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Abstract: In this paper, a statistical model is presented for decision making in repairing water pipes network.
The water distribution system has been considered as a “repairable” system which is under repeating failure
modes. From this, a practical model for anticipating the failure of the water pipes in repairable systems has been
presented using the trend renewal process concept. In this process, the statistical Power law has been used
for projecting the failure rate to account for the effects of repairs and for different failure modes in estimation
of failure intensity. After finding the failures as a function of time, the reliability of the system efficiency is then
estimated using survival analysis. At the end, a sample pipes network has been modeled using presented
statistical model and the values of failure intensities with respect to time and the curve for reliability function
has been found.
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INTRODUCTION last mentioned method, another method has been

Various techniques regarding pipe reliability as well, with a set of extra random variables. These
assessment have been developed through the years. variables consist of several factors such as geometric
Normally, in a pipe network the amount of failure is characteristic and unavailable information, [5]. In another
estimated by a statistical model with respect to time. work, the Markov model has been extended for stating the
Historically, the most often used models in the previous water distribution systems cases. In all the above
works are general statistical models such as Renewal mentioned works the time in which the system or portion
Process (RP), power model of Weibull, Homogenous of the system is under repair is ignored, [6]. Wengstrom
Poison Process (HPP) and recently, Non-homogenous has presented a method for predicting the response of a
Poison Process (NHPP). Another model that has been water network using the risk function of Additive Hazard
used by many references is modeling the failed pipes with Model (AHM), [7]. In his model, the covariates have been
Shamir and Howard method, [1]. In this method, the related to the time between the fails with regression and
optimum time for pipe replacement is found. In Shamir and then the time for repairing the pipes has been computed.
Howard model, the old replaced pipes are considered In another work, nonlinear regression has been used. The
together with the replaced pipes. Walski et al. have coefficients for the nonlinear equation have been found
presented a model similar to the model of Shamir and first and then the amount of failure average has been
Howard except that the history of the failure has been also computed in terms of time and place. Non-homogenous
entered the model, [2, 3]. In several references the Poison Process (NHPP) has been used for failure
statistical model of Cox’s Semi-Parametric has been used probability distribution, [8]. A new statistical method
for estimating the failure of the pipe. In this method the called Herz distribution has been presented for estimation
Proportional Hazard Model (PHM) has been adopted for of useful age of the pipes in which the statistical Cohort
calculating the risk rate in terms of time, [4]. Besides the Survival Model has been developed. In the recent model

presented for estimating failure which adopts PHM model
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the pipes are categorized based upon time of consuming
start, geometric characteristic and material type and then
the failure rate and the time of replacement after ending
their useful age have been anticipated, [9]. Rostum has
modeled the water network assuming it as repairable
system and then he has compared the existing methods
for anticipating the failure time of the pipes, [10]. He has
assumed that the system has become “good-as-new” after
any repair stage. It is indicated in Pulcini’s studies that if
a system is repaired repeatedly it may result in producing
a finite bound for increasing the failure intensity rate. So,
for such systems the failure function is introduced
together with a Bounded Intensity Process (BIP) interval,
[11]. In many of the above mentioned references it is
assumed that the water network is repairable and has a
form of Non-homogenous Poison Process (NHPP). 

In all methods of previous references, it has been
assumed that the type of repair does not affect the
improving process of the system and the system after any
round of repair becomes “good-as-new”, [13].  In other
words, the system after any repair process becomes the
same as before failure. Such repairs are usually called
Minimal Repair. But the reality is that the system may
become better than its state before failure. In these
models, it has been assumed that after repair, there has
been no variation with respect to the base line, instead the
function moves vertically along the intensity axis. Guo
has presented a model for estimating the failure intensity
in repairable systems using power rule. In this model the
effects of failure for a failure mode has been presented,
[14]. Recently a new statistical method called Trend
Renewal Process (TRP) using a failure intensity function,

(t) , similar to that of NHPP method has been presented
by Lindqvist, [15, 16]. The difference is that in TRP
method the effect of the type of failure has been
considered in repairing the system. Also, in this model,
the failure intensity has a uniform process. However,
although this model as a package is able to consider the
effects of the type of failure on the system, its application
in engineering problems is complex and difficult.

