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A. Analysis of the Expression of ji1m
As shown above, ii is the sum of three terms and is of the

form

Pi =aA1 +(l - )gPOI +3(A2 - /A02)
where

nlao21(2 +n2l22 - p2))
(a2 + n 1a21)(u2 + n2U2 ) - n1n2p2u12a22

2n2pa 1Oolao2
M (a2 + nIo )(a2 + n2a02) n1n2p22 a2

For n1 = 0, a = 0 and the first term of i2A (contribution of
the observations from -'l) is equal to 0 as could be expected.
When nI becomes very large, a tends to 1 and, tends to 0, so
that the contribution of the second and third terms of,fi be-
comes negligible. Finally, if p = 0, ,B is equal to 0 and there is
no contribution of the observations from Class 2 ; this could
also be predicted since in that case the random variables M1l and
A12 are independent. ,B increases with pI, so that the contri-
bution of the observations from Class CO2 increases with the
amount of correlation of 11 and /12.

B. Analysis of the Mean-Squared Error
A simple way to evaluate the performance of the EMAP

estimation procedure is by analyzing the expression of the
mean-square error between the random variable /,1 and its
estimate i2-

If no observations have been obtained from Class co,, (i.e.,
n 0), we note from (15) that the mean-squared error of ,>i
is equal to

r2 =E(Q1 )2 = 2g1(u2 + n2a2( - P2)) (17)
2 0

From (17), we see that r42 is always smaller than a2, the a
priori variance of Co1 and is a decreasing function n2. As n2
becomes large, r 2 approaches its lower bound of a2l(l - p2).
As could be expected, this lower bound decreases when the
cross-covariance between 1,i and /12 increases.
Finally, let us consider the case where nI = n2= n, a,= =

a, anda1 =a2 = r. In that case

r2 = o2 ora +na(0 (18)1 0 (a2 + na2)2 - n2p2a4*

Fig. 5 shows the evolution of r4 as a function of n for different
values of p when a2 = g = 1.
We can see that the expected mean-square error asymptotes

to 0 in all curves as n becomes large. We can also see that the
most significant improvement of the mean square error for
small n is obtained in the case of highly correlated mean values.
We note from (16) that for a given n, r1 is an increasing func-
tion of U2/j2. Therefore, the most advantageous conditions
for the use of the extended MAP estimate occur when 1) the
correlation of the mean values across classes is high, 2) the ratio
of the variance of the data to the variance of the mean, a/a0 is
low, and 3) the number of observations is small.

V. SUMMARY AND CONCLUSIONS
In this paper we reviewed the classical MAP estimation pro-

cedure for updating the probability density functions of Gaus-
sian random mean vectors from a set of labeled observations.
We extended the procedure so that it could take into considera-
tion not only the feature-to-feature correlations within a de-
cision class but also the correlations of the features' means from

one class to another. We formally evaluated this procedure for
a simple two-class and one-feature case. We showed that the
mean-squared error of estimates of the mean vectors is always
smaller when the class-to-class correlations are taken into ac-
count, and that the greatest improvement afforded by the ex-
ploitation of class-to-class correlations is obtained when the
number of observed samples is small, the class-to-class correla-
tions of the means are high, and the ratio of the variance of
the data to the variance of the mean is large.
The formulation of the estimation procedure was simplified

by the use of a set of notational conventions that capture the
covariances of the feature mean values within a given class as
well as the cross-covariances between the mean vectors of dif-
ferent classes.
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Estimation of Error Rates in Classification
of Distorted Imagery

M. J. LAHART

Abstract-This correspondence considers the problem of matching
image data to a large library of objects when the image is distorted.
Two types of distortions are considered: blur-type, in which a transfer
function is applied to Fourier components of the image, and scale-type,
in which each Fourier component is mapped into another. The objects
of the library are assumed to be normally distributed in an appropriate
feature space. Approximate expressions are developed for classifilcation
error rates as a function of noise. The error rates they predict are com-
pared with those from classification of artificial data, generated by a
Gaussian random number generator, and with error rates from classifi-
cation of actual data. It is demonstrated that, for classification pur-
poses, distortions can be characterized by a small number of parameters.

