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ABSTRACT 
 

The objective of the paper is to provide a summary survey of calculation methods that are 
available to estimate the entrained water properties of a propeller for vibration analysis. Ranging 
from simple parametric estimates to more robust predictions using radius-chord integration, the 
paper will present and validate calculations the axial entrained water added mass and the 
torsional entrained water moment of inertia. 

 
 

 
INTRODUCTION 

All mechanical systems vibrate. Sometimes these 
systems vibrate too much, and on occasion, bad 
things happen. It is the job of engineers and designers 
to try to ensure that bad things do not occur. 

A marine propulsion engine-transmission-shaft-
propeller power train is a mechanical system. It 
vibrates. Sometimes these systems vibrate too much, 
and on occasion, bad things happen. It is our job as 
marine engineers and naval architects to try to ensure 
that bad things do not occur. 

How? By analyzing the vibratory properties of 
the system, and then comparing the results to some 
prescribed design criteria. A vibration analysis will 
look at the power train as a collection of masses, 
springs, dampers, and exciting loads in a variety of 
forms – torsional (rotational), axial (fore-and-aft), 
and lateral (shaft bending).  

The aspects of vibration analysis can be found in 
many technical references and will not be repeated 
here. Rather, this paper will look at one of the small, 
but critical, components for the analysis – the effect 
of a propeller’s surrounding entrained water. 

VIBRATORY SYSTEM COMPONENTS 

We can see the arrangement of the various 
components of a marine propulsion power train in the 
accompanying schematic illustration (Figure 1). The 
vibratory modes considered to be most critical are the 

axial and torsional, so we will limit our review to 
these two modes. 

 

 
 

Figure 1 – Power train vibration schematic 

VIBRATION COMPONENTS 

The engine, transmission and propeller can be 
described by their individual component properties. 
For example, an engine is described by properties for 
its crankshaft and cylinders. Shafting might be 
described by the characteristics of the shaft cylinder 
and bearing points. The propeller is essentially a mass 
attached to the end of a beam (i.e., the shafting). 

The mechanical attributes of the entire system 
can be calculated with relative clarity – except for the 
propeller and its entrained water. In fact, even the 
mass properties of the propeller can be found without 
much difficulty using direct volumetric calculations. 
It is the added mass and inertia of the entrained water 
that is the challenge to predict accurately. 

PROPELLER PROPERTIES 

In both axial and torsional modes, the propeller 
is described by two attributes – a) its volumetric mass 
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properties, and b) the water that travels with the 
propeller. This added mass of water is called by a 
variety of names, such as “wetted”, “entrained” or 
“virtual”, and is a function of the viscous (frictional) 
nature of water. 

Axial mass properties 

Let’s refer to the following graphic of a propeller 
under axial vibration (Figure 2). As the propeller 
vibrates, it carries water along with it. The mass that 
is attached to the end of the shafting will be 
comprised of two parts – the mass or weight of the 
propeller (WP) and the added mass of the entrained 
water (WE). 

 

 
 

Figure 2 – Propeller added mass (axial) 

Rotational considerations for the axial added mass 

The axial wetted added mass, WE, is measurably 
different if the propeller is locked or rotating. For 
clarity throughout this paper, values representing the 

added mass in the locked condition will have L 
appended (WEL), while values for propellers in 
rotation will append R (WER).  

Torsional moment of inertia properties 

In the torsional mode, the propeller blades will 
carry some entrained water in a rotational orientation, 
as illustrated in Figure 3. The rotating mass, however, 
does not have the same effect across the entire blade, 
since the mass at the tip of the blade will be displaced 
a greater distance than at the root. Therefore, the 
radial “moment arm” of the position of the mass 
means that the property of interest is actually a 
torsional mass inertia at the end of the shaft. This 
moment of inertia of the vibrating propeller in the 
water is also comprised of two parts – the mass 
moment of inertia of the propeller (IP) and the added 
moment of inertia of the entrained water (IE). 

