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Current methods for diffraction-spot integration from CCD area detectors

typically underestimate the errors in the measured intensities. In an attempt to

understand fully and identify correctly the sources of all contributions to these

errors, a simulation of a CCD-based area-detector module has been produced to

address the problem of correct handling of data from such detectors. Using this

simulation, it has been shown how, and by how much, measurement errors are

underestimated. A model of the detector statistics is presented and an adapted

summation integration routine that takes this into account is shown to result in

more realistic error estimates. In addition, the effect of correlations between

pixels on two-dimensional profile fitting is demonstrated and the problems

surrounding improvements to profile-fitting algorithms are discussed. In

practice, this requires knowledge of the expected correlation between pixels

in the image.

1. Introduction
The typical setup for macromolecular X-ray crystallography

uses a large two-dimensional area detector to record accu-

rately the positions and intensities of the diffraction spots.

Many different types of two-dimensional area detector have

been produced, including film, image plates, and various

configurations of detectors based on CCD and CMOS sensors.

Developments in X-ray detection technologies have been

spurred on by the proliferation of beamlines at large-scale

third-generation synchrotron radiation sources, demanding

large-area high-speed detectors. The speed, convenience and

efficiency of detectors based on a CCD chip coupled to a

primary conversion phosphor via a fibre optic taper have led

to such systems being currently the most widely adopted at

macromolecular crystallography beamlines (Tate et al., 2006;

Minor et al., 2000). We use the term ‘phosphor-taper-CCD

detector’ (hereinafter referred to as p-t-CCD detector) to

distinguish between this type of device and other X-ray

detectors based on CCD technology, such as those coupled to

lenses or other optical components (Gruner et al., 2002) and

direct-detection CCDs (Clarke, 1994). Recent developments

in detector technology have led to large photon-counting

hybrid pixel-array detectors suitable for macromolecular

crystallography that offer improved speed and noise char-

acteristics over current p-t-CCD detectors. Nevertheless, a

large amount of data has already been accumulated using p-t-

CCD detectors and it is likely to be some years before such

detectors are superseded in macromolecular crystallography.

Indeed, integrating detectors retain an advantage over

photon-counting devices in situations where beam flux is very

high, such as during the intense pulse of a free-electron laser

source, owing to the finite dead time of counting detectors.

Integration software for macromolecular crystallography

evolved in tandem with the technology used to perform the

experiments, particularly detector technology. The underlying

experimental method essentially remained the rotation

method of Arndt & Wonacott (1977), with the data collected

as multiple frames or images by two-dimensional area detec-

tors. Radical redesign and overhaul of the software has not

been required; rather, existing algorithms have been adapted

to cope with new detector types and improvements in meth-

odology, such as profile fitting, auto-indexing and handling of

fine-sliced oscillations. For example, the first versions of

MOSFLM (Leslie, 1992) were written to handle data recorded

on X-ray film and, later, image plates. With the widespread

uptake of p-t-CCD detectors at synchrotron sources, the

existing integration procedures were updated for the new type

of images produced (Leslie, 1999, 2006). However, assump-

tions about pixel correlations and instrumental errors appro-

priate for earlier detectors are not strictly valid for current and

future detectors. Here, we investigate and suggest improve-

ments in error estimation that can be made over adaptations

of legacy procedures by reformulating models for integration

specifically for data recorded on a p-t-CCD area detector.

1.1. The importance of measurement error estimates

The errors associated with integrated diffraction-spot

intensities are a combination of the inherent random sampling

expected from counting statistics with the instrumental

response and experimental errors. The instrumental and

experimental errors are either random, such as detector read-

out noise, dark signal, and variations in the dose per exposure

caused by factors such as beam instabilities and shutter jitter,
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or systematic, caused by absorption, crystal decay, nonuniform

response of the detector, inaccurate distortion correction,

detector gain or other factors. The distinction between

systematic and random error is not always clear. Here, we

refer to the definitions provided by Bevington & Robinson

(1992). Briefly, in any experiment, if a particular measurement

is made many times, random errors are those that affect the

precision of the mean value of those measurements, yet with

enough measurements the effect of these fluctuations is

overcome and the sample mean is a good estimate of the true

value. In contrast, systematic errors are reproducible discre-

pancies of measurements from the true value, such that the

mean of a sample of many measurements is not an accurate

estimate of this value.

The accurate estimation of errors is of great importance

throughout the process of crystallographic structure solution

(Borek et al., 2003). Generally, errors are used as weights to

indicate the reliability of each measurement. In current

practice, it is typical to use weights obtained from the esti-

mated errors of individual measurements during the aver-

aging, or merging, procedure to obtain the best estimate of a

Bragg spot intensity, and consequently its underlying structure

factor, from multiple observations. Subsequent use of the

value of a merged structure factor implies the acceptance of a

certain error model, because its magnitude is a function of the

relative weights of its contributing observations.

New methods are now emerging for the treatment and

exploitation of unmerged data. For example, it has been

demonstrated that phasing power can be increased by dose-

dependent modelling of site-specific structural changes due to

radiation damage when unmerged structure factors are used

(Schiltz et al., 2004). In addition, the phenomenon of aniso-

tropic anomalous scattering of polarized synchrotron radia-

tion also provides a powerful source of phase information by

breaking symmetry equivalence, an effect which is clearly lost

if data from symmetry mates are merged (Schiltz & Bricogne,

2008). These examples demonstrate how apparently deleter-

ious effects can actually be put to beneficial use by remodel-

ling of the experiment to account for physical processes in

more detail. Under these circumstances, each unique obser-

vation must be presented with its own accurate estimate of

error.

The success of structure determination depends critically on

the magnitude of the errors, particularly for experimental

phasing procedures that require accurate values for small

differences between measured intensities (Borek et al., 2003).

Not only does the accurate estimation of errors allow deter-

mination of the quality of a marginal signal, but the error

estimates themselves are incorporated into the procedures for

model fitting and estimation. The introduction of Bayesian

inference techniques to macromolecular crystallography has

very successfully reformulated the problem of deriving

knowledge from data in terms of maximizing the probability of

observing those data given parameterized hypotheses

(maximum likelihood) and considering the probability of

those hypotheses in the light of prior knowledge (full Bayesian

estimation) (Bricogne, 1997). These techniques now permeate

most areas of modern macromolecular crystallography. Like-

lihood targets constructed for tasks such as experimental

phasing (de La Fortelle & Bricogne, 1997; McCoy et al., 2004,

2007), molecular replacement (Read, 2001; McCoy et al., 2007)

and structural model refinement (Murshudov et al., 1997;

Blanc et al., 2004) are probability distributions, with variances

that combine errors in the calculated (model) values with

errors in the observed values. Measurement errors are thus

naturally construed not merely as weights but as limiting

factors in the degree of belief held about derived knowledge.

1.2. Currently employed models for error estimation

The number of photons forming a diffraction spot at the

detector face is well described by a random variable that

follows a Poisson distribution, such that if the spot is

composed of N X-rays, the best estimate of the standard

deviation of the underlying distribution is given by N1/2. For an

ideal detector, the uncertainty in the data is determined

entirely by the unavoidable statistical fluctuations in the

incident photon flux. Such a detector has a detective quantum

efficiency DQE = 1, where DQE is defined as the ratio of the

squared signal-to-noise ratio at the output of the detector to

the squared signal-to-noise ratio at its input.

DQE ¼
ðSo=�oÞ

2

ðSi=�iÞ
2
; ð1Þ

where S refers to the signal, � to the noise, and the subscripts o

and i to output and input, respectively. Real detectors never

achieve the limit of perfect DQE. Integrating detectors such as

p-t-CCD devices collect a signal that is proportional to the

number of incident photons during an exposure time.

