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A mathematical formula for estimating the average number of nucleotide sub- 

stitutions per site (6) between two homologous DNA sequences is developed 

by taking into account unequal rates of substitution among different nucleotide 

pairs. Although this formula is obtained for the equal-input model of nucleotide 

substitution, computer simulations have shown that it gives a reasonably good 

estimate for a wide range of nucleotide substitution patterns as long as 6 is 

equal to or smaller than 1. Furthermore, the frequency of cases to which the 

formula is inapplicable is much lower than that for other similar methods 

recently proposed. This point is illustrated using insulin genes. A statistical 

method for estimating the number of nucleotide changes due to deletion and 

insertion is also developed. Application of this method to globin gene data 

indicates that the number of nucleotide changes per site increases with evo- 

lutionary time but the pattern of the increase is quite irregular. 

Introduction 

The evolutionary change of DNA sequences occurs by nucleotide substitu- 

tion, deletion, and insertion. The change due to nucleotide substitution is measured 

in terms of the number of nucleotide substitutions per site between two homol- 

ogous DNA sequences. Several statistical methods for estimating this number 

have been developed. Unfortunately, however, all of them have some deficiencies. 

Jukes and Cantor’s (1969) method is the simplest one but gives underestimates 

when the rate of nucleotide substitution is not the same for all nucleotide pairs. 

Recently, Kimura (1980, 1981), Takahata and Kimura (1981), and Gojobori et al. 

(1982~1) developed new methods for estimating the number of nucleotide substi- 

tutions, taking into account unequal rates of substitutions among different nu- 

cleotide pairs. However, these methods are all dependent on specific schemes of 

nucleotide substitutions, and if actual nucleotide substitution does not follow these 

schemes, the methods are expected to give biased estimates. Furthermore, they 

1. Key words: nucleotide substitution, 

insertion, globin genes, insulin genes. 

evolutionary distance, unequal substitution rates, deletion, 

Address for correspondence and reprints: Dr. Masatoshi Nei, Center for Demographic 

ulation Genetics, University of Texas at Houston, P.O. Box 20334, Houston, Texas 77225. 

and Pop- 

Mol. Bid. Evol. 1(3):269-285. 1984. 

0 1984 by The University of Chicago. All rights reserved. 

0737-4038/84/0103-0003$02.00 

269 



270 Tajima and Nei 

are often inapplicable to actual data because of a negative argument in the log- 

arithm of the formula used. In this paper we propose a new method that alleviates 

some of these deficiencies. We shall also consider the evolutionary changes of 

DNA arising from deletions and insertions and present a method for measuring 

the amount of these changes. 

Number of Nucleotide Substitutions 

Theory 

Consider two homologous nucleotide sequences that diverged from a common 

ancestral sequence t years ago. We first consider the case where the rate of 

nucleotide substitution is the same for all pairs of nucleotides and equal to A per 

site per year. The expected number of nucleotide substitutions per site between 

the two sequences for this case is given by 

S = 2ht. (1) 

If we know the proportion (n) of different nucleotides per site, 6 can be estimated 

by 

6 = - v4 log,( 1 - 47-r/3), (2) 

where 0 d 7~ d 3/4 (Jukes and Cantor 1969; Kimura and Ohta 1972), 

At this point, we note that (2) can be written as 

6 = - b,log,( 1 - n/b,), (3) 

where b, = 1 - Qt. Here qi is the equilibrium frequency of the ith nucleotide 

(i = 1, 2, 3, 4 corresponding to the nucleotides A, T, G, C). When the rate of 

nucleotide substitution is the same for a!1 nucleotide pairs, qi = l/4, so that b, = 

3/4. We also note that 6, = 3/4 is the maximum value of n, which is attained at t 

= m* 

Kimura (1980, 1981), Takahata and Kimura (1981), and Gojobori et al. (1982a) 

have shown that when the rate of nucleotide substitution varies with nucleotide 

pair, (2) gives an underestimate of 6. Part of the reason is that in this case the 

equilibrium value of 7 is generally smaller than 3/4. Note that in any scheme of 

nucleotide substitution the value of n at t = 0~ is given by b, = 1 - QT. The 

value of 4i can be uniquely determined for any substitution scheme (Tajima and 

Nei 1982). This suggests that (3) may be used as an estimator of 6 even for the 

case of unequal substitution rates. The estimate of 6 obtained by (3) is always 

equal to or greater than that obtained by (2). 

Equation (3) holds exactly for Tajima and Nei’s (1982) equal-input model of 

nucleotide substitution with unequal rates. Let h,i be the rate of substitution of 

the jth nucleotide for the ith nucleotide per unit evolutionary time. This unit 

evolutionary time can be, for example, year, generation, or 1,000 years, depending 

on the purpose. In the equal-input model, A, = a, for all i’s except for &. In other 

words, the rate of substitution of the jth nucleotide for the ith nucleotide is the 

same, irrespective of the ith nucleotide. Therefore, the substitution rate matrix 

is given by (Al) in the Appendix, where Aj = 1 - C,+iai. Using this substitution 

rate matrix, one can prove (3), as shown in the Appendix. 