Index Tenns-Image classification, image matching, feature extraction,
pattern classification, pattern recognition.
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I. INTRODUCTION

The ability to classify data is determined not only by the
features that describe it, but by the number of categories into
which the data are to be classified and by noise and distortion
that influence it. The measure by which classifiability isjudged
is error rate, which is a function of all of these parameters.
Evaluation of a feature set must include computation of the
factors that influence error rates and, ultimately, the estima-
tion of the error rates themselves.
In this paper we compute Bayes error rates that arise when

each member of a library of classes is equally likely and the
object to be classified is the sum of a library feature vector and
Gaussian noise. Data, represented by the measured feature
vector x, are classified to the class w by maximizing the a pos-
teriori probability p(wlx-). When the a priori probability P(W)
is the same for all classes, this can be shown by application of
the Bayes rule to be equivalent to maximizing p(GX_I). This
function is Gaussian, and it is a maximum when its exponent
d2,given by

2 1I ( -4 o)
i

( -

X2

REGION OF
ERROR

x

xo v

X1

Fig. 1. Relationship between library member xo and measurement x in
feature space with Gaussian distribution of data.

(1)

is a minimum. Here, xo is a library feature vector representing
a class co, x is a measured feature vector to be classified, and
N is the noise covariance matrix, assumed to be the same for
each class.
Often the data are defined by the addition of noise to a

distorted version of a library feature vector. This occurs, for
example, when the library consists of measurements of images
and the data x are derived from magnified, blurred, or other-
wise distorted versions of these same images. Typically, the
a posteriori probability of the occurrence p(x co) is not known
or is not tractable. Application of the simple distance measure
defined in (1 ) results in classification error rates that are larger
than the Bayes rate. This distance measure can still be used,
however, if the library is enlarged to include distorted versions
x0 of each object, if simple assumptions can be made concern-
ing the probability p(cwIxo) of the occurrence of class w given
the distorted data x0. In the nearest neighbor method of
classification [ 1 ], [2 ] a measurement X is assigned to the same
class as its nearest library member x0 is assigned under applica-
tion of the Bayes decision rule. This requires only that the
class co is known for each x0 for which p(wlxco) is largest.
Bounds on error rates for the nearest neighbor decision rule

have been computed as a function of the Bayes error rate under
the assumption that p(cx'OI) p(wl1X) holds, where x£ is the
measured feature vector and x0 is the library feature vector
nearest it. The assumption requires that the library have
enough distorted members so that the distance (1) between a
measurement and its nearest neighbor is negligible. The dis-
tance requirement has been relaxed somewhat to a small dis-
tance by Short and Fukunaga r 3 ], who defined a local metric
that is a function of the gradient of p(&.lx).
Successful classifier design often requires knowledge of the

amount of distortion that can be tolerated. To provide this,
we will compute, as a function of noise variance, error rates
that arise when the distance measure of (1) is used to classify
against a library of distorted data. We compute them separately
for different levels of distortion, noting that the error that is
expected in a classifier would be an average of these errors,
each weighted by the probability of occurrence of its level of
distortion. Even without exact knowledge of this probability,
the computed error rates can indicate how far apart must be
the levels of distortion represented in a library of data. The
distortion problem may also be approached by attempting to
remove the effects of distortion from a measured feature vec-
tor before comparing it to a library of undistorted data. In
this case the error curves will indicate how accurate the restora-
tion must be.
We will consider error rates that arise when the number of