 

 
 

Figure 3 – Propeller added inertia (torsional) 

 
Nomenclature 

 
MWR = mean width ratio 
 P = propeller mean pitch 
 r = blade element radius  
 WE = axial entrained water added mass 
 WEL = WE for locked propeller (no rotation) 
 WER = WE for rotating propeller 
 WP = propeller material weight 
 Z  = number of blades 
 ρ = density of water (e.g., lb/ft3, kg/m3) 
 f   = blade element pitch angle 
 

 BTF = blade thickness fraction 
 c  = blade element chord length 
 D = propeller diameter 
 DAR = developed area ratio 
 EAR = expanded area ratio 
 IE = torsional entrained water moment of inertia 
 IP = propeller material mass moment of inertia 
 KI  = semi-empirical wetted inertia factor 
 KW  = semi-empirical wetted added mass factor 
 KWL  = KW for locked propeller (no rotation) 
 KWR  = KW for rotating propeller 
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SOURCES FOR TEST DATA OF PROPELLER 
PROPERTIES 

Empirical test values for these properties have 
been hard to find. In fact, for this analysis, the authors 
found only two sets of data for propellers that were 
physically tested for their vibration-related properties. 

The most extensive data was for a collection of 
propeller models that were tested at King’s College 
over 40 years ago [Burrill, 1962]. About two-thirds of 
the nearly 50 models were from the 3-bladed KCA 
series (commonly known as Gawn propellers). The 
remaining propellers were from additional stock at 
King’s College that included the KCC and KCD 
series (principally of 3 and 4 blades, but with a few 5- 
and 6-bladed propellers). 

Also from the 1960’s, the second source is a 
much more modest test program of seven B-series 
propellers [Wereldsma, 1965]. 

 Unfortunately, no empirical test data for the 
axial added mass was found for the same propellers in 
both the locked (WEL) and rotating (WER) conditions. 
The Burrill propellers were tested in the locked 
condition, while the Wereldsma propellers were 
rotating.  

Propeller models from both of these sources are 
used for the validation studies in Appendix A. 

SIMPLE PARAMETRIC ESTIMATES FOR 
PROPELLER PROPERTIES 

The accurate calculation of these properties is 
critical for a reliable vibration analysis. An analysis 
using the semi-empirical radial integration method – 
as described later in this paper – is the recommended 
method to calculate these properties. However, there 
may be times that a vibration analysis is conducted 
early in the ship design cycle for which a propeller 
design is not yet available. In these circumstances it 
will be necessary to use estimates, so a representative 
example of a few simple parametric estimates will be 
described herein. 

Traditional formula 

A number of traditional estimate formula can be 
found in the technical literature. By-and-large, these 
are unsatisfactory for an accurate prediction of the 
properties. A sample of these formula include: 

WP, propeller material weight 

3DBTFMWRKWP =  

where, K = 0.26 for WP in pounds and D in inches 
[Harrington, 1971].  

This formula estimates propeller weight based on 
a reasonable definition of blade thickness and width, 
but not the number of blades or the material density. 
The authors believe that the formula is based on four-
bladed propellers of manganese bronze. A more 
accurate variant of this formula might be derived to 
consider that approximately half of the weight is from 
the blades and half from the hub, as well as for 
differences in material density. 

WE, axial entrained water added mass 

PE WKW =  

where, K = 0.10 to 0.20 [VERITEC, 1985]. 
This rough estimate does not consider the effect 

of rotation or differences in propeller geometry. 

IP, propeller material mass moment of inertia 

KDWI PP /2=  

where, K = 19 to 28, with a figure of 23 often cited as 
a representative average. 

While it is not unreasonable to base an estimate 
of a propeller’s mass moment of inertia on its weight, 
there is no explicit consideration of the distribution of 
weight due to the blade outline. The variation of the 
K coefficient is intended to account for all such 
differences in propellers. 

IE, torsional entrained water moment of inertia 

PE IKI =  

where, K = 0.25 to 0.30, with a figure of 0.25 often 
used as a representative average [Saunders, 1957]. 
Other references suggest a range of 0.25 to 0.50 
[VERITEC, 1985]. 

This is perhaps the most oft quoted traditional 
estimate, and perhaps is also the one with the greatest 
potential for error. It simply makes no sense to base 
the inertia of the entrained water on the inertia of the 
propeller material mass, and, as is shown later, the 
range of K is far too narrow to represent many 
contemporary propellers. 