In practice, of course, the pattern of nucleotide substitution does not nec- 

essarily follow this scheme (see Gojobori et al. 1982b). When the substitution 
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scheme is different from the equal-input model, (3) is no longer valid, as is clear 

from the works of Kimura (1980,198 l), Takahata and Kimura (198 l), and Gojobori 

et al. (1982~). In this case, however, a slight modification of (3) gives a quite 

reliable estimate, as will be shown later by computer simulation. This modification 

is based on the following observations. (i) In the equal-input model, cij = x,l(2qjq,) 

is constant for all i and j (i < j), where xij is the proportion of pairs of nucleotide 

i and j between the two homologous DNA sequences (see Appendix). (ii) Our 

computer simulations discussed in the next section have shown that when cij is 

not constant, (3) tends to give an underestimate. (iii) In the case of the equal- 

input model, S can also be estimated by using information on the frequencies of 

nonidentical nucleotide pairs. Namely, 

s = - 2i: f: q;qlog,( 1 - cv) 
;=I j=;+l 

= - b,log,( 1 - T/b,), 

where b, = n2/h and 

h = i: f: x,2/(24;qj) 
i=l j=i+l 

(see Appendix). When cij is not constant, however, (4) tends to give an 

timate of S (results from our computer simulations). These observations 

that an approximate estimate of S is obtained by 

6 = - b log,( 1 - n/b), 

where b is the average of b, and b, and given by 

)/ 2. 

(4) 

(5) 

overes- 

suggest 

(6) 

(7) 

It is desirable to know the accuracy of this formula for various patterns of 

nucleotide substitution. However, analytical evaluation of the accuracy is not 

easy, because the mathematical property of the most general substitution scheme 

requiring 12 parameters has not been studied. We have therefore conducted a 

computer simulation to examine this accuracy. As will be shown in the next 

section, this simulation indicates that (6) gives a quite reliable estimate as long 

as S is smaller than 1. Needless to say, equation (6) holds exactly for the case of 

equal substitution rates or the equal-input model. 

So far we have considered the deterministic change of DNA divergence. In 

practice, the numbers of nucleotide substitutions are studied by examining a finite 

number of nucleotides, and thus the estimate (S) of S is subject to sampling error. 

The sampling variance of S obtained from (6) is given by 

V(8)= (f$V(rr)+ @if(b) 

+2 g 2 cov(r,b). 

(8) 

It can be shown that the second and third terms of (8) are very small compared 
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with the first term unless n (number of nucleotide pairs examined) is unusually 

small, say, n < 40. Therefore, we have (approximately) 

A 

V(S) = b2TT( 1 - n)/[ (b - 7T)+2]. (9) 

Computer Simulation 

In this section we shall examine two different aspects of the accuracies of 

the estimates of 6 obtained by (3) and (6). One is the effect of deviation of 

nucleotide substitution from the equal-input model, and the other is the effect of 

sampling error when a relatively small number of nucleotides are examined. In 

the study of the former effect we assume that the DNA sequence under investi- 

gation is infinitely long. 

Effect of Deviation from the Equal-Input Model of Substitution 

Gojobori et al. (19826) studied the relative rates of nucleotide substitution 

among the four nucleotides (A, T, G, C) for three functional genes (a and l3 globin 

genes and ACTH gene) and six pseudogenes (four globin pseudogenes, one Ig V, 

pseudogene, and one Ul snRNA pseudogene). These relative rates were quite 

different from the rates expected from any of the mathematical models studied 

so far. Therefore, it is interesting to know which statistical method gives the best 

estimate of S when nucleotide substitution occurs according to these observed 

patterns. We therefore used the nine substitution schemes observed to simulate 

the evolutionary change of nucleotide sequences. In this simulation we followed 

Gojobori et al.‘s (1982a) method and computed the S values for the nine substi- 

tution schemes. That is, the matrix of relative substitution rates (P,j; i # j) was 

first converted into the matrix of substitution rates (A,) corresponding to k = 

C,q&+,&. = 0.0078125, where k is the average number of nucleotide substitutions 

per unit evolutionary time. The values of x0’s for S = 0.25, 0.5, 1.0, and 2.0 were 

then obtained by squaring the matrix of substitution rates repeatedly (see Gojobori 

et al. [1982a] for details). Note that S = 0.25, 0.5, etc. are obtained by squaring 

the matrix five times, six times, etc. From the values of x,‘s, S was estimated by 

using seven different estimation methods, that is, (a) the Jukes-Cantor (JC) method, 

(b) Kimura’s (1980) two-parameter (2P) method, (c) Kimura’s (1981) three-sub- 

stitution-type (3ST) method, (d) Takahata and Kimura’s (1981) (TK) method, (e) 

Gojobori et al.‘s (1982a) (GIN) method, (f) equation (3), and (g) equation (6). The 

deviation of the estimate from the true value of S was measured by the following 

bias index: 

I?= [~(8j-?j)2/r]“2, (10) 

where Si is the estimate of S for the ith substitution scheme and r is the number 

of substitution schemes used. In the present case r = 9. 

