 Validation of estimation of energy pumping time
By compressing the pre-compression length to 16.4 mm,

the parameters of the bistable characteristic are as presented
in Tab. 5.The system is applied with two low excitations, G =
0.21 mm and 0.25 mm. In both cases, the bistable NES starts
to perform SMR, which is presented in Fig. 9. According
to the previous definition of energy pumping, which counts
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Table 6. Experimental results of energy pumping time in G = 0.21
and 0.25 mm cases.

G (mm) 0.21

Z1(0) 2.80 3.0 2.76

te,p(s) 0.44 0.58 0.44

ta,p (s) 0.32 0.44 0.29

G (mm) 0.25

Z1(0) 2.9 3.44 3.01 4.7 2.88

te,p(s) 1.02 1.28 1.00 1.30 0.86

ta,p (s) 0.88 1.6 1.02 3.3 0.84

from the time the NES reaches its maximum amplitude to
when the NES re-enters the chaotic state, the time instants
are also marked in the figure. In the numerical simulation,
the start point of Z1(0) is obtained by the time displacement
of LO. However, Z1 is expressed as a real part of complex
variable φ1(τ), which cannot be recorded directly. From the
perspective of a mechanical interpretation, the Z1 approxi-
mately equals the square of the LO amplitude. So, the initial
Z1(0) in the starting point A is selected as the square of max-
imum LO displacement.

The energy pumping times of both excitation cases are
calculated in Tab. 6, where te,p and ta,p are the experimental
and analytical energy pumping times. In the lower energy
input case, the analytical prediction time is always shorter
than the experimental observation. This is also the case for
the comparison with simulation, where the analytical value
is always lower than the simulated one, for example, G =
0.3 mm in Tab. 1. The variation of value of the initial height
Z1(0) occurs because chaos motion triggers the snap-through
motion, so the maximal amplitude of LO is unpredictable and
it is hard to reach the same level for each SMR cycle. The
analytical prediction can estimate the energy pumping time
to the same order of magnitude.

In a higher energy input case, in Fig. 9b, the initial start
point also possesses a higher position than that of lower en-
ergy inputs. It also causes a need for longer pumping time
to dissipate energy. The overestimation occurs in the case
of initial height Z1(0) = 4.7e−5. This can be considered as
the failure of the analytical estimation method. In the high
energy input cases of harmonic excitation, for example, G =
0.35 mm in Tab. 2, a high initial start point causes a larger
error. This confirms that our analytical prediction provides a
better fit for the modest energy level input. If this invalid data
is excluded, the remaining mean error on the corresponding
predicted values against the experiment is reduced to 4%.

5 Conclusion
This study focuses on the adapted method based on

the SIM structure to predict the energy pumping time of a

m
m

m
m

Fig. 9. Experimental time-displacement result of bistable NES and
LO (a) (b) for excitation G = 0.21 mm, (c) (d) for G = 0.25 mm. The
intervals of energy pumping time are identified and marked in yellow
shaded areas

bistable NES under harmonic force. The calculation pro-
cess has been presented to examine the robustness of pre-
diction. The factors affecting the rate of amplitude decrease
have been analysed for the transient and harmonic excitation
cases. Several main conclusions can be drawn:

(1) To estimate the duration of energy pumping time in a
damping and harmonic force case, the Hamiltonian system is
considered first. The equivalent point, obtained by a damped,
transient impulsive system, is essential for energy pumping
time calculation under harmonic excitation.

(2) The influences of parameters (initial height, cubic
nonlinearity parameter, negative stiffness, damping and exci-
tation amplitude) are investigated for both transient response
and harmonic force. Due to the chaos behaviours, the robust-
ness of the semi-analytical method is tested and proved to be
strong enough under parameter perturbation. A larger NES
damping, lower cubic nonlinearity parameter or larger neg-
ative stiffness enhance the dissipation rate by modifying the
structure of the SIM and the corresponding equivalent point
position. Energy input level does not affect the LO amplitude
decay rate.

(3) A particular approximation of complex integration
offers the possibility to calculate the energy pumping time
for every SMR cycle. Due to the chaos motion, every initial
starting point is different. The numerical and experimental
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results prove the robustness of the calculation method with
respect to initial descent height and excitation. This predic-
tion method shows good potential for predicting the energy
pumping time at a low energy state.
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