Parsons estimates 

The following estimates for IE and WER are based 
on statistical analysis of numerical calculations for B-
series propellers using specialized lifting-line and 
lifting-surface code [Parsons, 1983]. The equation 
forms are: 

5DLSCCI IEIEE ρ=  

3DLSCCW WERWERER ρ=  
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and, the C-factors above both follow the form: 

( ) D
P

D
P

D
P

EARCCEARC

CEARCCC

6
2

5
2

4

321

+++

++=  

Six coefficients are used to make up the C-
factors, which are shown in the appropriate tables 
below. Also shown are the lifting surface correction 
(LSC) coefficients. A factor describing the blade’s 
geometric aspect ratio (AR) is: 

EARZAR /22087.0=  

IE, torsional entrained water moment of inertia 

CIE Z = 4 Z = 5 Z = 6 
C1  0.00303  0.00278  0.00237 
C2 -0.00808 -0.00716 -0.00629 
C3 -0.00407 -0.00373 -0.00306 
C4  0.00341  0.00305  0.00275 
C5  0.00043  0.00046  0.00023 
C6  0.00997  0.00853  0.00736 

Table 1 – CIE coefficients 
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1

45806.080696.056159.0

60294.034674.061046.0
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−

+−−
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ARARAR
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D
P
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IE  

 WER, axial entrained water added mass (rotating) 

CWER Z = 4 Z = 5 Z = 6 
C1 -0.06295 -0.04737 -0.03913 
C2  0.17980  0.13499  0.10862 
C3  0.05872  0.04343  0.03731 
C4  0.17684  0.15666  0.13359 
C5 -0.00214 -0.00042 -0.00033 
C6 -0.15395 -0.12404 -0.10387 

Table 2 – CWER coefficients 

212

1

25124.046697.043911.0

11886.023741.061791.0
−−−

−

+−−

++=

ARARAR

ARLSC

D
P

D
P

D
P

WER  

Schwanecke estimates 

These estimates are suggested for merchant ship 
propellers [VERITEC, 1985] [Schwanecke, 1963]. 
The rotating or locked characteristic of the axial 
added mass, WE, is not described in the reference, but 
the magnitude of the estimates suggests that it is for 
rotating propellers. 

IE, torsional entrained water moment of inertia 

5DCI IEE ρ=  

( )
Z

EAR
C D

P

IE π

220703.0
=  

WER, axial entrained water added mass (rotating) 

3DCW WERER ρ=  

( )
Z

EAR
C D

P

WER π

226363.0
=  

Burrill estimates 

As part of the extensive empirical testing, Burrill 
also developed simple estimates for the two entrained 
water properties [Burrill, 1962]. The data set includes 
the Gawn propellers, which would make these 
estimates applicable to the majority of inboard-driven 
workboats and motor yachts. 

IE, torsional entrained water moment of inertia 

( )
5

21 33.1






−=

D
SGCEARCI D

P
E

 

 Z = 3 Z = 4 Z = 5 Z = 6 
C1 1.37 1.09 0.98 0.90 
C2 0.30 0.23 0.21 0.20 

Table 3 – IE coefficients 

The units for the formula are for D in inches and 
IE in pound-feet2. SG is the specific gravity of the 
water. It must also be noted that the blade area ratio 
used in the original formula was the developed area 
ratio (DAR), but this is generally close in magnitude 
to the EAR as used here.  

WEL, axial entrained water added mass (locked) 

( )
3

2
2

1 33.1
cos 






−=

D
SGCEARCWEL θ  

 Z = 3 Z = 4 Z = 5 Z = 6 
C1 34.7 34.7 34.7 34.7 
C2 4.2 6.7 8.3 9.6 

Table 4 – WEL coefficients 

The units and values are the same as above for 
WEL in pounds, and θ is the pitch angle at the two-
thirds radius.  

Proposed new estimates 

When reviewing the Burrill estimates, the authors 
found that in many cases, the formula did not do a 
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very good job at accurately estimating the properties 
for the propellers in the data set. So, the authors set 
out to developed a more general and accurate variant 
of the Burrill estimates, which is described below. 