classes is large. Although multiclass classification problems are
encountered often in practice, problems that are peculiar to it
have not been investigated extensively. Some time ago Johns
[4] derived an upper bound on multiclass error rates as a sum
of pairwise error rates. More recently, Fukunaga and Flick
[5] made a number of Monte Carlo simulations in which error
rates were computed as a function of noise level, average dis-
tance between members of the data library, and other factors.
We will assume that the features that characterize the data

library are normally distributed. In Section II, we will derive
an upper bound on error rates for this data as a function of
noise and number of classes when the data is undistorted. In
Section III this analysis will be applied to classification by cor-
relation detection, and the influence of distortions on error
rates will be discussed. In Section IV, the analysis of Section
II will be extended to distorted data and an approximation
expression for the error rate in the case of zero noise will be
derived. In Section V the classification error rates for both
actual and contrived data will be computed and compared with
the analytical results of the preceding sections.

II. MULTICLASS ERROR

We consider a library of M feature sets, each of which is
derived from a noiseless prototype of one of M classes. We
assume that these are distributed normally in a feature space.
A set of classes is shown schematically in Fig. 1 , in which each
class is represented by a point. A measurement datum is equiv-
alent to a library vector x to which noise t has been added
and is indicated in Fig. 1 by the small circle. The measurement
is classified by computing the distance d to each member of the
library and assigning the measurement to the class for which
the distance is the smallest. The probability that it will be
misclassified is the probability that at least one other library
prototype is located in the hypersphere of radius I2I whose
center is located at I + t; it is a function of both I and t. We
will compute the average value of this probability, the error
rate, under the assumption that the library has n features, each
characterized by the same standard deviation a and that the
noise that is added to each feature is described by standard
deviation UN. The probability f(Q, x ) that a given class will be
mistaken for the correct one at x is the integral of its distri-
bution function over the hypersphere:

exp [ 2a2 EZ(xi+.i+si)S ds.

(2)

a
I
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In the two class problem, the probability that the wrong class
is not closer to the measurement is [1 - f(M, x)]. If there are
M classes, the probability that none of the M - 1 other classes
is closer to x' is this quantity raised to the M - 1 power. The
classification error at point x for noise t is then

(3)

The average error probability E is the integral of Pe(Q, x) over
all possible noise values t and all classes in the feature space:

E= - (27rY'(uu)n fexp [- 2ui exp [ 2u2 Zxi]

(4)

This integral is difficult to evaluate in a multidimensional
feature space, but it can be approximated by performing the
integration over I before computing Pe(A, x£). The approxi-
mate error rate is

E_
I
(r)/a ex E2; [1-g)] I dt (5)

where g(Q) is

(21T)nu2n f fI

*exp (- 22 [xi +(xi+ i+si)2]} dxds. (6)

This expression can be simplified. It is evaluated in the Appen-
dix and shown to be

g() = C sn dsf
-'7r/2

*exp 4u2 (Q2 + s2 + 2st sin 0)] Cosn - 20 dO (7)

where C is a normalization constant that is defined in the Ap-
pendix, s and t are the lengths of the vectors s and t, and 0 is
the angle that the vector s makes with the perpendicular to t.
We can show that the approximation used in (5) always leads

to an upper bound on the true error rate. The integral respect
to x4 of (4) is less than or equal to the integrand of (5). The
integral with respect to x of (4) can be written

LU

0
CE

wr

1.00
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.40

.20

.00
.00 .40 .80 1.20 1.60 2.00
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Fig. 2. Approximate error rates as a function of noise for 255 classes
with dimensionalities of 5, 10, and 20.

1.00

XU / A M 1

cc .60 M=5.0~~~~~~~~~~2

NOISE oN/4
Fig. 3. Approximate error rates as a function of noise for 20 classes

with dimnensionalities of 5, 10, and 20.