The B values obtained are presented in table 1. It is clear that when S is small, 

that is, S d 0.5, equation (6) gives an estimate of S with the smallest amount of 

bias, whereas when S 3 1.0, the TK and GIN methods tend to give a better 

estimate than equation (6). Equation (3) gives a smaller value of B than the JC, 

2P, and 3ST methods for all values of 6, but the bias of the estimate obtained by 
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Table 1 

Bias Indices (B)a of the Estimates of 6 Obtained by 

Seven Different Methods for Various Schemes of 

Nucleotide Substitution 

True 

S JC 2P 3ST TK GIN (31 (6) 

Nine substitution schemes observed for actual genes: 

.25 ...... .020 .019 .018 .016 .017 .014 .003 

.50 ...... .072 .069 .068 .022 .045 .053 .018 

1 .oo ...... .240 .230 .223 .054 .135 .177 .108 

2.00 ...... .728 .698 .675 .381 .361 .514 .449 

Thirty-one substitution schemes artificially generated: 

.25 ...... .012 .012 .Oll .009 .014 .007 .003 

.50 ...... .047 .046 .045 .027 .029 .026 .Oll 

1.00 ...... .178 .168 .164 .093 .060 .096 .061 

2.00 ...... .635 .582 .566 .322 .136 .316 .273 

NOTE.-JC = Jukes and Cantor’s (1969) method, 2P = Ki- 

mura’s (1980) two-parameter method, 3ST = Kimura’s ( 198 I) three- 

substitution type method, TK = Takahata and Kimura’s (1981) 

method, GIN = Gojobori et al.‘s (1982~) method, (3) = eq. (3). and 

(6) = eq. (6). 

d Bias indices were computed by (IO). 

(3) is larger than that of (6). As expected, the JC method gives an estimate of 6 

with the largest bias for all values of 6. 

Since nine substitution schemes would not be sufficient for drawing a general 

conclusion, we used 31 more different schemes which were generated artificially 

by using random numbers. Seven substitution schemes were obtained by assuming 

that each element of the matrix of relative substitution rates (P,) takes one value 

of 0.001, 0.002, . . . , 0.009, and 0.01 with equal probability (l/10). The remaining 

24 substitution schemes were obtained by assuming that P, takes one value of 

0.001, 0.002, . . . , 0.009, and 0.01 with probabilities 0.19, 0.17, 0.15, . . . , 0.03, 

and 0.01, respectively. The P, matrices thus obtained covered a wide range of 

substitution patterns. The P, matrices were then converted into the substitution 

rate matrix corresponding to k = 0.0078125. Using these matrices, we again 

estimated 6’s by using the seven statistical methods. 

The B values for these new simulations are given in the lower half of table 

1. When 6 d 0.5, equation (6) again gives the best result, the B value being 

considerably smaller than that for the other methods. When 6 3 1, however, the 

GIN method is superior to (6), though the latter is better than the TK method. 

Considering this case together with the case of empirical substitution schemes 

mentioned above, we can conclude that (6) is better than the other methods in 

estimating 6 when 6 is small, whereas the GIN method gives the best result when 

6 is large. 

Although our bias index gives the average bias of the estimates of 6, it does 

not give information about the direction of the bias. This information is provided 

in figure 1, where the distribution of 8 is given in relation to 6 for the four levels 

of 6. The distributions of 8 for the 2P and 3ST methods and equation (3) are not 

given here, because these are apparently inferior to equation (6). It is seen that 

when 6 is 0.25 or 0.5, equation (6) gives a very narrow distribution around the 

true value of 6. The GIN method gives a mean value of 8 close to the true value, 
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.2 .25 .3 .3 .5 .7 .6 1 1.4 1 2 3 

6 

FIG. I.-Distribution of the estimates (6) of 6 obtained by four different methods. I, JC method. 

ZZ, eq. (6). III, TK method. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIV, GIN method. A, B, C, and D represent the cases of 6 = 0.25, 0.5, 

1, and 2, respectively. Arrows indicate the locations of the true values of 6. The scale of 6 varies with 

6. The total number of observations is 40 in each case. 

but the deviation from the true value is often large. However, the JC method 

almost always gives an underestimate of 6. The TK method also tends to give an 

underestimate, but the extent of underestimation is not as bad as that of the JC 

method. When 6 2 1, however, all methods except the GIN method give under- 

estimates, but the extent of underestimation for equation (6) is small when 6 = 

1. The GIN method generally gives an average estimate close to the true value 

of 6 and a small value of B, though the B value for the case of 6 = 1 is slightly 

larger than that for equation (6). From figure 1, therefore, we may conclude that 

equation (6) is superior to the other methods when 6 d 1, but when 6 > 1 the 

GIN method is probably the best one. 

Sampling Error 

When the number of nucleotides compared is small, the estimates of 4, and 

xij may deviate from the expected values by chance, and this deviation is expected 

to affect the estimate of 6 or produce cases to which equation (6) or other methods 

are inapplicable because of a negative argument in the logarithm involved. To 

examine the magnitude of this error, we conducted another computer simulation. 