Stochastic processes occurring as part of the detector physics

lead to a variation in response per event and therefore

degrade the output signal-to-noise ratio. Calculations of the

DQE for Bragg-spot integration on a particular p-t-CCD

detector have shown it to vary from�0.35 for a weak spot (500

X-ray photons) to �0.7 for a spot with 104 X-ray photons

(Phillips et al., 2000). Despite this, it is still common to assume

that, at the point of integration, the detector response follows

Poisson statistics, i.e. to assume a perfect photon-counting

detector. It is also assumed that not only is the recorded signal

Poisson distributed, but that each pixel contributing to that

signal is independently Poisson distributed, without correla-

tions with neighbouring pixels. In fact, for p-t-CCD detectors

the combined point-spread function (PSF) of the phosphor

and optical chain results in a reduction of the optical resolu-

tion of the detector and introduces correlations between pixels

that may extend many neighbours deep. The software

correction of geometric image distortions introduced by the

fibre-optic taper (FOT) also increases local correlations, by

spreading the signal at each pixel position between a cluster of

pixels in the final corrected image. One way to deal with

deviation from the assumptions of ideality is to inflate the

error estimates using an additional term to address measure-

ment uncertainty introduced by the detector. MOSFLM

incorporates an instrumental error term to account for a
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particular type of error dependent on the intensity and spot

shape expected if measurements are performed by X-ray film

densitometry. Although the physical justification for this term

is not appropriate for p-t-CCD detectors, the resulting esti-

mates are reportedly more realistic, particularly for strong

reflections for which the random errors are a smaller

proportion of the total error, such that the systematic errors

dominate (Leslie, 1999). One source of systematic error is the

nonuniformity of signals recorded at different regions of the

detector. This nonuniformity increases the scatter of inten-

sities between crystallographically related reflections that are

to be merged together. As discussed in x6.3, the size of this

error depends on the sharpness of the diffraction spot, i.e. the

systematic errors are worse for stronger smaller spots. Other

sources of variation between crystallographic symmetry-

related reflections due to apparatus and experimental imper-

fections may also be partly accounted for by the instrumental

error term. Unfortunately, application of such an error-

inflating factor at the point of integration masks the distinction

between the measurement uncertainty of individual reflec-

tions and the additional error inflation required to meet the

observed scatter when a scaling model is applied, e.g. by

SCALA (Evans, 2006).

1.3. Motivation and outline of the current work

It would be desirable for the initial error estimates made

during integration to reflect accurately the true random error

in each individual measurement of an integrated Bragg spot.

This part of the error is a combination of the underlying

Poisson statistics of the X-ray source with the instrumental

response, which includes physical factors such as read-out

noise and factors related to processing of the images, for

example the distortion correction, which increases neigh-

bouring pixel correlations. It follows that, in order to obtain

accurate estimates of the total random error in a single

measurement, it is essential to have an accurate model of the

detector response.

Current methods of error estimation rely on the comparison

of the observed scatter with the expected error in the data

through methods such as normal probability analysis (Evans,

2006). This leads to an estimate of the total error in each

merged intensity that includes all random errors and all resi-

dual systematic errors not removed by scaling. With accurate

knowledge of the measurement uncertainty described above,

it may be possible to isolate and quantify these residual

sources of systematic error and any additional random error in

the data. We hope that breaking down the total error into its

individual components will lead to a quantitative assessment

of all hardware, experimental factors and sample-related

effects (such as radiation damage) that influence data quality

in macromolecular crystallography.

In the text that follows, we describe in detail a computer

simulation of a p-t-CCD detector, and then its statistical

response is investigated by modelling the detector as a cascade

of events through a series of gain stages. The signal and

associated uncertainty are first considered generically for

values recorded in a region of interest without assessment of a

background level. This formulation is used to derive the DQE

of the simulated detector and it is then adapted for use in a

summation integration procedure, where the signal is given by

a localized Bragg-spot intensity with a subtracted X-ray

background. We then describe a series of simulations and

experiments to investigate the application of this noise model

to the simulated detector and how it compares with a real p-t-

CCD detector. It is made clear that, for profile-fitting error

estimates, the model must be extended to take into account

the effects of pixel value correlations, and indeed that these

correlations have a nonuniform structure caused by the

distortion correction. We envisage that the presented model,

and its future extension to profile-fitting error estimation, may

be applied to real p-t-CCD detectors within integration soft-

ware to provide realistic best estimates of the true random

measurement errors for each integrated intensity. We present

ideas for improvements to integration routines, with particular

reference to the MOSFLM program. However, the model for

a typical p-t-CCD detector is generally applicable, so other

integration packages may benefit equally.

2. p-t-CCD area detector simulation

In order to investigate ways in which errors introduced by the

detection process could be more accurately modelled, a

simulation of a p-t-CCD detector module of 1024� 1024 pixels

was produced as a package for the statistical programming

environment R (R Development Core Team, 2009). This

simulation consists of a set of functions that model compo-

nents of the detector, such as the phosphor screen, FOT and

CCD chip. As well as addressing the physical processes that

result in a raw image, the simulation also includes corrections

that are applied to the image to account for dark signal,

geometric distortion by the FOT and response nonuniformity.

In addition to the functions simulating detector operation, the

package includes functions for summation integration and

profile-fitting integration, as well as functions to read images

produced by both ADSC (Area Detector Systems Corpora-

tion) and Rayonix p-t-CCD detectors, and reflection data files

in CCP4 MTZ format (Collaborative Computational Project,

Number 4, 1994). This enables convenient manipulation of

images and reflection data within the R environment, with

access to all of the statistical and graphical capabilities that

entails. The code makes use of the general polygon clipping

library for R, gpclib (Peng et al., 2010), based on the Univer-

sity of Manchester GPC library, and multivariate normal

random deviate generation by the mvtnorm package (Genz et

al., 2010). All the functions presented here are collected into a

single R package called DISP, standing for diffraction image

statistics package, which can be obtained without charge from

the authors. R is freely available under the terms of the GNU

General Public Licence (GPL), Version 2.

Use of the simulation involves the application of a series of

functions to convert a table of X-ray photon positions incident

on the detector face into a matrix of 16-bit integer values

corresponding to the pixel values of an image. These functions
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simulate the real-life chain of events involved in detection,

starting with X-ray absorption in the phosphor, followed by

amplification to a shower of light photons, and transmission

through the FOT and other couplings to the sensor to form

stored charge. Read-out of the simulated detector returns a

raw image with pixel values corresponding to digitization of

the stored charge, subject to read-out noise and dark signal for

the length of the exposure. If a flat-field image and a cali-

bration array for the distortion correction have been calcu-

lated for the detector, this raw image can be corrected,

producing an image that mimics the usual output seen by a

crystallographer performing a data collection. The correction

procedures used by DISP are not exact algorithmic repro-

ductions of published procedures for real detectors but are

implementations of the same ideas, intended to produce

images with features closely related to real images. In parti-

cular, exact knowledge of the taper distortion made it easier to

calculate the distortion correction table, rather than following

the empirical method required for real detectors (Stanton et

al., 1992a; Paciorek et al., 1999; Barna et al., 1999). Never-

theless, the important feature of distortion correction is

preserved – the distribution of pixel values between a cluster

of neighbouring pixels in the corrected image. The main steps

taken to produce the simulated images are summarized in the

following subsections.

2.1. Amplification at the phosphor screen

The simulated X-ray source was assumed to be mono-

energetic at 12 keV and X-rays were assumed to arrive

perpendicular to the detector face. These assumptions are

sufficient for current purposes. However, the response statis-

tics of a real p-t-CCD detector are affected by X-ray energy

and obliquity of incidence. This should be taken into account

in a future implementation of a complete model for integra-

tion of real data. The phosphor screen was assumed to have a

uniform response. Rather than explicitly model the detailed

physical mechanism of X-ray interaction with the phosphor,

we used precalculated results from a Monte Carlo simulation

(Liaparinos, 2009; Liaparinos et al., 2006; Liaparinos &

Kandarakis, 2009) to model both the PSF and the phosphor

light-yield distribution, for light photons that escape the back

surface of the screen towards the downstream detector

components (i.e. transmission mode). The light-yield distri-

bution is also referred to as the phosphor scintillation spec-

trum (Mickish & Beutel, 1990; Beutel et al., 1993), or

elsewhere as the pulse-height spectrum (Liaparinos &

Kandarakis, 2009). The form of this distribution determines

the information factor or Swank noise for the phosphor, which

gives the contribution of variable light output to the overall

system DQE (Swank, 1973; Beutel et al., 1993).

The PSF of a real phosphor typically displays a sharp peak,

accompanied by long tails caused by scattering of light. Data

for the mean PSF of complete detector systems have been

reported fitting an exponential function (Westbrook & Naday,

1997), and recently a model was proposed for the PSF of a

phosphor for the diffraction-image simulator MLFSOM by

considering the geometry of a point source positioned above

the pixel plane (Holton, 2008). By avoiding an explicit model

and simply sampling a precalculated PSF, the results produced

by DISP are realistic and require minimal computational

expense. It should be noted that the PSF data have been

modified from the originally supplied data in order to produce

a radial profile of smoothly interpolated values suitable for

sampling. The full-system PSF is also inflated slightly

compared with an exact transmission of the phosphor PSF, in

order to produce realistic values that account for other

elements in the optical chain. Hence, the fine details of the

PSF used in DISP should not be considered indicative of the

accuracy of the original phosphor simulation (Liaparinos et al.,

2006). Details of the phosphor model are given in Table 1 and

Fig. 1.