Because p(x) is bounded by zero and one, the inequality

fQlf(x -*)]M-l dx

rPx II f(x , d x (8)
where the Gaussian distribution of classes has been written as

p(x), whose integral over all I is unity. Use of Holder's in-
equality leads to

x x )]Ml dx
M-1

> P(-+)2/(M -1) I1 - f(1, _'.d} . 9

>st(x1[' t(x $,] M-l

(10)

holds for M> 3. When M is 2, the equality holds trivially. We
note that the equality holds when f(xe, t) is zero, i.e., when the
error rate is zero, and that the approximation is best for small
error rates.

If an appropriate change of variables is made in (5) and (6),
the error rate E can be shown to be a function of the ratio
UN/U, and not of the standard deviations individually. Figs.
2 and 3 show error rates when the number of classes is 255
and 20, respectively, for dimensionalities of 5, 10, and 20.
Each figure also contains the results of classification of ran-
domly generated data with a dimensionality of 5. To compute
these, the data libraries were generated randomly and data
measurements were created by adding Gaussian random noise
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to each member of the library. (For 20 classes, the results are
the average error for classifications of 20 sets of randomly
generated data. Errors computed for a single set of data are
statistically unstable when the number of classes is low.) The
approximation of (5) is demonstrated to be a reasonably tight
upper bound which holds best for small error rates.

III. APPLICATION-CORRELATION MATCHING

One of the most widely used methods of comparing and
classifying images is correlation. Typically, a measurement
is compared with a prototype image, and identification is
accomplished by subtracting or correlating the measurement
from the prototype. When images are subtracted, the distance
measurement of (1) is the integral of the difference over the
area of interest. This is

d2 1- F
O zd2 =s y2o( Yr(Z)]2 dz (11)

UN ~

where Yr(z) is the measurement, y(z - z) is the prototype,
and UN is the noise variance, which we assume to be indepen-
dent of position. This integral can be written

2
1 [2-44_) [24d2 - y
Jy2 zo) d:Z_ + Jy (z_) d z_d2=2 ,yZ Z) 2+ r~Zd

UN UNJ

z4jyZ zo ) y,( ) Zd- ( 12)

If the prototype library and the measurements are of generally
similar imagery, the first two integrals may be relatively inde-
pendent of the choice of the library member and the measure-
ment that is being classified. Often these conditions hold, and
classification can be accomplished solely by means of the
correlation function that constitutes the last integral: the dis-
tance d2 is smallest when the correlation peak is largest.

If the statistics of the imagery are Gaussian, the analysis of
the previous section can be used to estimate error rates for
classification through application of (12). The axes {Xi} of the
feature space are eigenvectors of the correlation matrix of the
imagery. The measurement Yr(z) and the library member
y(z) are represented as vectors x and x' in this feature space,
and the quantity d2. expressed in terms of these is

d=2 i[x - x' (13)
UN

If the measurement is a truncated version of what may be
assumed to be stationary imagery, and if its truncating aperture
is large, the eigenfunctions {Xjj are approximately Fourier
components of y(z ), defined over a region the size of the limit-
ing aperture. This may be demonstrated by computing the
Fourier transform of the correlation function (y(z) y(z')) of
the library images. Because of stationarity, the correlation
function is a function only of the difference s between z
and z'. Its Fourier transform, for large apertures, is, in one
dimension,

T(co e')= 2 ffei ())Ze iS(y(z) y(z - s)) dz ds

ents are eigenfunctions. The eigenvalues u3 are (approxi-
ely) values of the Wiener spectrum T(wo).
distorted image may be represented by the product A,
re A is a matrix whose coefficients describe the distortion.
n Ax is substituted for x& in (13), the distance may not be
|when I and x' describe the same class. The error rate
zero noise is calculated by determining the distance r

veen x' and Ax and computing the probability that an
,rrect class is within a hypersphere of this radius centered
he measurement point. If noise is present, the radius of
hypersphere may be larder or smaller, depending on the
ction of the noise vector t.
Le matrix A defines distortion generally, including not only
netric distortions, but transformations such as blur or con-
loss which change imagery that is to be classified. Blur is

ultiplication in the Fourier domain and may be described
i diagonal matrix A, whose elements aii are values of the
sfer function a(wc). In the case of contrast loss, all aii are
same. Off-diagonal elements aii of A are zero for trans-
aations of this type.
)tations and scale distortions have proved to cause serious
rs in correlation matching, and their effects on the correla-
peak have been analyzed by several workers [6] -[9].