In this simulation we considered three different numbers of nucleotides, that is, 

n = 50, 144, and 500. The latter two numbers were chosen to compare our results 

with those of Gojobori et al. (1982a). In Gojobori et al.‘s computer simulation 

many inapplicable cases were produced when their six-parameter model of nu- 

cleotide substitution was used. Since we were primarily interested in the frequency 
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of inapplicable cases, we used the same substitution model. The substitution rates 

used were (x = 0.00125, (x, = 0.008, CX, = 0.118, l3 = 0.005, l3, = 0.004, and p2 

= 0.0059 with k = 0.01, where the parameters (x, OL,, etc. are identical to those 

given in Gojobori et al.‘s (1982~~) table 2. Ancestral sequences of 50, 144, and 500 

nucleotides were generated by using pseudorandom numbers. From each of these 

ancestral sequences, 50 pairs of descendant nucleotide sequences were randomly 

produced for each of 6 = 1.0 and 2.0 by using the method described by Gojobori 

et al. (1982~~). For each pair of descendant sequences, x0’s were computed, and 

qi = xii + c. ,+,x,/2 was obtained. Using these 4,‘s and x,‘s, we estimated 6 by the 

JC method and equations (3) and (6). In the case of 6 = 2.0, the S values for n 

= 50 were not computed, since in this case an estimate of 6 is obviously unreliable 

because of a large sampling error. 

The mean (6) and standard deviation (G-,) of S obtained and the frequency of 

inapplicable cases (f) are given in table 2. In this case the values for n = a, which 

can be obtained theoretically, are also presented. The JC method again gives 

underestimates of 6 for both S = 1 and 2, but there are no inapplicable cases. 

Equation (3) gives a much better estimate of 6; however, there are a few inappli- 

cable cases. Equation (6) gives an even better estimate of 6 than equation (3), 

but the number of inapplicable cases is slightly larger than that for (3). Table 3 

gives the results obtained by Gojobori et al. (1982a) for the TK and GIN methods. 

In both methods the frequency of inapplicable cases is very high compared with 

that of (3) and (6). If we remove inapplicable cases, however, the GIN method 

gives a relatively good estimate, though the variance is quite large. The TK method 

also gives a good estimate of 6 when 6 = 1 but a serious underestimate when 6 

= 2. From these results we can conclude that our equations (3) and (6) are less 

sensitive to sampling error than the TK and GIN methods. 

Table 2 includes the observed and expected standard deviations of S. The 

observed values were computed from replicate estimates of 6 with the inapplicable 

cases excluded, whereas the expected values were obtained from (9). If we con- 

Table 2 

Results of Computer Simulation in Which Nucleotide Substitution Followed Gojobori 

et al.% (1982~ ) Six-Parameter Model 

JC METHOD EQUATION (3) EQUATION (6) 

TRUE~AND~ s 66 ug f s 68 erg f s &s ug f 

1 .o: 

50 ..................... .81 .21 .20 o/50 .96” .30d .31 2150 1.16“ .47” .34 5150 

144 .................... .82 .16 .12 O/50 .99 .25 .18 O/50 1.08 .31 .20 O/50 

500 .................... .78 .05 .06 O/50 .92 .07 .lO o/50 .97 .08 .ll o/50 

=h ..................... .79 .oo .oo o/50 .94 .oo .oo o/50 .97 .oo .oo o/50 

2.0: 

144 .................... 1.22 .20 .20 O/50 1.87” .63d .70 8150 2.04” .48” .73 11/50 

500 .................... 1.22 .12 .ll O/50 l.958 .58” .38 2/50 2.02” .60” .40 3150 

=h ..................... 1.20 .OO .OO O/50 1.80 .oo .OO O/50 1.83 .oo .oo o/50 

NOTE.-6 = average of the estimate (6) of 6. +, = standard deviation of the estimate, ug = expected standard 

deviation obtained from formula (9j.f = proportion of inapplicable cases, and n = number of nucleotide pairs. The 

number of replications used is 50. 

d These values were computed by excluding inapplicable cases. 

h The values for n = 3~ were obtained theoretically. 
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Table 3 

Results Obtained from Gojobori et al.% (1982a) 

Computer Simulation 

TK METHOD GIN METHOD 

TRUE 6 AND n s &‘s f 6 68 f 

1.0: 

144.. . . . . . . . . . . . . 1.00” .24” 1 l/80 1.01” .23” 22180 

500. * . . . . . . . . . . . . 1.07 . . . O/16 1.06 . . . O/16 

2.0: 

144.. . . . . . . . . . . . . 1.36” .30” 108/160 1.70” .52” 129/160 

500. . . . . . . . . . . . . . 1.53” . . . 8132 2.20” . . . 23132 

NoTE.-~ = average of the estimate (6) of 6, & = standard deviation 

of d,f = proportion of inapplicable cases (denominator indicates the number 

of replications); n = number of nucleotide pairs. 

a These values were computed by excluding inapplicable cases. 

Table 4 

Observed Numbers of the 10 Different Pairs of Nucleotides between the 

DNA Sequences for the Human and Rat Insulin A and B Chains 

AA AT AG AC TT TG TC GG GC CC Total 

First position ......... 9 1 0 0 14 0 1 13 0 13 51 

Third position ........ 2 3 5 1 3 1 5 8 2 21 5 1 

No-rE.-The numbers at the first and third nucleotide positions 

There are no nucleotide differences at the second position. 

of codons are listed separately. 

sider that the number of replications is only 50, the agreement between the ob- 

served and expected values seems to be reasonably good. Table 3 also gives the 

observed standard deviations for the TK and GIN methods. They are relatively 

small compared with those for (3) and (6) because there were many inapplicable 

cases excluded. 