IE, torsional entrained water moment of inertia 

5DCI IEE ρ=  

21 CEARCC D
P

IE −=  

 Z = 3 Z = 4 Z = 5 Z = 6 
C1 0.00477 0.00394 0.00359 0.00344 
C2 0.00093 0.00087 0.00080 0.00076 

Table 5 – CIE coefficients 

The fit of the proposed new coefficients to the 
Burrill data set is shown in Figure 4 below. 
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Figure 4 – CIE fit to Burrill data 

WEL, axial entrained water added mass (locked) 

3DCW WELEL ρ=  

( ) 22
1

5
C

EARC
C

D
P

WEL −
+

=  

 Z = 3 Z = 4 Z = 5 Z = 6 
C1 1.0638 0.9553 0.9104 0.8588 
C2 0.023 0.030 0.032 0.033 

Table 6 – CWEL coefficients 

The fit of these proposed new coefficients to the 
Burrill data is shown in the accompanying Figure 5. 
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Figure 5 – CWEL fit to Burrill data 

WER, axial entrained water added mass (rotating) 

A new relationship to correct the entrained water 
added mass from “locked” to “rotating” is described 
in a later section. This correction factor can be 
applied to the CWEL to obtain CWER as follows: 

( ) 09.251.162.0 2 +−
=

D
P

D
P

WEL
WER

C
C  

CALCULATION BY RADIAL INTEGRATION 
OF BLADE ELEMENTS 

The simplified estimates described above were 
all based on overall propeller blade parameters (e.g., 
expanded area ratio, pitch/diameter ratio), which do 
not consider the effect of the distribution of these 
parameters. For example, a blade with more of its 
blade area near the tip will have higher torsional 
inertia properties than one with its centroid of area 
closer to the hub. 

A review of the published Burrill data indicates 
that changes in pitch distribution (e.g., off-loading the 
tip or reducing the pitch into the hub) can change WE 
by as much as 5% and IE by over 2%. (The IE 
differences could be higher with different blade 
outlines). The effect of blade outline (i.e., the chord 
distribution) is even more significant for IE due to the 
fact that the outer radii are more important, with 
variations of IE exceeding 10%. Therefore, if an 
accurate prediction of these propeller properties is 
needed, then a more thorough geometric calculation 
may be justified. 

A semi-empirical blade element integration 
calculation can provide a better analytical evaluation 



6 

of these properties. Consider the graphic of a radial 
slice, or blade element, in Figure 6 below (shown in 
the lighter grey color on the blade). The axial wetted 
added mass, WE, will be related to the fore-and-aft 
projected area of the blade element. The projected 
area of the element is a function of the cosine of the 
element’s pitch angle times the chord length. The 
torsional wetted inertia, IE, on the other hand, would 
be related to the profile area of the element in 
rotation. Profile area is a function of the sine of the 
pitch angle. 

 

 
 

Figure 6 – Blade element radial slice 

Properly integrating the blade elements will give 
us the geometric core of a reliable calculation 
methodology. The calculations can be described by 

drcr
Z

KI
tip

hub

r

rIE
2)sin(

4
ϕ

ρπ
∫=  

drc
Z

KW
tip

hub

r

rWE
2)cos(

4
ϕ

ρπ
∫=  

where, 
KI = semi-empirical wetted inertia factor 
KW = semi-empirical wetted added mass factor 

 
Blade element integration can be conducted by 

various approaches, such as Simpson’s Rule or 
trapezoidal integration using narrow blade elements. 
(Our studies indicate that trapezoidal integration is 
quite acceptable if the radial blade elements slice 
width is logically defined based on curvature of the 
blade outline. In other words, the typical increase in 
curvature near the tip requires closer spacing.) 

The challenge to the development of an accurate 
calculation, therefore, is in the definition of the KI 
and KW factors. There are few sources of published 
information for these factors. The authors have 
prepared a newly developed re-analysis of the Burrill 
data, as described below, for use in HydroComp’s 
PropCad™ propeller geometric modeling software. 

Kruppa KI factor 

A reference was uncovered to an equation for the 
wetted inertia that was noted as being from Kruppa. 