Ler these transformations the spectral component at each
uency ci is mapped into a new component, at xJi/m in
case of magnification m. On the average, the correlation
-tion is the Fourier transform of the products of trans-
ned and untransformed spectral components, integrated
the extent of the aperture that limits the reference [61,
The expectation of the correlation peak height is a func-

of the Wiener spectrum of the imagery and the size of the
rence aperture; high spatial frequency components and
apertures make the height of the peak more sensitive to

)rtions of this kind. Since spectral components are only
roximately equivalent to the orthogonal features, each
sformed I usually has a component along the original. Both
and the component orthogonal to it must be considered in
ulating error rates.
Le energy of the imagery is conserved under rotations and,
ie imagery is limited in extent by a truncating aperture, it
?proximately conserved under magnifications. The integral
he Wiener spectrum is the same before and after the trans-
iation in this case. In our notation in which a set of spec-
components is denoted by x4 and a set of transformed
ponents by Ax, this means

iIX 12 =- AX 12 (15)

EX2 ( - ai2i)= 2LEaiixi E: aij xj

+ E [> aijx] 2
i -j

where the prime on the summation sign indicates that the
term for which j = i holds is omitted from the summation.
Equation (15) can be averaged over the entire data set to

(16)() L ai ( - a .E) = E Aa2.2U
(14) 2Ju It .~)= 4.ufi i,i/

or

T(c, ') - I(w w)jeiws(y(z)y(z - s))ds
2 rr

where 5( - ) is a Dirac delta function. The correlation matrix
is diagonal in the Fourier domain, implying that Fourier com-

The right side of this equation is the sum of what all xi gain
under application of the operator A, while the left side is
the sum of what all lose. We will assume that this relationship
holds for each xi individually: that on the average

a? (I - a,?) = E: .a 3o,?I if II1u1
i

(17)
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This relationship will be approximately true if the Wiener
spectrum ca? and the projection quantities aii vary slowly as
a function of the index i, and the off-axis elements of A are
small when i and j differ greatly.
As described above, the coefficients aii may be computed

analytically in simple cases. If a library of data is available,
the aii may also be computed as the inner product of a covari-
ance eigenvector and a distorted version of itself. This is

a1 14 (18)aii = i Aoi (18

where Pi is a normalized eigenvector of the covariance matrix
of the data library.

IV. DISTORTION ERROR RATES

As in Section II, we compute error rates by finding the
probability that a given class is within a hypersphere centered
at the measurement point. The integral of the distribution
function is

fQt X, (27Tn/2 n j exp [ 1+(AXi+ ti+Si)2 ds.(2r)1 a' 12u1 .

(2')
Here, r is the radius of the hypersphere, i.e., the distance be-
tween the correct- member of the library and the distorted
image with noise t. For scale-type distortions, the exponent
may be expressed

1 F 1
2 [aiixi+ aiiXi+ii+si.* (19)2a?

We will not attempt to compute terms involving a11. Rather
we will estimate provisional error rates for given values of the
summation 1' aixj, assumed constant over the library coor-
dinate s. The average error rate is approximated as the sum of
these provisional error rates, weighted by the probability of
occurrence of a given value of 1i a Xi.
These considerations mean that 2' a11x1 will be treated as a

random quantity that follows an ergodicity assumption. The
quantity I' a,, x is a zero mean Gaussian process and, because
of the orthogonality of xi and x;, would be independent of
aii xi, except for the relationship of (15). Our approximation
will assume that it is an independent Gaussian process and has
a standard deviation given by right side of (17).
We also make an approximation concerning r. Rigorously,

it is a function of xi given by

r2 = E [Xi(l - aii) + 1] 2,
I

(20)

where ti includes both randomly added noise and contributions
from off-axis values of the matrix A. The average value of this,
for a given value of t is