2.2. Image transmission by the fibre optic taper

DISP uses a simple model of an FOT, to account only for

demagnification and continuous distortions. Nonuniformities,
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Figure 1
Phosphor simulation details. (a) The light-yield or scintillation spectrum
for the simulated phosphor, with parameters as given in Table 1.
Although the mean number of light photons emitted per 12 keV X-ray is
281.5 photons, the distribution is rather broad, so events with much
higher or lower amplification gains are common. (b) The point-spread
data were determined by simulating a pencil beam of X-rays incident on
the phosphor and binning output counts into a pixel grid with a 10 mm
pitch positioned immediately behind the phosphor screen. A surface was
then fitted over the counts. Note that this graph represents the point
spread of the phosphor alone.



such as ‘chicken-wire’ patterns caused by bundling of optical

fibres or shear distortions that inflict real tapers (Coleman,

1985), were not modelled. The image distortion introduced by

the FOT was modelled as a radial function, so that a symme-

trical pincushion or barrel-type distortion can be easily

produced, although real tapers usually show more complicated

patterns of distortion, breaking the radial symmetry. The

uniform losses of the simulated optical chain lead to an overall

transmittance of 4.9%, using realistic parameters for a taper

with a demagnification ratio of 2.7:1, as detailed in Table 2.

2.3. Charge accumulation and CCD read-out

The CCD quantum efficiency was assumed to be 35%, the

remainder of the incident photons being lost by reflection or

absorption in gates. For those photons that do interact, a unity

photon-to-electron conversion gain was assumed. These

photons were binned into the appropriate pixels according to

the position at which they exited the taper, with each pixel

forming a 30 mm square on the sensor (similar to real CCD

sensors with a 2� 2 hardware binning mode). Dark signal was

accumulated during exposure at a rate of 0.01 electrons per

pixel per second. Read-out noise was modelled by generation

of a random deviate for each pixel, taken from a normal

distribution with a mean of zero and a standard deviation of

ten electrons, which was then added to the pixel electron

charge. For read-out, an analogue-to-digital converter (ADC)

conversion rate of five electrons per analogue-to-digital unit

(ADU) was used over the whole scale. No near-full-well

nonlinearity was modelled. A constant offset bias of 500 ADU

was added to the pixel values. Real CCD sensors have arbi-

trary ADC bias voltages that vary for different read-out

channels. Pixel values were capped at the 16-bit integer

maximum, but no pixel bleeding effects have been considered

for overloaded pixels. The digitized images produced by this

stage are referred to as raw images. As with real detectors,

whole-image corrections for nonuniformity and distortion

were then performed, to produce the corrected images that

are used by the most common data-integration procedures.

2.4. Dark subtraction and nonuniformity correction

The order in which corrections were applied for DISP was

chosen to be the same as for the Rayonix series detectors

(Doyle, 2006). The first stage in raw-image correction is to

subtract a dark image, which also removes the bias offset.

Subsequent correction procedures involve multiplicative

arithmetic on pixel values, which would result in incorrect

values if performed with the bias present. In the simulation,

the phenomenon of ‘zingers’ (spots arising from the direct

impact of X-rays, cosmic rays or radioactive decay events on

the CCD sensor) was not modelled and all images were

assumed to accumulate dark signal for 1 s. A single dark image

was generated for correction of all raw images. Following dark

subtraction, raw images were corrected for nonuniformity

using a flat-field response image. Because the simulated

detector has an inherently uniform response (apart from the

image-density variation introduced by the spatial distortion

discussed below), as a correction the procedure is superfluous.

Nevertheless, it has an effect on data quality, and therefore we

chose to model it. The uniformity of response of the simulated

detector ensures that systematic errors due to sharp features

in a source signal that are unlike the flood field used for

calibration, as discussed in x6.3, are not present. However,

there are still systematic errors present because of imprecision

in the flood field, i.e. the random difference between the

recorded flood field and the true, uniform, response.

Performing the nonuniformity correction for the simulated

detector is therefore akin to introducing a systematic error

into the otherwise uniform response.

To perform the nonuniformity correction, each pixel in a

dark-corrected raw image was divided by a value stored at the

equivalent position in the flat-field normalizing array. The flat-

field array was calculated in advance by the average of a set of

dark-corrected flood-field images, which had been processed

research papers

1360 Waterman and Evans � Error estimation J. Appl. Cryst. (2010). 43, 1356–1371

Table 1
Phosphor simulation details.

Phosphor material Gd2O2S:Tb
Density 7.34 g cm�3

Packing density 50%
Coating weight 14 mg cm�2

Grain size 5 mm
Intrinsic efficiency 0.15
Incident X-ray energy (monoenergetic) 12 keV
Generated light wavelength (monoenergetic) 545 nm
Phosphor point spread† FWHM < 40 mm
Phosphor point spread FW10%M < 100 mm

† Phosphor point spread was determined as described for Fig. 1.

Table 2
Parameters of the simulation.

Item Source Value

m0 Number of incident
X-ray photons

Poisson-distributed signal

m1 Fraction of incident
X-ray photons
that interact

Binomial success
probability, equal
to the phosphor
quantum absorption

0.85

m2 Mean quantum
amplification of
phosphor

Simulated scintillation
spectrum

281.5 photons

�m2
Standard deviation

of the quantum
amplification of
the phosphor

Standard deviation of
the simulated
scintillation spectrum

163.3 photons

m3 Overall transmission Binomial success
probability, product of:
50% FOT acceptance,
14% FOT transmittance,
70% FOT to CCD
fibre-optic stub
acceptance,
35% quantum efficiency
of CCD

0.01715

N Number of pixels
signal is recorded
over

Determined by integration
procedure

�r CCD read-out noise Normal distribution 10 electrons r.m.s.
gADC Number of electrons

per ADU
Fixed constant 0.2



to remove known deviations from flatness in the flood-field

signal. The luxury of simulation allows an ideal uniform flood

field to be supplied to the detector face, which is not usually

practical in reality. However, even in this case one source of

deviation from flatness in the recorded signal remains. This

residual error is due to the FOT, because the distortion it

causes is non-area preserving, leading to systematic differ-

ences in the photon density across the image. This means that

before the averaged flood-field image could be made into a

flat-field image for use in the nonuniformity correction, it had

to be scaled according to the effective collection area of each

CCD pixel when it is mapped back along the FOT to the

detector face. The resulting flat field was then normalized, so

that the values represented the scale factor by which the

equivalent pixel in the image under correction is greater or

less than the expected uniform value.

2.5. Distortion correction

Correction of the image distortion was achieved by re-

apportioning pixel values according to the overlap of the raw-

image pixel grid with a new noncommensurate nonorthogonal

grid that takes into account the spatial distortion in the

original image (Paciorek et al., 1999). In DISP this was

achieved by mapping the CCD pixel vertices back along the

FOT to form quadrilaterals at the detector face. Overlaps

between this grid of quadrilaterals and an orthogonal grid of

pixels defined at the detector face with a 73 mm pitch were

calculated, and the pixel values were then distributed into the

orthogonal grid according to these overlaps. In this simulation,

a simple radially symmetric model of fibre-optic distortion was

used, based on a third-order polynomial, with none of the local

discontinuities or other imperfections often present in real

tapers. Because the form of distortion was known exactly, it

was not necessary to simulate the usual procedure of exposure

through a grid mask to measure the distortion and interpolate

for all pixels (Stanton et al., 1992a; Barna et al., 1999).

The effect of the distortion correction was visible in

corrected images as a nonuniform smoothing, resulting in

Moiré-like patterns. In areas where the original and distortion-

corrected grids closely matched one another, little intensity

was shared between pixel neighbours and covariance between

these neighbours remained low. In other regions where the

grids matched badly, the intensity of a pixel may have been

spread between four or even more neighbouring pixels in the

corrected image, increasing the covariances between pixels

and their neighbours and producing a visible smoothing.

Although this effect is visible on individual corrected frames, it

is especially apparent on an image of the variance at each pixel

calculated for an image ensemble, as shown by Fig. 2. This

nonuniformity of the local covariance structure has a direct

effect on error estimation for profile-fitting integration, as

discussed in x6.2.

3. Theory: detector response

3.1. Non-Poisson detector statistics

A detection event is naturally described by a chain of

processes, with the output at one stage feeding into the input

of the next. Each stage has a particular gain, or loss, that is

subject to a probability distribution. A detector model of this

type was proposed by Breitenberger (1955) and has been

applied for the calculation of zero-frequency DQE for various

detectors, including area detectors used in diffraction studies

(Zweig, 1965; Arndt & Gilmore, 1979; Stanton et al., 1992b).

For more general imaging tasks, a

calculation of spatial frequency-

dependent DQE may be more appro-

priate (Cunningham, 2000), such as

that of Williams et al. (1999) for a p-t-

CCD-type detector. The error

response of the detector chain can be

modelled by considering the relative

variance of the output signal, a

dimensionless quantity defined as the

variance divided by the squared signal.

The overall relative variance can be

broken down into the sum of the

relative variances normalized by the

number of input quanta at each stage

in the cascade (Breitenberger, 1955).