In this paper a practical model for estimating the
failure intensity in water pipes network is presented. In
this method the type of failure is considered in addition to
the effects of repair on the model. Repairing the system
decreases the number of failures in the future and
including this fact in the method results in more realistic
model. For this aim a combination of parameters is defined
which is able to account for effect of repairing on the type
of failure. After this stage, the full likelihood function is
formed  and   the   model   parameters   are   calculated   by

Table 1:Types of failures of the pipes

Damage and Degradation Mechanisms

ID Description

CF Corrosion-fatigue
COR Corrosion attack/MIC/Pitting
DandC Design and construction flaws
E/C Erosion/flow-accelerated corrosion (FAC)
E-C Erosion–cavitation
FP Frozen pipe
HE Human error
OVP Overload
SCC Stress corrosion cracking
TF Thermal fatigue
UNR Unreported
VF Vibration-fatigue
WH Water hammer

Maximum Likelihood Estimation (MLE) method.
Moreover, the Instantaneous Intensity Failure (IIF) and
also, the number of cumulative failure are estimated.
Therefore, the reliability of the pipes network can be
anticipated. The goals for each network are to develop a
model that can correctly classify network pipes to
successes or failures; define the pipe characteristics to be
blamed for the pipes behavior; and predict whether a pipe
will fail or not. At the end of this paper, a sample water
pipes network is modeled by the model proposed in this
work and by the obtained results the effects of repairing
and the failure modes are indicated in Intensity Failure
Function (IFF). It is also shown that the model has
enough simplicity and capability.

Types of Failure Mode in Water Pipes: Failure in water
pipes network is a complex event because the pipes are
subjected to different environmental factors and so, the
reasons for their failure are different. Generally, the factors
of pipes failure are categorized in two main groups: the
first group includes definite factors such as loads applied
through the vehicle tires, internal pressure, etc. and the
second group includes probabilistic factors such as
corrosion, ice loads, etc. It must be noted that material,
diameter and length of the pipe have also serious role on
its failure. Hence, all of the failure modes are detected and
categorized in different references. The most important
failure modes are stated in Table 1. On the other hand, the
studies have shown that the failure rate and the
breakdown frequency depend on the pipe size, pipe
material and the method of pipe production. In this paper,
it is assumed that the conditional probability of the pipes
failure depends on the type of the pipe from the view
point of material and size and also its failures mechanisms.
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Fig. 1: The Bathtub Curve of the risk rate of statistical systems

The Model of Relative Failure for  Pipes  Network:
Studies have shown that the risk of a statistical system (1)
may vary during its performance. Generally, the risk
function is in bathtub curve form for many systems, [8].
Such curve has three parts as shown in Fig. 1. Part (1) is Which in this work is summarized as follows, 
the phase of initials defects just after starting the system.
Such defects are due to the defects of the materials (2)
consumed or bad installation and so, bad starting the
system (  < 1). Part (2) is the normal performance phase of Where (t) is the failure intensity of  failure mode j. Also,
the system. In this phase sudden stresses may cause the parameter  is depending only on the event history
failure modes in the system. Part (3) is the “out of service”
phase. In this phase the system may fail at an increasing
rate due to deteriorating stresses such as fatigue stresses
in the members of the system as the pipe material
deteriorates. In statistical studies, the systems may
consider as repairable systems or as non-repairable
systems. The first types may fail several times and be
repaired after each failure and the second ones have only
one performance round and are abended and/or
replacement.

In most of previous studies, the effects of repairs and
failure modes have been ignored in anticipating the failure
of the water networks’ pipes. But in the present work, a
simple model is considered for stating failure intensity
accounting for effects of repairs in terms of failure mode.