(r2)= o(l -aii )2 +2 (21)

We will use the square root of this average for r in (2').
With these additional approximations, the computation pro-

ceeds as in Section II. As before, we compute errorrates under
the assumption that the correlation matrix eigenvalues all have
the same value a. We will also assume that the projection coef-
ficients all have the same value a. Because ai and aii are all
equal in the computations of this section, the standard devia-
tion of It ai1xi must be also. We denote it AM. We are now
considering a noise component that consists of a sum of the
original t and the noise-like terms that include a,,. Since these
quantities are independent, their combined distribution is a

1.00

.80

LL
.60

0
c .40
LL

.20

A
A

a - 1.

.80 1.20

NOISE ON/a
Fig. 4. Blur-type error rate as a function of noise.

convolution of their individual distributions. It is a Gaussian
distribution with variance (UN +22-).
The probability of error Pe(,, x) is computed from f(Q, x ) as

in (3). An approximate error rate is computed by integrating
over I before computing Pe. The result, for scale-type distor-
tions, is

(5')

E2II)n12(UN + rM2)nl2J

where the function g(Q) is

<( or 00

g

(27)n a2n_O -0

exp (- 2 [x? + (axi+ t+S;)2] dx dsi (6')

The evaluation of g(Q) in the Appendix leads to

gQ)= Cf sn-1 ds
po +1 in/ 2

*exp [- 222 )2+5+2stsin 0)

*cos n-20 dO, (7')

where n is the dimensionality and r is computed from (21).
The expressions for blur-type distortions are the same, except
that AM is omitted. This is a consequence of the fact off-
diagonal elements of A are zero.
As in Section II, the expressions for error can be expressed

in terms of the variable UNla, instead of in terms of these
variables individually. Figs. 4 and 5 are examples of error rate
computations as a function of noise for ten-dimensional Gauss-
ian data and 255 classes. The solid lines are the approxima-
tions to the error rates for the three indicated values of a. Fig.
4 applies to blur-type distortions for which AM is zero, and
Fig. 5 to scale-type distortions, where uM is as calculated
above.
The fact that blur and scale error rates are not zero even at

zero noise (when a is not 1) is demonstrated. The error rate
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Fig. 5. Scale-type error rate as a function of noise.

curves tend to be flat near the origin, suggesting that a zero
noise error rate can be a useful estimate of error over a range
of noise values.
Data points are shown in both curves for comparison. Ten

independent sets of normally distributed data with variances
of unity, each with 255 values, were generated to be used as
a ten-dimensional library. Measurements were generated by
multiplying each coordinate of a library vector by one of the
values of a, adding to each coordinate Gaussian random noise
from a distribution with variance aK, and, in the case of scale-
type distortions adding additional noise from a distribution
with variance 1 - a2 . In Fig. 4, the value of a was 0.6, and in
Fig. 5 it was 0.9. Classification was accomplished by measur-
ing the Euclidian distance from the measurement to each
member of the library. The measurement point was classified
to the library member corresponding to the smallest distance,
and error rates were computed accordingly.

V. CLASSIFICATION EXAMPLES

The error rate calculations of the preceding section assumed
that the data to be classified are normally distributed in fea-
ture space. They assumed that the eigenvalues of the correla-
tion matrix are equal and that distortion, when present, can
be characterized by the same multiplicative parameter a for
each coordinate. The approximate agreement between com-
puted error rate curves and error rates for contrived Gaussian
data suggest that a large body of data may be characterized by
eigenvalues u2 and distortion parameters aii. In this section
we will compare classification of actual data to classification
of contrived data that have been generated to have Gaussian
distributions with variances aU that equal the eigenvalues of
the actual data.
We use as a database a set of ship measurements that is

maintained at the Naval Research Laboratory. This library
contains, in tabular form, measured heights of the superstruc-
ture above the deck at twenty equally spaced intervals between
bow and stern, as well as heights and positions of masts, and
certain data on radars, guns, missile launchers, and directors.
Ships of several nations, both military and commercial, are
represented in the library. At the time of this writing, 255
ships are included. Our classifications have used only the in-
formation of the height above the deck.