Numerical Example 

Sures et al. (1980) determined the nucleotide sequence of the human pre- 

proinsulin mRNA and compared it with that of the rat preproinsulin-I mRNA. 

Preproinsulin consists of four polypeptide chains-the A and B chains, signal 

peptide, and C peptide. The A and B chains (51 amino acids) produce active 

insulin, whereas the signal and C peptides (54 amino acids) are removed before 

insulin is produced. Since the latter two polypeptides are considered to be subject 

to less stringent purifying selection than the former two polypeptides (Sures et 

al. 1980), we have analyzed them separately. Following Kimura (1981), we have 

also considered the first, second, and third nucleotide positions of codons sepa- 

rately. The numbers of 10 different pairs of nucleotides (n,) between the DNA 

sequences for the human and rat A and B chain genes are given in table 4. (The 

mRNA sequences were converted into the DNA sequences.) The relative fre- 

quency of nucleotide pair i and j (x,) can then be obtained by dividing these 

numbers (n,) by the total number, that is, 51. Once the x0’s are obtained, the 

average frequency of the ith nucleotide for the two sequences under comparison 

(4;) is given by 4; = xii + Cj,,x,/2. Thus, we obtain q, = 0.186, qT = 0.294, qG 

= 0.255, and qc = 0.265 for the first nucleotide position. We also have n = C,,x, 
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(i < j) = O.O392,b, = 1 - Cq? = 0.7437,h = 0.005978,6, = n*/h = 0.2573, and 

6 = (b, + b,)/2 = 0.5005. Thus, the estimate of 6 is 8 = 0.04 from (6). However, 

the variance of 6 becomes 0.00087 from (9). Therefore, the standard error of 8 is 

0.03. A similar computation for the third nucleotide position gives 8 = 0.55 + 

0.20. (There are no nucleotide differences at the second position.) It should be 

noted that in the present case application of the JC method gives 8 = 0.04 2 

0.03 for the first position and 6 = 0.44 k 0.12 for the third position (table 5). 

Therefore, only when 6 is sufficiently large does the difference between the two 

methods become appreciably large. The estimates obtained by the TK and GIN 

methods are also presented in table 5. These methods again give essentially the 

same result for the first position, but the estimates for the third position are larger 

than the estimate from (6). 

Table 5 also includes the estimates of 6 for the first, second, and third nu- 

cleotide positions for the signal and C peptides. At the first and second positions 

the four methods used all give essentially the same estimate of 6. As expected, 

the 6 values for the signal and C peptides are larger than those for the A and B 

chains. At the third position of the signal and C peptides the JC method gives 6 

= 0.63 + 0.16 and equation (6), 8 = 0.91 + 0.39. The other two methods are 

not applicable to this case. The value of 6 = 0.91 obtained by equation (6) is quite 

high compared with the corresponding value of the A and B chains. If we assume 

that the time since divergence between man and rat is 8 x 10’ years, this gives 

a rate of nucleotide substitution of 5.7 x 1O-9 per site per year. This is as high 

as Li et al.‘s (1981) estimate (4.6 x 10-9) of the rate of nucleotide substitution 

for pseudogenes. It is possible that there is little purifying selection operating at 

the third positions for these peptides. 

Evolutionary Distance due to Deletion and Insertion 

Recent data on nucleotide sequences of related genes indicate that a sub- 

stantial proportion of evolutionary change of DNA sequence arises from deletion 

and insertion of nucleotides, particularly in noncoding regions of DNA. We note 

that most deletions and insertions are short and occur with an appreciable fre- 

quency (e.g., Efstratiadis et al. 1980; Langley et al. 1982; Cann and Wilson 1983). 

It is therefore possible to study the effects of these events on DNA divergence. 

Table 5 

Estimates (8) of the Number of Nucleotide Substitutions per Site between the 

Human Preproinsulin and Rat Preproinsulin I Genes at the First, Second, 

and Third Nucleotide Positions of Codons 

GENE REGION AND 

POSITION IN CODON 

6 

JC Method GIN Method TK Method Equation (6) 

A + B chains (n = 51): 

First ..................... .04 k .03 .04 * .03 .04 5 .03 .04 + .03 

Second.. ................. 0 0 0 0 

Third. .................... .44 + .12 .60 k .25 .79 -t- .53 .55 ” .20 

Signal + C peptides (n = 54): 

First ..................... .17 +- .06 .19 t .08 .15 + .I1 .18 + .07 

Second.. ................. .21 Y!Y .07 .22 rfr .08 .22 + .07 .22 ” .08 

Third. .................... .63 k .16 ma co* .91 -+ .39 

SOURCE.-Data from Sures et al. (1980). 

a 5 = inapplicable case. 
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Nei et al. (1984) proposed a simple method of measuring the evolutionary distance 

between two homologous DNA sequences due to deletion and insertion: they 

compute the number of gap nucleotides per nucleotide site between a pair of DNA 

sequences compared. This quantity seems to be appropriate when a short period 

of evolutionary time is considered. When the evolutionary time considered is 

long, however, the following method seems to be better than that of Nei et al. 

(1984). 