The stochastic stages forming the

simple detector model for the simula-

tion reported here are as follows:

X-ray incidence on the phosphor

screen, absorption of a fraction of

those X-rays, amplification due to

emission of light photons from the

phosphor, transmission of light
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Figure 2
Distortion correction. (a) The orthogonal grid of pixels for a 2� 2 mm area of the simulated detector
face (black), superimposed over the grid of CCD pixels (red), translated back along the taper to show
their equivalent areas on the detector face. (b) 100 flood images with an expected value of 100 X-ray
photons per pixel were simulated, with full corrections. This image shows the variance of the pixel
values calculated over the image ensemble in the same region of the detector as the image in (a). It is
evident that the variance is higher (darker pixels) in regions where the pixel grids on the top panel
match well, whereas in regions where they match poorly there is a smoothing effect, leading to lower
variance but higher covariance.



photons through the FOT and other optical couplings to the

CCD, and conversion of light photons to electron–hole pairs

on the chip.

The event cascade, prior to read-out and digitization, which

add extra noise, can be described by means of an overall signal

m in units of electrons stored in the pixels of the CCD sensor.

This can be broken down into the product of the number of

incident X-ray photons m0 with the phosphor quantum

absorption m1, the quantum amplification m2 for the

production of light photons, the overall fraction m3 of light

photons transmitted to and absorbed by the CCD, and m4 for

the quantum yield of electrons on the chip,

m ¼ m0m1m2m3m4: ð2Þ

We are interested in the signal and error integrated in a small

region of interest on the detector, defined by the integration

measuring box surrounding a single Bragg spot. The number

of X-ray photons incident in the region of interest on the

screen is a Poisson-distributed variable, with mean and

variance m0. The relative variance in this quantity is therefore

given by R0 = 1=m0. The proportion of these X-rays that

interact with the screen is described by the phosphor quantum

absorption (Swank, 1973). This is modelled by a binomial

distribution (Breitenberger, 1955), with the interaction prob-

ability or fractional gain m1 equal to the quantum absorption,

with variance �2
m1
¼ m1ð1�m1Þ. The relative variance for this

stage is therefore R1 = 1=m1 � 1. The third stage concerns the

phosphor amplification gain, described by the scintillation

spectrum of the phosphor material, with mean value m2,

variance �2
m2

and thus a relative variance given by

R2 ¼ �
2
m2
=m2

2. The fourth stage in the chain describes the

absorption and other losses of light through the optical

couplings to the CCD pixel. This is also modelled as a bi-

nomial distribution (Arndt & Gilmore, 1979), with transmis-

sion m3 and variance �2
m3
¼ m3ð1�m3Þ, giving the relative

variance for this stage R3 = 1=m3 � 1. The simple model

employed by the simulation assumes monoenergetic emission

by the phosphor at 545 nm. Photons with this energy may

create no more than one electron–hole pair (Westbrook &

Naday, 1997). The probability of interaction has already been

incorporated in the transmission m3, so a single photoelectron

will always be produced for each light photon, giving m4 = 1

with a variance of zero. The total relative variance of the

quantity m is therefore

Rm ¼R0 þ
R1

m0

þ
R2

m0m1

þ
R3

m0m1m2

¼
1

m0m1

1þ
�2

m2

m2
2

þ
1�m3

m2m3

� �
: ð3Þ

The relative variance of the number of electrons stored in

pixels in the region of interest on the chip is converted into the

actual variance in this quantity by multiplying by the squared

output signal for the combined cascade stages, ðm0m1m2m3Þ
2,

�2
m ¼ m0m1ðm2m3Þ

2 1þ
�2

m2

m2
2

þ
1�m3

m2m3

� �
: ð4Þ

The cascade chain is responsible for the number of electrons

m stored on the chip in the region of interest. However, the

signal we actually have access to is a different quantity, p,

which is subject to further error due to the CCD read step and

conversion from analogue voltage to digital units. For a

particular number of electrons m stored in a region of interest

consisting of N raw-image pixels, the sum of pixel values p may

be calculated by

p ¼ gADCmþ
PN
i¼1

ðgADCri þ diÞ: ð5Þ

where gADC is the analogue-to-digital converter gain between

electrons and ADU, ri is the read-out noise in electrons at

pixel i, di is the digitization error in ADU at pixel i, and N is

the number of pixels over which the signal is collected. Real

CCDs often have multiple read-out channels, each with their

own ADC gain. In this simulation, gADC is assumed to be a

fixed known quantity that is equal for each pixel and contri-

butes no variance. The read-out noise is drawn from a normal

distribution with a mean of zero and a standard deviation of �r

electrons. Digitization noise is strongly signal-dependent and

difficult to analyse directly. Nevertheless, in favourable cases,

such as for CCDs where the read-out noise has a magnitude

greater than 1 ADU, it is possible to employ the pseudo-

quantization noise model as a good approximation. In this

model, the digitization error is sampled from a uniform

distribution with a range of 1 ADU (Widrow et al., 1996). The

expected value of the signal can therefore be expressed as

p ¼ gADCm; ð6Þ

with the noise in the signal given by

�2
p ¼ g2

ADC�
2
m þ Ng2

ADC�
2
r þ

N

12

¼ m0m1 m2m3gADC

� �2
1þ

�2
m2

m2
2

þ
1�m3

m2m3

� �
þ Ng2

ADC�
2
r þ

N

12
: ð7Þ

The apparent gain of the detector considering only

absorbed photons is given by G = m2m3gADC. This definition

matches that of MOSFLM and is useful when making error

estimates from pixel values, which clearly can only consist of

counts from detected X-rays. However, it should be noted that

the independently measurable gain is rather G0 = m1G, and it

is this that should be considered for calculations of the DQE

(Ponchut, 2006). Using the definition of G given, the above

expressions can be written as

p ¼ m0m1G; ð8Þ

�2
p ¼ m0m1G2 1þ

�2
m2

m2
2

þ
1�m3

m2m3

� �
þ Ng2

ADC�
2
r þ

N

12
: ð9Þ

For a general detector where the parameters are not all

known individually, we may fold the terms into a ‘cascade

factor’ � and ‘pixel factor’  ,

�2
p ¼ pG� þ N : ð10Þ
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Usually, the signal is estimated from a single sample

measurement. If a particular single image contains a region in

which the sum of pixel values is p, this can be used to estimate

the error �2
p. Strictly speaking, this assumes a normal distri-

bution of each pixel value, so that the mean coincides with the

most probable value, but this is generally a good assumption.

Thus,

p ’ m0m1G;

and therefore

�2
p ’ pG� þ N : ð11Þ

For the described simulation, values for the relevant quantities

in the above expression (assuming monoenergetic photons at

12 keV) are given in Table 2.

For comparison, it is convenient to consider the signal in

units of detected X-ray photon counts rather than ADU, to

compare the variance with the expected Poisson variance of a

photon counter given the same signal. If the expected value of

the signal in detected X-ray photon counts qdet ¼ p=G ¼

m0m1, then the variance is given by

�q2
det
¼
�2

p

G2

¼ qdet 1þ
�2

m2

m2
2

þ
1�m3

m2m3

� �
þ

Ng2
ADC�

2
r

G2
þ

N

12G2
: ð12Þ

Substituting the values from Table 2 into this expression gives

�q2
det
¼ qdet 1þ 0:34þ 0:20ð Þ þ 4:29N þ 0:09N

¼ 1:54qdet þ 4:38N: ð13Þ

From this expression, it can be seen that the simulated

detection cascade performs significantly worse than an exact

photon counter with the same quantum absorption, with a

cascade factor � = 1.54. In addition, the read-out noise and

digitization error contribute a small but significant extra term

to the variance, depending on the number of pixels considered

in collecting the signal.

3.2. Detective quantum efficiency

Considering the cascade model and pixel noise, the statis-

tical quality of the detector response can be summarized by

calculating the zero-frequency DQE (Westbrook & Naday,

1997; Arndt & Gilmore, 1979; Stanton et al., 1992b). If the

incident signal is governed by Poisson statistics, with mean and

variance given by m0, then from equations (1), (8) and (10) the

DQE may be written

DQE ¼
p=�p

� �2

m0

¼
ðm0m1GÞ

2

m0 m0m1G2� þ N ð Þ

¼
m1

� þ N =m0m1G2ð Þ
: ð14Þ

It is immediately clear that the DQE is limited by the phos-

phor quantum absorption m1 and further degraded by the

response fluctuations due to the cascade chain, summarized by

�. For the simulated detector presented here, this sets an

upper limit for the DQE in the absence of pixel noise of

m1=� ¼ 0:55. The read-out and digitization noise further

degrade the DQE according to the number of pixels N over

which signal is recorded, especially for weak signals with a

relatively low incident flux m0. To illustrate this, the theore-

tical DQE for the simulated detector is plotted in Fig. 3.