Fig. 6 is a comparison of error rates computed by classifying
data from the NRL ship library and classifying contrived data
that were intended to simulate it. The contrived data consisted
of 20 sets of Gaussian data, each with a variance equal to one

.60

.40

.20

.00
.00 .40 .80 1.20 1.60 2.00

NOISE °N/O1
Fig. 6. Error rates curves for ship library (X) and Gaussian data with

the same eigenvalues as the ship library (A).

of the eigenvalues of the height, covariance matrix. The ele-
ments Mij of this matrix are defined

1
= 2- Z(xis - xiso)(x1s - Xs)

25S
(22)

where xis is the ith height of ship s and xiso is the average of
the ith heights over the entire library.
A single feature vector, simulating a ship, consists of one

value from each of these 20 sets. Gaussian noise with standard
deviation UN was added to each coordinate of the ship library
or contrived data library to create measurements. The abscissa
is the ratio of the standard deviation of the noise to a,, the
square root of the largest eigenvalue of the data. For reference,
the three curves of Fig. 2 are reproduced, showing, for three
dimensionalities, error rates when all a are the same.
We note that the error rates that pertain to the actual data

are somewhat higher than those for contrived data. This prob-
ably arises from clustering within the data set-there are sister
ships, for example, that are fairly similar. The agreement is
good enough, however, to suggest the correlation matrix eigen-
values as rough descriptors of the classification properties of
the data.
The measured error rate curves are fairly close to those that

might be expected when the data consist of n identical c. This
suggests that the data can be characterized by a dimensionality
even when the a are not the same-a dimensionality of about 7
would describe the Gaussian data of Fig. 6. The use of dimen-
sion to characterize data has been suggested by several workers,
including Bennett [10] and Fukunaga and Flick [5], who
computed it in different ways from that described here.
We can compute error rates under scale changes by magnify-

ing each ship in the NRL library and comparing it with the
unmagnified versions. The 20 heights above deck are expanded
via linear interpolation so that each ship is represented by 22
heights and the center 20 of these are selected as a distorted
feature vector. The measurement is created by adding noise to
this feature vector. The vectors are classified by finding the
distance between them and each of the 255 members of the
data library. Results are in Fig. 7, where error rates are cal-
culated versus UNIa1, defined previously.
The aii are calculated from (18). The normalized eigenvec-

tors are magnified and truncated as described above and the
inner product formed with an original eigenvector. Fig. 8 shows
the aii computed in this way for three scale changes: 5, 10, and
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15 percent. From the discussion in Section III, we know the
eigenfunctions correspond roughly to Fourier components-
they would correspond exactly if the images were stationary.
The results in Fig. 8 show that high spatial frequency compo-
nents are affected most by scale changes.
For comparison, contrived data with Gaussian distributions

were generated as described above. As before, the variance of
each coordinate was equal to one of the eigenvalues of the
covariance matrix of the ship library. To simulate magnifica-
tion of 10 percent, each coordinate of the contrived data was
multiplied by the appropriate aii from Fig. 8 and Gaussian
random noise with a variance a? (1 - a?-), from (17), was added
to each coordinate to simulate the effects of off-diagonal terms
of the distortion matrix A. An additional amount of Gaussian
noise, with a variance UN was added to simulate measurement
noise. A given coordinate i of the contrived data thus was a
sum of three elements from Gaussian distributions. The vari-
ances of these distributions were: (ai1 i)2, au (1 - an.), and
AN,v. This corresponds to the coordinate in the library with a
standard deviation of ai.
The contrived data were classified using the least distance

criterion of (1). Error rates for actual data are slightly higher,
possibly for the same reasons as in Fig. 6, but the results are
close enough to encourage the characterization of data by the
parameters ais.
The solid line of Fig. 7 shows the result of a plot of (5') for

a dimensionality of 7 and an a of 0.897. This single number
to characterize distortion was the weighted average of the first
7 values in Fig. 8 that correspond to 10 percent distortion.