We again consider two homologous nucleotide sequences (X and Y) that 

diverged from a common ancestral sequence t evolutionary time units (e.g., years) 

ago. We assume that the length of a deletion or insertion is short compared with 

the total length of the DNA sequence (n) and that deletion and insertion occur 

independently. Let 01 be the proportion of DNA that is deleted during unit evo- 

lutionary time, i.e., cx = m,ln, where m, is the number of nucleotides deleted 

and n is the total number of nucleotides before deletion. Note also that cx is the 

number of nucleotide deletions per nucleotide site and usually a very small quan- 

tity. Similarly, we denote by l3 the proportion of DNA that is inserted during unit 

evolutionary time, that is, l3 = m,ln, where m, is the number of nucleotides 

inserted. We assume that rz remains more or less the same because of the com- 

pensating effects of deletion and insertion. In practice, cx and l3 may vary with 

evolutionary time, and we denote the values of (x and l3 for the ith evolutionary 

time unit by (Y~ and pi, respectively. If we assume that deletion and insertion occur 

independently in sequences X and Y the total number of nucleotide deletions and 

insertions per nucleotide site over the entire t is given by 

I- I 

Yz2CCaI+ pi) 
i=O (11) 

= 2(& + p>t, 

where & and p are the averages of tii and pi over evolutionary time, respectively. 

In this connection it should be noted that y measures only the DNA divergence 

due to deletion and insertion, and no consideration is given to the DNA changes 

due to nucleotide substitution. 

The value of y can be estimated in the following way. We first consider the 

evolutionary change of the number of nucleotides (n) in the lineage of X. Let nx(t) 

be the total number of nucleotides at time t in this lineage. We then have 

n,&) = n& - l)(l -a,- ,)(l + P,- J 

r-1 

=n.r(0)n(l -%X1 + pi) 
i=O 

(12) 

where n,(O) is the initial number of nucleotides. A similar expression can be 

obtained for n for Y that is, ny(t). However, the total number of homologous 

nucleotides shared by X and Y is given by 

nxy(t) = nxJt - l)( 1 - (x,_ ,)* 

(13) 
-n,(O)e-*%, 



Divergence of DNA Sequences 279 

because insertions do not create any homologous DNA segments. Therefore, we 

have 

(14) 

where n,, n,, and n,, are the observed values of n*(t), ny(t), and nxy(t). Thus, y 

in (11) can be estimated by 

y= -2 1ogp. 

It is noted that P can also be defined as 

P=2n,J(n,+n,). W-5) 

This definition is simpler than (14), but when the rates (CX and l3) of deletion and 

insertion are not the same for sequences X and I: (14) is more reasonable. In 

practice, however, (14) and (16) usually give very similar values. 

Comparison with Nei et al.‘s Formula 

Nei et al. (1984) proposed to measure the DNA divergence due to deletion 

and insertion by 

Yn, =dmn (17) 

where g is the number of nucleotides in the gaps between two DNA sequences 

and m,is the total number of nucleotides compared. This gives a minimum estimate 

of DNA divergence due to deletion and insertion. This can be seen from figure 

2, in which an artificial example of evolutionary change of DNA due to deletion 

and insertion is presented. In this example sequence X at time I has a deletion 

of 60 nucleotides (nt) starting from nucleotide position 301, whereas sequence Y 

has a deletion of 40 nt starting from position 601. Therefore, the divergence 

between X and Y is properly measured by Y,,~, which becomes lOO/l,OOO = 0.1. 

In practice, however, we do not know the ancestral sequence of X and Y so it is 

difficult to determine whether the two gaps between X and Y are due to deletion 

or insertion. If they are caused by insertion, the ancestral sequence should have 

had 900 nt instead of 1,000. In this case the DNA divergence should be 100/900 

= 0.111. This indicates that Y,,, gives an underestimate of DNA changes if both 

deletion and insertion occur. Our formula (15) takes care of both deletion and 

insertion, though it depends on the model used. In the present case the estimate 

(9) obtained by equation (15) is 0.108, which is intermediate between the two 

estimates obtained above. 

Another advantage of y over 9,,1 is that it takes care of multiple events of 

deletion and insertion at least to some extent. In figure 2 sequence X experienced 

an insertion during the evolutionary period between time I and time II, whereas 

sequence Y experienced another deletion involving positions from 35 1 to 380. The 

latter deletion is overlapped with the deletion in X, so that Y,,~ gives an underes- 

timate of DNA changes. It becomes 180/1,060 = 0.170. In (15) deletions and 

insertions are assumed to occur independently, and multiple deletions and inser- 

tions are taken into account. Indeed, + becomes - 2 log,(880/~1 ,010 x 930) = 

0.193, which is larger than Y,,,. 
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Numerical Example 

Efstratiadis et al. (1980) compared the nucleotide sequences of various parts 

of the noncoding regions of globin genes from diverse organisms. This comparison 

indicates that a majority of deletions/insertions involve a small number of nu- 

cleotides, but there are a few deletions/insertions in which a large number of 

nucleotides (more than 50) are involved. However, amino acid sequence data 

suggest that deletions and insertions are much less frequent in the coding regions 

of globin genes than in the noncoding regions (Hunt et al. 1978). To see the pattern 

of accumulation of DNA changes due to deletion/insertion, we computed the 

evolutionary distance given by (15) for the 5’ flanking region (including about 120 

nt upstream starting from the cap site), 5’ leader region (about 50 nt between the 

cap site and the initiation codon), intron I (about 130 nt), and 3’ tail (noncoding) 

region (about 130 nt) of globin genes as well as for the coding region (about 438 

nt or 146 codons). We used Efstratiadis et al.‘s (1980) data for the noncoding region 

and Hunt et al.‘s (1978) data for the coding region. In the latter case we used a 

codon rather than a nucleotide as a unit of change, because this does not change 

the numerical value of our measure. In both cases we assumed that the authors’ 

alignment of sequences was correct. 