3.3. An improved error model for summation integration

The expression for detector error response given by equa-

tion (11) can also be used to improve a standard algorithm for

summation integration error estimation, by including deter-

mination of the X-ray background. We do not consider

systematic errors such as those due to inaccurate nonunifor-

mity correction, discussed further in x6.3, or include an

instrumental error factor that partially accounts for such

errors. Systematic errors in the detector response are best

identified explicitly by a procedure for merging and scaling

data. At this stage, we envisage assignment of an accurate

measurement error estimate for the random error of each

measured intensity, based upon knowledge of parameters

describing the detector response. The parameters, given for

the simulation in Table 2, are fixed properties of the detector,

apart from N, the number of pixels in the raw image over

which the signal is measured. The use of corrected images for

integration affects the handling of read-out and digitization

noise. Distortion correction procedures usually ensure that the

total number of pixels in the corrected image is the same as in

the raw image. However, a fraction of the raw image pixels are

discarded by the correction, as these are located in the

unexposed region around the edges of each CCD sensor,

outside the taper–chip interface. Therefore, the total number

of raw-image pixels contributing read-out and digitization

noise is slightly less than the total number of pixels in the

corrected image. For any particular measurement box defined
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Figure 3
Zero-frequency DQE, taking into account the detector cascade and pixel
noise. The family of curves shown gives the DQE for the simulated
detector as derived by equation (14) for regions of interest consisting of
6 � 6, 10 � 10, 14 � 14 and 18 � 18 pixels. For relatively weak signals of
less than 1� 104 X-ray photons, the size of the region of interest becomes
important owing to the pixel-noise component of the DQE expression. At
high flux, the DQE is limited by the phosphor quantum absorption and
the response of the cascade chain.



on a corrected image, the number of

contributing raw pixels, N, could in

principle be calculated from the

distortion map. However, it may be

more practical to measure the total

read-out and digitization noise

directly, using the variance at each

pixel position over a set of dark

images that have had full correc-

tions applied, or simply to approx-

imate N by the number of pixels in

the corrected image measurement

box.

Expressions for the summation

integrated intensity and estimated

error were derived by Leslie (1999).

The treatment here is similar, but

avoids the assumptions that each

pixel is an independently distributed

Poisson source. First, a measure-

ment box is formed around the spot, described by the same

integer parameters as used in MOSFLM (Leslie, 1999). That

is, NX and NY define the horizontal and vertical side lengths

in pixels and are both odd integers, to ensure a central pixel in

the measurement box. NRX and NRY give the rim widths in

pixels separating the background and peak regions. Finally,

NC is a corner cut-off parameter. Examples of measurement-

box definitions are shown in Fig. 4. In the measurement box,

pixels have the pedestal offset for corrected images subtracted

from them. This constitutes a noiseless bias in the background.

As the background will be subtracted, this bias will not affect

the integrated intensity. However, removal of this offset is

important when estimating error, as in that case background

counts are included, leading to a systematic bias in the error

estimate unless the offset is removed. The size of this bias is

dependent on the particular detector system’s chosen offset

level. MOSFLM has a keyword, ADCOFFSET, that may be

used to set the right pedestal level, but it is not clear if this is

always correctly exploited by users.

The background level is determined as described by Ross-

mann (1979), by an unweighted least-squares fit of a plane to

the background region pixels. The integrated intensity (in

ADU) is given by

IS ¼
PM
i¼1

�i � ðapi þ bqi þ cÞ
� �

; ð15Þ

where the summation runs over M peak-region pixels, with

intensities �i and coordinates (pi, qi). The background plane

parameters a, b and c, determined outside the peak region, are

used to interpolate background values inside the peak.

Rather than estimating the error in the background term

from the quality of fit of the background plane, a simplification

can be used that avoids necessitating knowledge of the

correlations between pixels. The measurement-box para-

meters stipulate that the measurement box has mm symmetry.

Thus, the intensity of the pixels constituting the background

under the peak can be given by the product of the number of

pixels in the peak region and the average background pixel

value,

Ibg ¼
M

N

XN

j¼1

�j; ð16Þ

where the sum is over the N background-region pixels. This

simplification allows the estimated variance of Ibg to be

addressed in terms of the total signal in the background

region, considering the cascade and pixel noise model, by

comparison with equation (11):

�2
Ibg�casc:

¼
M

N

� �2

G�
XN

j¼1

�j

� �
þ N 

 !
: ð17Þ

For the peak region, the error estimate for the total intensity is

taken directly from equation (11). Combining the peak and

background parts gives a complete expression for the esti-

mated error in the summation integrated intensity, taking into

account its distribution according to the cascade model with

pixel noise:

�2
IS�casc:

¼ G�
XM

i¼1

�i

� �
þM þ

M

N

� �2

G�
XN

j¼1

�j

� �
þ N 

 !

¼ G�
XM

i¼1

�i

� �
þ

M

N

� �2XN

j¼1

�j

� �( )
þM 1þ

M

N

� �
: ð18Þ

The absorbed photon gain G and the cascade factor � are

dependent on both the detector characteristics and the X-ray

energy. It would be important to have reasonable values for

these quantities available at the point of integration, in order

to produce realistic error estimates. Sometimes an estimate of

G is made using the variance-to-mean ratio in a region of

interest of a single flood image, where the variance is calcu-

lated as a spatial fluctuation. This calculation is based on the

assumptions that each pixel is independently distributed and
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Figure 4
Measurement boxes with parameters NX = NY = 23, NRX = 5, NRY = 4 and NC = 11 used for the
integration of spots on corrected images as presented in Tables 3 and 4, displayed over an image from
each ensemble of corrected images. (a) In zone A, the measurement box central pixel is X = Y = 306
pixels. (b) In zone B, the centroid of the spot has been shifted in both X and Y by six pixels, such that the
centre of the measurement box is at X = Y = 300 pixels.



follows Poisson statistics. As neither assumption is true for a

p-t-CCD detector, this method should be avoided.

4. Methods: simulations and experiments

4.1. Integration of simulated spot image ensembles

The simulation was operated in order to produce an

ensemble of 1 � 105 raw images containing a single spot (in

zone A) with a two-dimensional Gaussian profile on a uniform

flood-field background. A second ensemble of 1 � 105 raw

images was generated with the spot centroid shifted by six

pixels compared with the first set, in order to sample a

different region of the detector (zone B). The number of X-ray

photons constituting each spot was selected from a Poisson

distribution with mean m0 = 1 � 104. A further two image

ensembles were formed by applying full corrections to the two

sets of raw images. Suitable measurement boxes were found in

all cases (see Fig. 4 for examples of corrected images of spots

from both zones), which allowed recovery of the expected

intensity, i.e. m0G0 = 8206 ADU. The flux of the random

uniformly distributed X-ray background was chosen to give a

mean value of 20 X-ray photons per pixel region, as defined at

the detector face.

4.1.1. Summation integration. Summation integration was

performed on all images using a routine written for DISP

based on the algorithms in MOSFLM (Leslie, 1999). Errors

were estimated using both the MOSFLM formulation and the

new form given by equation (18). In both cases, the value for

the absorbed photon gain was calculated from G = m2m3gADC.

4.1.2. Profile fitting. Integration by profile fitting was also

performed using the same measurement-box parameters and a

profile-fitting routine based on that of MOSFLM (Leslie,

1999). Profiles were formed by taking the mean of the bias-

and background-corrected measurement boxes for additional

sets of 20 raw and corrected images of spots recorded in zones

A and B, and rounding pixel values to the nearest ADU. Error

estimations (described in detail in Appendix A) were made

employing the usual assumptions about Poisson-distributed

independent pixels.

4.2. Experiments with a real detector

We have devised experiments to estimate the terms

expressed in equation (10) for a real p-t-CCD detector, in

order to apply the present model for detector response. These

experiments were performed on the Rayonix MX300 detector

installed at the I24 Microfocus MX beamline at Diamond

Light Source (Evans et al., 2007). For comparison with the

simulation, the beamline energy was set to 12 keV.