2 =1
a = 7 . (23)

i =1

The analytical result, based on only two parameters, dimen-
sionality n and average distortion a, is in qualitative agreement
with the classification results for both actual and contrived
data.

VI. SUMMARY

We have shown that the ability of a feature extraction algo-
rithm to classify data is determined by a relatively small num-
ber of parameters when the data are Gaussian. The results of
Fig. 7 demonstrate this especially; error rates computed from
ai and aii agree fairly well with those obtained by classifying
actual data, and reasonable agreement is seen with the analyti-
cal curves, based only on u, n, and a. It is worth noting that
the computational methods used to arrive at the error rates
based on the parameters ui and aii are significantly different
from those used to classify the actual data. The former method
included only combinations of Gaussian data, while the latter
had to simulate the actual magnification process for each ship.
The approach that we have followed has demonstrated how

classifiability depends both on the feature set used and on the
data that are classified. We believe that the application of fea-
ture sets to specific data can be analyzed in a straightforward
way by computing the parameters described above. Feature
sets can be easily compared in this way. Moreover, the perfor-
mance of feature sets can be extrapolated to situations not
represented by the data.

APPENDIX

The function g(Q) from (6') is

( l fO~~r 0X

g =(2 7r)n f0n

-

exp { 2 [xi3 + (axi+ i +si)2 ds.

(Al)

In (6), r is replaced by I21 and a is 1. The inner integral is a

convolution that can be evaluated in each coordinate xi sepa-
rately. This evaluation leads to

= rg =(27r)n/2 on(a2 + I )n/2J

-

exp +2
1

1) L i +Si)2] ds4. (A2)

If t and s are the lengths of t and s, and 0 is the angle between
s and the perpendicular to #, the expression for g(Q) is

-.0
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e 1 ~~~~~~~~~r
g() =

(2 r)n/ 2un(a2 + I)nJ2

*exp [ 2u2(a2 + s()2 +2s sin0)] ds. (A3)

The volume element ds is a product of individual volume ele-
ments

ds = ds, ds2 *dsn (A4)

We will define our coordinate system so that s, is parallel to
t and s2 through s are perpendicular to n. If t is the projec-
tion of s on this subspace, these are related to the angle 0
through

s1 =s sin 0

t = s cos 0. (A5)

A volume element ds can be expressed in terms of a product
of volume elements in each of these subspaces. The integrand
is spherically symmetric in the subspace perpendicular to #,
and the integration can be performed over the variable t. The
corresponding volume element is expressed in spherically sym-
metric form. The total volume element ds is

(n - 1)lT(n 1)/2
ds = - t -2 dt dsl. (A6)

The variables t, s1 can be transformed to s, 0 j:
dt ds, sd sdO. (A7)

Combining (A5)-(A7) gives for the volume element ds

d= (n l)i( Co)/ cosn-2 0 dO s-l1 ds (A8)
p n + 1

and the expression for g(Q) becomes

rn1 r/2 r2 +S2 + 2s ]sin
g(V =cJsnidsj exp [ 2u2(a2 +) J

(A92

where constant C in (7') is

(n- 1) 1___I
( 2 ) 1n(a2+1)f/2,n

and in (7) is

(n- 1) 1

(n- 1) 2n12Un*-,/-7r r 2

(A 1 0)

(Al 1)
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