The values of n,, n,, and nxv for the coding region (amino acid sequence) are 

presented in table 6. From these values we can estimate y by using (15). For 

example, in the case of human (X) and newt (Y) CY chain genes n, = 141, n, = 

142, and n,, = 141. Therefore, 9 becomes 0.007. Table 6 indicates that 9 is small 

when the two sequences compared are closely related but tends to increase as 

the time since divergence (t) increases. Thus, the comparison of human and shark 

01 chains gives a value of 9 = 0.084. However, + does not seem to be linearly 

related to evolutionary time (fig. 3). Namely, + is 0 up to t = 300 million years 

(Myr) and then increases slightly. This reflects the fact that the length of the coding 

region of DNA is strongly conserved in the evolutionary process. 

The noncoding region of DNA undergoes a much more rapid change due to 

deletion/insertion. However, the four different parts of the noncoding region seem 

Smqumcr Y 

600 Ml moo loo0 1 

(I) NV,. . . . . . . . . ..I 

60nl 40nl 

I 
n, = 940 ny = 960 

I 

mow 
(II) ‘w . . . . . . . so0 loo0 1 350 al 600 641 loo0 

. ..*-t . . . . 

.c 3Ont 
7Onl 

nx = 1010 ny = 930 

FIG. 2.-A hypothetical example of evolutionary changes of DNA sequences due to deletion and 

insertion. Solid lines stand for DNA sequences, and broken lines, gaps. The numbers on DNA 

sequences represent nucleotide positions. See text for further explanation. 
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Table 6 

Estimates of Evolutionary Distances (9) due to Deletion and 

Insertion among the Coding Region Sequences of Various Globin 

Genes (below the diagonal) 

Gene 1 2 3 4 5 6 7 8 

1. Human cx ....... (141) 141 

2. Chicken 0~. ..... 0 (141) 

3. Newt (Y ........ .007 .007 

4. Carp cx ......... ,021 .021 

5. Shark (Y ........ .084 .084 

6. Human p. ...... .063 .063 

7. Chicken p ...... .063 .063 

8. Frog p ......... .095 .095 

141 140 139 139 139 134 

141 140 139 139 139 134 

(142) 140 140 140 140 134 

.028 (142) 139 140 140 134 

.076 .091 (149) 140 140 134 

.056 .056 .104 (146) 146 140 

.056 .056 .104 0 (146) 140 

.102 .102 .150 .042 .042 (140) 

NOTE.-In this table Jo represents the distance per codon rather than per nucleotide. 

The values above the diagonal are the numbers of codons shared (nxr) by the two 

sequences compared (the total number of codons compared minus the number of codons 

in the gaps). The values on the diagonal are the number of codons in the sequence 

concerned (nx or ny). 

X l 

0 l 

It a-p . l 
l 

I I I I 1 1 
0 100 200 300 400 500 

DIVERGENCE TIME ( MY) 

FIG. 3.-Relationships between the evolutionary distances (y) for various parts of globin genes 

and evolutionary time. 0 = coding regions, 0 = 5’ leader region, A = intron I, n = 5’ flanking 

region, X = 3’ tail (noncoding) region. To avoid overcrowding of data points, we present only the 

results for the comparisons involving human globins. Ha = human (Y globin, HP = human p globin, 

H6 = human S globin, Mpmd~ = mouse pm,’ globin, Hy = human y globin (Ay and or). HE = human 

E globin, CHa = chicken (Y globin, Na = newt (Y globin, CAcx = carp (Y globin, and SY. = shark OL 

globin. The evolutionary times used are identical with those used by Efstratiadis et al. (1980) and 

Dayhoff (1972). MY = million years. 

to have different rates of accumulation of DNA changes (fig. 3). The 3’ tail region 

apparently has the highest rate, whereas the 5’ leader region has the lowest rate. 

This is probably because the 5’ leader region plays an important role for mRNA 

processing and translation and thus the DNA sequence is not very flexible. The 

relationship between 9 and evolutionary time is again nonlinear, though + generally 

increases as t increases. This nonlinear relationship is mainly due to the fact that 

a deletion or insertion occasionally involves a large number of nucieotides. Thus, 
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the large value of 9 for the comparison of the 3’ tail regions of the human E and 

y chains is caused by the fact that the y chain has a long stretch of deletion (44 

nt) compared with the E chain. 

Discussion 

We have seen that our new formulas, particularly equation (6), give a good 

estimate of nucleotide substitutions as long as the true value of 6 is less than 1. 