4.2.1. Determination of the gain. It is not practical to

measure the absorbed photon gain, G, directly, but the gain

considering all incident photons, G0, was determined by

comparison of integrated intensities with counts from a scin-

tillation counter. We used a scintillation detector based on a

2.5 mm-thick NaI(Tl) crystal from SCIONIX coupled to an

ORTEC photomultiplier base and ORTEC amplifiers. In

order to avoid errors due to fluctuations of the source-beam

intensity between measurements, the scintillation counter was

mounted in front of the MX300 detector and pulse-height

spectra were recorded simultaneously with images on the

MX300 detector, with the beamline attenuators adjusted to

ensure negligible count loss due to dead time of the scintil-

lation counter. All recorded images had full nonuniformity

and distortion corrections applied. To ensure a well defined

signal on each detector, we exposed a wax sample mounted on

the goniometer to produce powder diffraction rings. The wax

used was dotriacontane (Aldrich D223107, 97%), as tests

showed this to give distinct diffraction rings at low resolution

(Brandao-Neto et al., 2010). The MX300 detector was posi-

tioned 1.44 m along the beam path from the sample position,

which allowed clear separation of the diffraction rings. Two

lead sheets of 2 mm thickness were mounted in front of the

detectors to form curtains that were adjusted to produce a

vertical slit of approximately 1 mm width, its length forming a

secant that cut through the solid angle of a diffraction ring of

interest, hence producing two spots at the positions at the top

and bottom where the diffraction ring was projected through

the slit. The X-rays forming these spots were incident at

approximately 2.8� from the detector-face normal. A series of

400 images of 5 s duration was collected first, with the wax

sample rotated through the same 80� oscillation range during

each exposure, and the scintillation counter removed from

position so that both spots were recorded on the MX300

detector. As we did not use a sample spinner, and the width of

the slit differed slightly at the positions forming the spots,

these images were necessary to determine the relative inten-

sity of the upper and lower spots. The scintillation counter was

then moved into position to measure the X-ray photon counts

constituting the lower of the pair of spots simultaneously with

images of the upper spot. A further 20 exposures were

recorded, with exposure times varying between 30 and 120 s.

A dark image was determined from the average image of an

ensemble of 200 images recorded without beam. As the dark

signal was found to be negligible for this detector, subtraction

of this averaged dark image was suitable for removing the

pedestal offset for images at all exposure lengths used.

Following this offset removal, integration was performed by

summation of the pixel values in the spot regions of interest.

The background count rate for the scintillation counter was

determined and used to predict background levels, which were

subtracted from the photon counts for each exposure. The

photon counts were integrated from the scintillation spectra

over the full width of the peak centred at 12 keV. The gain was

thus determined by the fit of a linear model between the

photon counts and the equivalent intensity of the lower spot,

which was inferred from the upper-spot integrated intensity

and the relative intensity factor between the upper and lower

spots.

4.2.2. Determination of pixel noise. We wished to partition

the total observed variance of a signal into the component due

to the cascade-chain response and the component due to pixel

noise, consisting of read-out and digitization noise over all of

the raw-image pixels contributing to the measurement box of

that signal. The measurement box we chose corresponded to
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the spot formed by the projection of the upper part of the wax

diffraction ring through the lead slit. To estimate the pixel-

noise component of the variance, we measured the variance of

the integrated intensity values within this measurement box

on a series of 200 images of 5 s accumulation time but with no

exposure to X-rays. We did not record N, the number of raw-

image pixels corresponding to the measurement box on the

corrected image, so we cannot here determine the pixel-noise

factor  directly. However, knowledge of the total pixel-noise

component N is sufficient to eliminate this part of the total

observed variance of a signal, to leave the part caused by the

detector cascade chain.

4.2.3. Variation of response. In principle, the variation in

the detector response could be measured directly over an

ensemble of many replicate exposures. It is, however, unfea-

sible to obtain true replicate exposures, because of instability

in the beam intensity. Sequential measurements of intensity

form a time series which is nonstationary in mean and

variance, owing to gradual drifts in beam intensity as well as

abrupt changes caused by, for example, electron-beam injec-

tion. During our measurements the synchrotron operated in

‘top-up’ mode, in which the electron-beam current was

returned to 150 mA every 600 s. At each 1 s interval

throughout the duration of data collection for the set of 400

images described in x4.2.1, we recorded the total current from

a QBPM (quad beam position monitor; FMB Oxford Ltd,

Oxford, UK) (Alkire et al., 2000) installed in the beam path.

These QBPM readings were background-subtracted in order

to find the correct zero level, and the moving average was

taken to give a single mean value for each 5 s exposure. A

suitable model to describe the time-series trend of the inte-

grated intensity values was found by linear scaling of the

averaged QBPM current values to fit the integrated intensity

of the spot formed at the intersection of the upper part of the

wax diffraction ring and the lead slit. We found it necessary to

perform separate linear fits for each gradually changing

section of the time series, which were demarcated by abrupt

intensity changes such as top-up injections. The aim was

empirically to remove, as far as possible, the effects of

underlying systematic trends in beam behaviour by breaking

the data down into shorter more well behaved sections, where

QBPM readings and intensity values could be assumed to be

proportional. The data and trend-line fit are described in more

detail in the supplementary figure.1

The part of the variance of the intensity due to statistical

response fluctuations and not due to the intensity trend was

estimated by calculating the variance of the residuals between

the trend model and the integrated intensity values. Strictly

speaking, the variance of the time series is nonstationary, so

the variance of the residuals depends in time on the value of

the trend. However, the standard deviation of the trend values

was only 1.3% of its mean value, so to a reasonable approx-

imation, referring to equations (8) and (10), a signal p is

described by the mean value of the trend, and the variance of

that signal �2
p by the variance of the residuals of the

measurements from the trend. Of course, this method relies on

the accuracy of the trend line. It is likely that the true constant

of proportionality between the QBPM values and the inte-

grated intensities also varies to some extent within each

separately scaled section, not only between sections as

assumed here. In this case it is reasonable to suggest that the

estimate of the detector-response variation, and consequently

the estimate of the cascade factor �, are overestimates of their

true values.

5. Results

5.1. Integration of simulated replicate spot ensembles

5.1.1. Summation integration. Sets of replicate spot images

were generated and integrated as described in x4.1. For

summation integration, the results are summarized in Table 3.

It can be seen that the variance of the integrated intensity is

poorly estimated for each spot under the usual assumptions of

independent Poisson pixels. Indeed, as should be expected, for

both raw and corrected images the observed sample variance

var(IS) is greater than mean(�2
IS

) by an amount compatible

with the result derived in equation (13). In contrast, the mean

estimated error taking into account the cascade model and

pixel noise, mean(�2
IS�casc:

), provides a much better agreement

with the observed variance. As expected, for corrected images

the pixel-noise component of the new model is slightly over-

estimated because the number of pixels in the corrected-image

measurement box is larger than the number of raw-image

pixels that contribute to the signal.

It is worth noting that the mean summation integrated

intensities for raw images are essentially the same for zones A

and B, but for corrected images they show a small but

significant difference. This is because the simulated detector

has a uniform response, so performing the nonuniformity

correction effectively introduces a small systematic error to

the corrected images, rather than removing a larger error due

to nonuniform response, as mentioned in x2.4. For a real

detector system, the position-dependent systematic error is

exacerbated by fine-grained nonuniformity, discussed in x6.3.

5.1.2. Profile fitting. The same sets of images that were

integrated by summation integration were also integrated by

profile fitting. As can be seen from Table 4, for spots in both

zones the mean estimated error, given by mean(�2
IP

), strongly

underestimates the observed variance in the integrated

intensities. For raw images this is fully due to negligence of the

correlation between pixels introduced by the PSF. For

corrected images the underestimate is worse, and nonuni-

formly so, because of the smoothing effect of increased

nearest-neighbour pixel correlations which result from the

distortion correction. Moving the spot six pixels in X and Y

from zone A to zone B samples a different correlation struc-

ture under the measurement boxes for corrected images. In

zone A, the observed variance in profile-fitted intensities

var(IP) for corrected images of spots is 3.8 times greater than
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the mean error estimate mean(�2
IP

). For spots in zone B this

ratio is 3.4. For raw images, the underestimate of the observed

variance is essentially the same in both zones, at 1.7 times.

These results demonstrate not only the degree to which the

‘smoothing’ effect introduced by distortion correction further

underestimates the true error, but that this underestimate is

modulated spatially across the detector face.

The expression for profile-fitting error estimation can be

derived by considering the least-squares minimization in

matrix form, as presented in Appendix A. The utility of the

general matrix approach is that it is clear how the error esti-

mate for profile fitting can be adapted for the situation where

pixels are not independent Poisson sources. A better set of

assumptions would populate the off-diagonal elements of the

variance–covariance matrix for observations, Mf, and ulti-

mately lead to more realistic error estimates for the profile

fitted intensity. With a large ensemble of replicate spot images,

we had the advantage of being able to calculate Mf based on

the real observed variances and covariances across the whole

set. For the 1 � 105 spot images in each image ensemble,

profile fitting was repeated with a pre-calculated Mf, leading to

much better profile-fitting error estimates (see Table 4). In this

case, Mf consisted of the observed variances and covariances

for pixels within the measurement box, with covariance values

calculated up to seven neighbouring pixels deep in X and Y.

This recovers essentially all of the variance due to covariance

elements for the raw images, and the majority of the co-

variance for the corrected images.