( )215.91
952.0

Z
EARIK

+
=  

 The equation, modified to suit the integration 
format described above, is shown below. Our 
evaluation of this formula suggests that it will over-
predict the wetted inertia by as much as 10%, and is 
not recommended for use. 

Burrill KI and KWL factors 

Burrill provided tables for estimates of both KI 
and KWL coefficients. (KWL was noted as KA in the 
reference). These factors were derived from curves fit 
through the test data. They were shown in tables 
separated by number of blades (Z) and developed 
area ratio (DAR).  
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Figure 7 – Burrill KI vs DAR 
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Figure 8 – Burrill KWL vs DAR 
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Development and validation of new prediction 
algorithms for KI and KWL using the Burrill data 

The authors conducted a new analysis of the 
Burrill data. The first step was to convert the data 
from developed area ratio (DAR) to expanded area 
ratio (EAR), which is more widely used in 
contemporary propeller analysis. The EAR was also 
implemented as EAR per blade, or EAR/Z, to allow 
for usage of the proposed factors to propellers with 
more and fewer blades. The range of EAR/Z was also 
reduced to a practical range. (Burrill had tested 3-
bladed propellers with a DAR as high as 1.10, for 
example. A practical upper range of 0.30 for EAR/Z 
has been adopted for this analysis.)  

While the data collapsed toward a single line, as 
expected, this initial analysis did reveal a curious 
scatter in the data. An initial curve fit was developed 
through these points, as shown in the plots.  
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Figure 9 – Burrill KI vs EAR/Z 
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Figure 10 – Burrill KWL vs EAR/Z 

A sample of the Burrill propeller test results were 
then used to validate the curves that were fit through 
the data. Characteristics of these propellers are shown 
in the table below. The KCA propellers are a series of 
three-bladed ogival-section propellers with constant 
pitch. The KCC and KCD propellers are non-series 
propellers of foil section with four, five and six 
blades. (Some of the KCC and KCD propellers have 
a variable pitch distribution, so a calculated mean 
pitch based on chord-radius integration was used.) 
 

Model Z P/D EAR 
    

KCA-306 3 0.6 0.506 
KCA-410 3 1.0 0.661 
KCA-112 3 1.2 0.812 
KCA-116 3 1.6 0.812 
KCA-216 3 1.6 1.166 
KCA-208 3 0.8 1.166 

    
KCD-11 4 0.599 0.594 
KCD-4R 4 0.981 0.594 
KCD-19 4 1.398 0.594 
KCD-20 4 1.598 0.594 

    
KCC-7 5 1.184 0.803 

    
KCD-23 6 0.729 0.645 

Table 7 – Burrill validation propellers 

Proposed new prediction algorithm for KI 

As can be seen in Figure 11 below, there was 
broad scatter in the test data. (This also suggests that 
Burrill’s fairing of the data was perhaps a bit coarse.)  
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Figure 11 – Validation of KI 
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Further analysis suggested that there might be a 
pitch/diameter contribution to KI. A correction for 
pitch/diameter ratio was developed that significantly 
improved the prediction accuracy. Figure 12 shows 
the same test data with the P/D correction applied. 
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Figure 12 – Validation of KI with P/D corr 
 

The final form of the new prediction equation for 
the KI factor, with P/D correction, is as follows: 

 
( )
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IK
161.0

14.158.22

7.1647.121 2  

Proposed new prediction algorithm for KWL 

Unlike the KI data, the validation test propellers 
all very nicely fit to the fitted curve. So, no further 
improvement was considered.  
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Figure 13 – Validation of KWL 

The proposed new prediction formula for the 
KWL factor is as shown below. 

 
( )

Z
EAR

Z
EAR

Z
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WLK
86.19

36.1552.111 2−+
=  

Proposed new prediction algorithm for KWR 

The development of a correction to account for 
the reduction of wetted added mass for a propeller in 
rotation proved quite a challenge. No propeller series 
were found that had been tested both rotating and 
locked, so a quasi-theoretical approach was followed. 