For 6 > 1, the GIN method seems to be better than equation (6), if we exclude 

the cases where the formulas are inapplicable. However, when 6 > 1, the GIN 

method is very often inapplicable because of a negative argument in the logarithm 

involved. Therefore, if we take into account this property as well as the simplicity 

of equation (6) compared with the GIN formula, (6) seems to be generally pref- 

erable to the GIN method. It should also be noted that in most studies of molecular 

evolution 8 is smaller than 1, so that equation (6) can be applied to a wide variety 

of cases. 

It should be noted, however, that equation (6) depends on the assumption 

that all nucleotide sites examined are subject to the same pattern of nucleotide 

substitution irrespective of the location of the nucleotide. In practice, this as- 

sumption does not seem to hold in many cases. It is well known that functionally 

important parts of genes are subject to nucleotide substitution less often than 

unimportant parts. Amino acid-altering nucleotide substitutions are also known 

to occur less frequently than synonymous substitutions. When the number of 

nucleotide substitutions per site (8) is small, this causes no problem, since there 

will be few backward and parallel substitutions in this case. As 8 increases, 

however, backward and parallel substitutions may accumulate at functionally less 

important sites, whereas functionally more important sites may remain substi- 

tution free. In this case the method proposed here is expected to give underes- 

timates of 6. At the present time, it is not easy to take into account this factor 

properly, though some approximate treatment of the problem has been proposed 

(Nei and Li 1979). To make a general formulation of this problem, a more detailed 

knowledge of nucleotide substitution in various genes is required. 

Our formulation of y in (15) was presented to quantify the effect of deletion 

and insertion on the evolutionary change of DNA sequences. As we have seen 

from data on globin genes, the evolutionary change of DNA arising from these 

factors occurs in a less regular fashion than that arising from nucleotide substi- 

tution. This is because there is a small proportion of large deletions and insertions 

that involves a large number of nucleotides. These deletions and insertions ap- 

parently occur haphazardly but affect the DNA sequences substantially once they 

occur. Because of this, y generally does not increase linearly with evolutionary 

time and thus cannot be used as a molecular clock. Nevertheless, y gives a 

quantitative measure of DNA change due to deletion and insertion and would be 

useful for evolutionary studies of DNA sequences. 
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APPENDIX 

Nucleotide Substitution under the Equal-Input Model 

Let us denote nucleotides A, T, G, and C by 1, 2, 3, and 4, respectively. Let 

A, be the rate of substitution of the jth nucleotide for the ith nucleotide per unit 

evolutionary time (e.g., year) and 4; be the equilibrium frequency of the ith nu- 

cleotide. In the equal-input model (Tajima and Nei 1982), h,j = A, = hji = A, = 

a, is assumed for all A,, except Xi,, which is equal to 1 - IQ= ,a; for i # j. Therefore, 

the transition matrix for the four nucleotides may be written as 

i 

1 -(a*+a3+&J a2 a3 a4 

P= a, 
1 -(a,+a,+a,) a3 a4 

a, a2 1 - (a, + a2 + a,) a4 

a, a2 a3 1 -(a, +a,+a,) 

and the equilibrium frequency of the ith nucleotide is given by 

(Tajima and Nei 1982). 

I , 0-W 

. (A21 

Let us now consider two long homologous nucleotide sequences (X and Y) 

that diverged from a common ancestral sequence t years (or evolutionary time 

units) ago. We denote by y&t) the proportion of homologous nucleotide pairs 

where X and Y have nucleotides i and j, respectively, at time t. Then we have 

YJt) = f: f: A,iAnjYmn(t - 1). (A3) 
m=I n=l 

Under the equal-input model (A3) is approximately given by 

yJt)= l-Cak--  
k*i 

(A4) 

+ajCYi~(t-l)+aiCY,j(t- 1). 
n+j mfi 

Using (A2), we obtain f 
+ 4iqj 

+ qiqi* 

First consider the case of i #  j. In this case y,(O) = 0, because at time 0 the 

two sequences must have been the same. Therefore, we have 

y,(t) = qiqj 
[ (-2&t)]* 

1 - exp 

When i = j, we have y,,(O) = qi and 

646) 
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YiiCt) = qi( 1 - qi)eXp ( > - 2 2 Llkt + 4:. 
/%=I 

(A7) 

Let us denote by xij the proportion of pairs of nucleotides i and j (i < j) between 

sequences X and Y. When i # j (A6) gives 

xlj = Y ijCt) + Yjitt> 

= 2qiqj 1 - exp 
[ (-2&t)]. 

(A@ 

This equation indicates that X,l(2qi4,) is constant for all combinations of i and j (i 

<j). 
The average number of nucleotide substitutions per site between sequences 

X and Y is 

6=2~qi(l -Xii)t. (A9) 
i= 1 

Under the equal-input model it becomes 

6=2 
( ) 

l-&i’ &lit. 
i= 1 i= 1 

(AlO) 

Substitution of (AlO) into (AS) gives 

xij = 2q,q, 
{ [ -~/(l-!%~z)]}. 

1 - exp (Al 1) 

Since 7~ = IZigg and b, = 2C,qiqj = 1 - I&q? for i < j, we obtain (3) in the text. 

From (All) we also have 

6 = - log,[ 1 - x,l(2C&q,)]. 

Since X,/(2qiqj) is constant for all values of i < j, we obtain (4) in the text. 
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