5.2. Comparison with a real detector

In order to study the response of a real p-t-CCD detector in

terms of the new model presented here, we performed the

experiments described in x4.2. In particular, we wished to

determine the cascade factor �, which encapsulates the excess

variance caused by the detection cascade compared with a

Poisson distribution. In order to determine �, we needed first

to quantify the other parameters expressed in equation (10)

and then use this to model the observed variation of a signal

measured on the detector.

The gain for all incident photons, G0, for this detector was

determined in two steps, first by determining the relative

intensity of two spots integrated in regions of images from the

area detector, and second by simultaneously recording images

of one of those spots whilst recording the intensity of the other

with a scintillation counter. The estimated error on the gain

measurement was therefore combined from the quality of the

linear fits from both stages. Using this method we measured

the gain to be G0 = 1.22 (5) ADU per incident 12 keV X-ray

photon. By assuming a phosphor quantum absorption of m1 =

0.85, which is the same as used in the simulation, our estimate

for the gain considering only absorbed X-rays was G = G0=m1 =

1.44 ADU per interacting 12 keV X-ray photon.

The total expected pixel noise for the region of interest was

measured to be N = 5454 ADU2. This region consisted of

1144 pixels on the corrected image, although the number of

raw image pixels, N, over which the signal was distributed was

not determined.

To measure the response variation of the detector, the

signal we investigated was the sum of the pixel values, after

offset correction, in a region formed by the projection of a

diffraction ring through a lead slit. Although this feature is

unlike a typical Bragg spot, it may be used to investigate the

variance response using the general formula given by equation

(10). In this case the magnitude of the measured signal was p =

11 926 ADU with an estimated variance of �2
p = 29 608 ADU2.
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Table 3
Summation integration of 1 � 105 simulated spots.

In the column of equation references, M indicates a reference to MOSFLM, described by Leslie (1999). The stated precisions are given by the standard errors of
the estimators.

Zone A Zone B

Statistics over 1 � 105 samples Refer to equation Raw Corrected Raw Corrected

Summation integration intensity distribution mean(IS) (ADU) Equation (15) 8205.3 (4) 8254.0 (4) 8204.7 (4) 8206.4 (4)
var(IS) (ADU2) Equation (15) 18240 (80) 18890 (80) 18060 (80) 18640 (80)

Variance estimates mean(�2
IS

) (ADU2) Equation (11) in M 11651.0 (4) 12385.3 (4) 11640.1 (4) 12367.6 (4)

mean(�2
IS�casc:

) (ADU2) Equation (18) 18761.8 (6) 20302.2 (6) 18745.0 (6) 20274.8 (6)

Table 4
Profile fitting of 1 � 105 simulated spots.

The stated precisions are given by the standard errors of the estimators.

Zone A Zone B

Statistics over 1 � 105 samples Refer to equation Raw Corrected Raw Corrected

Profile-fitted intensity distribution mean(IP) (ADU) Equation (15) 8181.8 (4) 8240.3 (4) 8217.7 (4) 8209.8 (4)
var(IP) (ADU2) Equation (15) 13640 (60) 13770 (60) 13520 (60) 13420 (60)

Variance estimates mean(�2
IP

) (ADU2) Equation (39) 8137 (2) 3598 (1) 8170 (2) 3898 (1)
�2

IP
with Mf† (ADU2) Equation (18) 13669 13305 13530 12954

† In this case, the variance–covariance matrix of observations, Mf , was pre-calculated from the set of 1 � 105 samples, rather than estimated individually for each.



Substituting these values and the experimentally determined

estimates for G and N into equation (10) allows an estimate

of the cascade factor for this detector as = 1.41. As described

in x4.2.3, inasmuch as the trend-line fit to the integrated

intensity data deviates from the true trend, this value may

overestimate the true value of �.

6. Discussion

6.1. The effect of non-Poisson response on error estimates

Typical error estimates of the summation integrated inten-

sity assume that each pixel independently obeys Poisson

statistics. The use of a cascade model for a p-t-CCD detector

has allowed the construction of a summation integration

intensity error estimate formulation that properly takes into

account the combined statistical response of all elements in

the detection chain, including a contribution from the number

of pixels the integration is performed over, due to read-out

noise and digitization error. The simulation results presented

in x5.1.1 show that this more comprehensive model provides a

better estimate of the observed random error in summation

integrated spot intensities.

Our experimental data demonstrated the degree to which a

Poisson model underestimates the variance of a signal

recorded on a real p-t-CCD detector. Measurements of the

parameters of a cascade model were made for the real CCD

detector, showing how this model could be applied in future

for error estimates in integration. However, experimental

determination of the absolute value of the cascade factor �
and the absorbed photon gain G in the way described requires

knowledge of the phosphor quantum absorption m1, which

here was simply assumed to be equal to the simulated value. In

addition, the parameters �, G and m1 are all functions of the

X-ray energy and angle of incidence, which should be taken

into consideration for a full characterization of a real detector.

Interestingly, comparison of the cascade factor calculated

for the simulation (� = 1.54) with that determined experi-

mentally for the Rayonix MX300 detector installed at the I24

beamline (� = 1.41) suggests that the simulated detector has

pessimistic noise properties compared with this real detector.

Differences between the simulated detector and real p-t-CCD

detectors are expected, as even though our simulation was

based on the MX series of detectors from Rayonix, the

parameters used within the simulator to describe elements of

the cascade chain were not experimentally determined but

derived from reasonable estimates based on known properties

of the components. In particular, the simulated phosphor

screen differs from those used in real commercially available

p-t-CDD detectors in that no reflective coating was modelled.

A reflective layer on the outer side of the phosphor coat

increases the signal-to-noise ratio of the phosphor screen by

reflecting backscattered light towards the FOT face (Nishi-

kawa et al., 1989). This is a possible explanation for the

difference between our model and experimental observations.

6.2. The effect of pixel correlations on error estimates

Summation integration error estimates avoid the need to

consider pixel correlations, because summation over all the

pixels in the peak region can potentially recover the entire

original signal incident on the detector, irrespective of how

that signal was apportioned between those pixels. Never-

theless, any integration procedure in which the profile of the

spot is important clearly necessitates a treatment of pixel

correlations. In profile fitting, integration is performed by a

least-squares fit of a standard or reference spot profile to the

observed data. The profiles of partially recorded reflections

may differ significantly from the standard profile. For this

reason, fully and partially recorded reflections are treated

differently by MOSFLM, and error estimates in the case of

partially recorded reflections are taken from the summation

integration error estimation formula (Leslie, 1999). For profile

fitting of fully recorded reflections, error estimates are based

on the quality of fit of the standard profile. Correlations

between pixels effectively smooth an image by reducing the

pixel-to-pixel variance. The standard approach to profile

fitting is in fact a method of fitting a smoothed model (the

profile) to smoothed data. If the degree of correlation between

pixels is not addressed, the fit can appear artificially good. This

has been demonstrated by our simulations (see x5.1.2).

Although we have shown the importance of considering

realistic covariances between pixels for profile-fitting inte-

gration, this is difficult to put into practice because of the need

to obtain estimates of the covariances between pixels from a

single image. It is our intention further to investigate methods

for formulating accurate covariance estimators for images

from CCD detectors. It appears likely that an effective method

will require information about the local smoothing caused by

the distortion correction, and the point-spread function of the

phosphor and other optical elements, plus an estimate of the

profile of the spot at the detector face. It may be possible to

obtain suitable estimates of the latter by deconvolution of the

measured profile, or by ab initio prediction (Schreurs et al.,

2010).

6.3. Position-dependent systematic errors

In this work, we have concentrated on improving the

accuracy of estimates of the random errors associated with

data from p-t-CCD detectors. Despite this, it is worth

discussing the various sources of instrumental systematic

errors that result from the detection or correction procedures,

as these errors are often significant.

For real detectors, the ADU content of dark images results

from accumulated dark current, plus ADC bias, read-out noise

and spurious zingers. If a dark image is to be used for

correction of all the raw images in a data set, then the random

noise and anomalous outliers should be suppressed to reduce

the systematic error at each pixel that dark subtraction

introduces. Zingers are usually removed using an algorithm

that identifies outliers by comparison with a second image

(Barna et al., 1999), but the dezingered dark image is still

subject to read-out noise. Although the magnitude of the read-

out noise is usually small, for weak reflections recorded over a

large number of pixels the total error introduced in the

intensity by dark subtraction could be significant. For this
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reason, it is good practice to collect a large number of dark

images of the required exposure length and average them to

reduce the read-out noise contribution.

Real p-t-CCD detectors exhibit a nonuniform response due

to phosphor-screen variations, obliquity of incidence (as this

changes the apparent phosphor thickness), FOT inhomo-

geneities and variations in the CCD sensor response (Barna et

al., 1999). The effect of this nonuniform response is to produce

a systematic error in the recorded intensities. The removal of

this systematic error is limited by the accuracy to which the

normalizing flat-field image has been determined, such that if

the flat field is known to within 1% error, pixel-value accuracy

in the corrected image can only be given to the same level or

worse. As with the systematic error introduced by dark

subtraction, this should be considered when evaluating

detector performance.