A theoretical relationship between locked and 
rotating values [Lewis, 1960] was used as a basis, 
whereby the Burrill and Wereldsma test propellers 
were aligned to their Lewis theoretical figures. (The 
Burrill propellers to the Lewis “locked” value, and 
the Wereldsma aligned to the Lewis “rotating” value.) 
It was decided that a correction based on P/D might 
offer a logical correlation to propeller rotation. The 
rotating-to-locked ratio was then plotted and a curve 
fit to the data, as shown below in Figure 14. 
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Figure 14 – Rotating-to-locked multiplier 
 

So, the proposed new prediction formula for the 
KWR factor, including the multiplier, is shown below. 

 
( )

( ) ( )( )09.251.162.086.19
36.1552.111

2

2

+−
−+

=
D

P
D

P
Z

EAR

Z
EAR

Z
EAR

WRK  

CONCLUSIONS 

New prediction formula have been proposed for 
both simple parametric estimates and more rigorous 
chord-radius integration predictions of the torsional 
entrained water moment of inertia and axial entrained 
water added mass. Both sets of new prediction 
methods hold the promise of improved accuracy for 
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vibration analysis of marine propulsion engine-gear-
shaft-propeller systems. 

There is room for improvement, however. The 
new methods somewhat over-predict IE for 6-bladed 
propellers.  

Perhaps the greatest opportunity for additional 
development is to further evaluate the contribution of 
section shape to the predictions. The Wereldsma B-
series test results were all some 15% to 20% lower 
than the corresponding Burrill test results. As the 
proposed new methods were developed using the 
Burrill data, additional analysis may offer further 
improvement. 

The Wereldsma model BS-VII shows test results 
that are out of place with the other test data. The 
model was the only 6-bladed propeller of the series 
and it was also expanded to a different diameter than 
the other propellers. Further investigation may help 
identify if the differences are valid, or perhaps from 
an error in publication or analysis. 

The Shwanecke estimate of WER is substantially 
lower than the other estimates. An investigation of a 
potential publication error would be recommended.    

Finally, like all proposed useful engineering 
utilities, these proposed new prediction methods 
would benefit from additional empirical test data for 
validation. 
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APPENDIX A 

Prediction results using the various simple estimates and detailed predictions are shown below for representative 
propellers from the Burrill (KCA, KCC, KCD) and Wereldsma (BS) test data. 

IE, torsional entrained water moment of inertia 

Existing methods 

Model D [ft] Z EAR P/D IE 
[lb-ft2] 

Trad 
(25% IP) Parsons Schwanecke Burrill 

simple 
Burrill 

chord-radius 

KCA-306 1.33 3 0.506 0.60 0.190 0.246 - 0.185 0.116 0.163 
KCA-410 1.33 3 0.661 1.00 0.581 0.325 - 0.874 0.605 0.571 
KCA-112 1.33 3 0.812 1.20 0.993 0.396 - 1.901 1.035 0.988 
KCA-116 1.33 3 0.812 1.60 1.423 0.398 - 3.380 1.480 1.465 
KCD-4R 1.33 4 0.594 0.981 0.385 0.347 0.345 0.510 0.405 0.385 
KCD-19 1.33 4 0.594 1.398 0.594 0.338 0.598 1.036 0.675 0.630 
KCC-7 1.33 5 0.803 1.184 0.752 0.420 0.676 1.086 0.722 0.728 

KCD-23 1.33 6 0.645 0.729 0.225 0.314 0.177 0.221 0.223 0.197 

Model D [m] Z EAR P/D IE 
[kg-m2] 

Trad 
(25% IP) Parsons Schwanecke Burrill 

simple 
Burrill 

chord-radius 

BS-II 6.5 4 0.596 0.776 10565 - 10161 13884 12117 11590 
BS-VI 6.5 5 0.516 0.788 7912 - 6814 8585 8332 8554 
BS-VII 6.25 6 0.519 0.830 5969 - 5115 6600 - - 

 

Proposed methods 

Model D [ft] Z EAR P/D IE 
[lb-ft2] 

MacPherson 
simple Diff MacPherson 

chord-radius Diff 

KCA-306 1.33 3 0.506 0.60 0.190 0.139 -26.7% 0.187 1.6% 
KCA-410 1.33 3 0.661 1.00 0.581 0.596 2.7% 0.580 0.2% 
KCA-112 1.33 3 0.812 1.20 0.993 0.998 0.5% 0.984 0.9% 
KCA-116 1.33 3 0.812 1.60 1.423 1.414 -0.6% 1.413 0.7% 
KCD-4R 1.33 4 0.594 0.981 0.385 0.383 -0.6% 0.387 0.5% 
KCD-19 1.33 4 0.594 1.398 0.594 0.645 8.5% 0.602 1.3% 
KCC-7 1.33 5 0.803 1.184 0.752 0.701 -6.7% 0.740 -1.6% 

KCD-23 1.33 6 0.645 0.729 0.225 0.230 2.3% 0.235 4.4% 

Model D [m] Z EAR P/D IE 
[kg-m2] 

MacPherson 
simple % diff MacPherson 

chord-radius %diff 

BS-II 6.5 4 0.596 0.776 10565 11049 4.6% 12173 15.2% 
BS-VI 6.5 5 0.516 0.788 7912 7655 -3.3% 9141 15.5% 
BS-VII 6.25 6 0.519 0.830 5969 6884 15.3% 7501 25.7% 
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WE, axial entrained water added mass 

Existing methods 

Model D [ft] Z EAR P/D WEL 
[lb] 

Trad 
(15% WP) Parsons Schwanecke Burrill 

simple 
Burrill 

chord-radius 

KCA-306 1.33 3 0.506 0.60 11.21 1.7 - - 12.0 - 
KCA-410 1.33 3 0.661 1.00 13.64 2.2 - - 14.5 - 
KCA-112 1.33 3 0.812 1.20 16.62 2.6 - - 17.0 - 
KCA-116 1.33 3 0.812 1.60 13.81 2.7 - - 13.6 - 
KCD-4R 1.33 4 0.594 0.981 9.47 2.9 - - 10.2 11.8 
KCD-19 1.33 4 0.594 1.398 7.58 2.8 - - 7.6 9.5 
KCC-7 1.33 5 0.803 1.184 13.10 3.4 - - 12.8 16.5 

KCD-23 1.33 6 0.645 0.729 11.21 1.7 - - 12.0 - 

Model D [m] Z EAR P/D WER 
[kg] 

Trad 
(15% WP) Parsons Schwanecke Burrill 

simple 
Burrill 

chord-radius 

BS-II 6.5 4 0.596 0.776 14562 - 11588 2974 - - 
BS-VI 6.5 5 0.516 0.788 10891 - 8300 1839 - - 
BS-VII 6.25 6 0.519 0.830 7342 - 6458 1529 - - 

 

Proposed methods 

Model D [ft] Z EAR P/D WEL 
[lb] 

MacPherson 
simple Diff MacPherson 

chord-radius Diff 

KCA-306 1.33 3 0.506 0.60 11.21 11.7 4.4% 10.8 -3.3% 
KCA-410 1.33 3 0.661 1.00 13.64 14.2 4.3% 13.7 0.3% 
KCA-112 1.33 3 0.812 1.20 16.62 16.8 1.0% 16.5 -0.7% 
KCA-116 1.33 3 0.812 1.60 13.81 13.8 -0.2% 13.7 -0.5% 
KCD-4R 1.33 4 0.594 0.981 9.47 9.8 4.0% 9.5 0.6% 
KCD-19 1.33 4 0.594 1.398 7.58 7.8 2.8% 7.6 0.5% 
KCC-7 1.33 5 0.803 1.184 13.10 12.4 -5.2% 12.7 -3.4% 

KCD-23 1.33 6 0.645 0.729 11.21 11.7 4.4% 10.8 -3.3% 

Model D [m] Z EAR P/D WER 
[kg] 

MacPherson 
simple % diff MacPherson 

chord-radius %diff 

BS-II 6.5 4 0.596 0.776 14562 15231 4.6% 15281 4.9% 
BS-VI 6.5 5 0.516 0.788 10891 11021 1.2% 11277 3.5% 
BS-VII 6.25 6 0.519 0.830 7342 8760 19.3% 9520 29.7% 

 