It may seem at first that the magnitude of this systematic

error can be reduced towards zero by improving the statistical

quality of the flat-field image. However, there is a more

pernicious problem when a flat-field correction is performed

on diffraction data. Inhomogeneities of response of the

phosphor on a scale smaller than that of the point spread will

be averaged out in the flat-field by the smoothing effect of the

point-spread function. In contrast, sharp sources, such as

diffraction spots, sample only the local phosphor response,

leaving the effect of comparatively ‘hot’ or ‘cold’ regions

visible in the resulting images. Correction factors derived from

a flat field are therefore of limited accuracy (Tate et al., 1995).

Similarly, subpixel scale granularity of the combined phosphor

and taper response becomes important when the source signal

has features with significant contrast on the scale of a pixel.

Clearly, a point source incident at different positions within

the same pixel region at the detector face will result in

different pixel values if the variation in subpixel response of

the optical chain is significant (Gruner et al., 2002). The net

effect of both the point-spread smoothing and pixel discreti-

zation is a position-dependent nonuniformity, which is worse

the sharper the source feature is. This manifests as a systematic

error that increases the scatter of measured intensities of

crystallographic symmetry-related reflections, and even

between the ’ slices of partially recorded reflections, if the

profile varies enough between the slices.

It is not possible to generalize the severity of this effect for

diffraction data, as it is strongly dependent on the spot size

and spot-profile gradient. Nevertheless, we have observed

errors greater than 1% of the intensity in tests on real p-t-

CCD detectors for data representative of typical diffraction

spots. For strong spots where the random errors suggest a

good relative precision, the size of this systematic error

therefore dominates the total error. The presence of this effect

may explain why the instrumental error factor from MOSFLM

is useful for data from p-t-CCD detectors, despite its physical

justification being based on densitometry of X-ray films. In

order to understand better the size and character of this

position-dependent systematic error, we intend to investigate

it in detail by experiment. Even when a justifiable formulation

for the contribution of this error is produced, we maintain that

it is preferable to keep this separate from the random

measurement error, as a step towards a more sophisticated

scheme of error awareness and tracking.

7. Conclusions

Macromolecular crystallography is a technique in which it is

often paramount to extract small signals from noisy data in

order to solve a particular scientific problem. The assignment

of realistic errors to recorded intensities has an impact on all

stages of structure determination and refinement. Clearly, the

initial measurement errors propagate through data-processing

steps and determine the limit on the accuracy of derived

quantities. Nevertheless, the model for measurement error at

the point of integration is commonly inadequate and realistic

errors are only determined at the scaling step, in which all

components of the experimental error are combined in a

composite error model. This makes it difficult to break down

the total error into its components. It is hoped that a more

detailed model of the diffraction experiment will allow the

proper assignment of uncertainties at all points. Once all

known error sources are accounted for, it will be clear which

areas contribute the most to the degradation of signal to noise

and whether any part of the diffraction physics remains

unaccounted for.

In this work, we have looked specifically at the measure-

ment errors associated with the integration of images obtained

from p-t-CCD detectors, currently the most popular type of

diffraction image detector used at macromolecular crystal-

lography beamlines. Using a simulation of a p-t-CCD detector

and integration routines, we have shown how the assumptions

of Poisson statistics and pixel independence are unfounded

and lead to underestimates of the true random error in

measurements. These underestimates have previously been

enlarged using a heuristic instrumental error factor, but this is

intended to model an effect different from the response of a

p-t-CCD detector. This effect is not linearly proportional to

intensity and has a much greater impact for strong reflections.

The inflated error estimates may mitigate against under-

estimates in the case of strong reflections, but fail to capture

the distinction between random errors from the source and the

detector response, and systematic errors that could in prin-

ciple be identified and corrected. We have shown how

summation integration procedures can be readily modified to

take into account properly the detector response and noise at

each pixel. However, profile fitting on distortion-corrected

images incurs a spatial dependence caused by a nonuniform

pattern of correlation between pixels that cannot be corrected

by a global scale factor. Methods to produce accurate profile-

fitting error estimates based on local properties of the image

are the subject of ongoing investigation.

Ultimately, it is hoped that integration procedures will

correctly assign measurement errors consisting of the statis-

tical noise of the input signal combined with the appropriate

local detector-response noise, opening the way to quantifica-

tion of other noise sources which become apparent when data

are put on a common scale. These noise sources should be
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described fully by a detailed model of the physics of the

diffraction experiment, in which effects such as sample

absorption, X-ray background structure and detection physics

are accounted for. By explaining as much of the experimental

data as possible by a justifiable model we hope to ensure the

best treatment of this data, improving results particularly for

marginal cases of structure solution.

APPENDIX A
Error estimates for profile-fitted intensities

Here a derivation of the error estimate associated with a

profile-fitted intensity is given, closely following the termi-

nology presented by Giacovazzo (2002). Assuming an

appropriate standard profile P is available, the spot intensity is

evaluated by determining a scale factor K from the fit of this

profile to the data, then summing over all pixels i in the profile:

IP ¼ K
P

i

Pi; ð19Þ

�2
IP
¼ �2

K

P
i

Pi

� �2

: ð20Þ

K is determined at the same time as the background plane

parameters a, b and c, with the background plane defined in

the same way as for summation integration. A value for �2
K is

obtained from the least-squares treatment as detailed in the

following text.

The task of fitting the profile and background parameters to

the data can be formulated by considering the least-squares

minimization of the residual

S ¼
P

i

wi �i � KPi þ api þ bqi þ cð Þ
2
¼
P

i

wiv
2
i ; ð21Þ

where wi = 1=�2
i is the weight at pixel i. This can be expressed

for the general case in matrix form by defining

V ¼ v1; v2; . . . ; vnð Þ ¼ F�AX
� �T

; ð22Þ

with observations

F ¼ �1; �2; . . . ; �nð Þ; ð23Þ

parameters

X ¼ K; a; b; cð Þ; ð24Þ

the design matrix

A ¼

P1 p1 q1 1

P2 p2 q2 1

..

. ..
. ..

. ..
.

Pn pn qn 1

0BBB@
1CCCA ð25Þ

and the variance–covariance matrix

Mf ¼

�2
1 �1;2 . . . �1;n

�2;1 �2
2 . . . �2;n

..

. ..
. . .

. ..
.

�n;1 �n;2 . . . �2
n

0BBB@
1CCCA: ð26Þ

With these definitions, the residual S can be written

S ¼ VM�1
f V: ð27Þ

By further defining

B ¼ AM�1
f A; ð28Þ

D ¼ AM�1
f F; ð29Þ

the normal equations, which come from the partial derivatives

of the residual S with respect to the parameters, can be

expressed by

BbXX ¼ D; ð30Þ

such that the least-squares solution for bXX (the best estimate of

X) is bXX ¼ B�1D: ð31Þ

The variance �2
K is contained in the relevant element of Mx,

the variance–covariance matrix for parameters. It can be

shown (Giacovazzo, 2002) that

Mx ¼ B�1
¼ ðAM�1

f AÞ�1: ð32Þ

Thus, the errors in the parameters of the model can be related

to the errors in the observations, Mf. Specifically for the

profile-fitting error estimate of equation (20),

�2
K ¼ B�1

K;K: ð33Þ

The accuracy of the error estimate in the profile-fitted inten-

sity falls to the correct estimation of the covariance values �i, j.

In MOSFLM, it is assumed that the pixels are independently

distributed according to a Poisson distribution. The off-diag-

onal (covariance) elements of Mf are set to zero, while the

variance elements are calculated within a scale factor Kv as

�2
i ¼ Kv api þ bqi þ cþ JPið Þ; ð34Þ

such that

Mx ¼ KvB�1
v ¼ AM�1

f A
� ��1

: ð35Þ

The scale factor J for profile values is estimated by comparison

with the summation integration intensity using

J ¼
ISP

i

Pi

: ð36Þ

Kv, the scale of the variance matrix Mf, is unknown, but can be

estimated from the goodness of fit of the least-squares

procedure using the reduced chi-squared statistic

bKKv ¼
VM�1

f V

n�m
; ð37Þ

where n gives the number of data points and m the number of

parameters. In this case,

bKKv ¼

Pn
i

wi �i � KPi þ api þ bqi þ cð Þ
2

n� 4
: ð38Þ
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Thus, the full expression for the estimated error in the profile-

fitted intensity is given by

�2
K ¼

bKKvB�1
vK;K
; ð39Þ

therefore

�2
IP
¼ bKKvB�1

vK;K

P
i

Pi

� �2

; ð40Þ

which coincides with the expression given in MOSFLM

(Leslie, 1999).
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