Repairable systems like water networks’ pipes start
from t = 0 and each failure mode occurs in times t ,t .....1 2

respectively. On the other hand, types of failure modes
such as cracking due to overloading, different corrosion
types, wall seepage, etc. are indicated by j ,j .... ,1 2

Therefore, the process can be defined as (t ,j ),(t ,j ),......,1 1 2 2

The times between the failures which are the service times
are shown as X ,X ,...., namely X  = t -t  for the moments1 2 i i i-1

i = 1,2,...
Using counting process, the failure number, N (t),j

from mode j can be stated in a time interval (0,1], so the
total number of failures in the system is ,

[9]. Furthermore, the type of failure mode j may be
function of the covariates vector {z(s) ; 0 s t} In this
type, the covariates history z(s) should be added to the
history F  for each t > 0. Generally, the failure intensityt-

corresponding to the type of failure mode j is defined as,

j

{z(s) ;   0 s t}. Thus, (t) t isthe conditional probabilityj

of failure mode j in time interval [t,t+ t] given the history
before time t. In this study, using the power law, the
function of failure intensity corresponding to failure mode
j is proposed as follows,

(3)
Where m (t) = E[Nj(t)] and has the form of .j

Substituting Eq. (3) into Eq. (2) results in,

(4)

Where  is the covariate in power law correspondingj

to failure mode j for the failure not modified by any repair
which is called “reference failure”. 

 and  are dependent on the event historyj

. Eq. (4) physically means that each
repair modifies the failure intensity. The cumulative repair
effect is reflected by the term N  (t). Obviously, if  > 0,j j j

the repair will have negative effects and the failure
intensity will increase. On the other hand, if  < 0, thej

repair will have positive effects and repairs make the
system better. When  = 0,, the repair has no effect andj

the failure intensity does not change. Thus, Eq. (4) covers
all the cases that may happen. 
Now, using Eq. (4) gives,

(5)
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By solving the differential Eq. (5) the closed form of m (t) Then the Maximal Likelihood Estimation (MLE) method isj

can be calculated as, used to estimate the model parameters. Let t <t ,....t

j. In order to obtain the MLE estimators of the parameters,
(6) consider the following definition of conditional

Finally, by substituting Eq. (6) into Eq. (4) the failure
intensity corresponding to failure mode j by time t can be
obtained as follows,

(10)
(7) Where R  is the reliability function.

In water pipes network, it is assumed that repairs may conditional reliability just before the i th failure will be:
restore the system to a better state comparing to the state
just before the failure or, the repairs will not affect the (11)
system. So, as the negative effect of repair has no
meaning, the parameter  must be equal to zero or lessj

than zero at different times. Therefore, it can be seen that
the denominator of Eq. (7) should be equal to, or greater
than one. In fact, if the number of the repairs of failure (12)
corresponding to failure mode j is increased then the
failure intensity will be decreased. and the conditional probability density function (PDF) is

In order to study the change of (t) in Eq. (7) inj

terms of time, the first derivative of (t) with respect to
time t is calculated as, (13)

(8) timet  to time t  , with corresponding failure times

The sign of the derivative in Eq. (8) is relating to the term is then given by, 

(9)

Since all the other terms are positive. Obviously, term
(9) can be equal to, less than, or greater than zero at
different times. The sign of term (9) is related to the (15)
parameter , repair effect,  and the current system state,j j

(t)t. If term (9) results in a positive value at time t, (t)j j

will be an increasing function and the system is Where t  = 0 shows the beginning time of the system
deteriorating. If term (9) is a negative value, (t) will be a performance. The parameters are easily calculated takingj

decreasing function and the system is improving. Finally, the natural log on both sides of Eq. (15) as follows,
if term (9) is close to zero at some times, the system has
constant failure intensity and the model will be the same
as the Homogenous Poison Process (HPP). Moreover, the
above analysis clearly indicates the capability of the
proposed model.

Estimation   of   the   Model   Parameters:   In   this (16)
section,   the   value   of   Likelihood   is   introduced  first.

1 2 n

denote the n failure times corresponding to failure mode

probability:

j

Using the empirical failure intensity in Eq. (4), the

Consider now a point process N (t), observed fromj

i-1 i

(t ,j ),(t ,j ),....(t ,j ). The Likelihood function of the process1 1 2 2 n n

(14)

0
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Fig. 2: The number of failures recorded for each type of Fig. 4: Instantaneous Failure Intensity function for
failure in different days different type of failure

Fig. 3: Cumulative number of failures of different types different types recorded in each time is shown in Fig. 3.
recorded in each day The expected number of failures is calculated for next 2000

It must be noted that the system with failure in two steps. In the first step, the natural log on
corresponding to failure mode j has three unknown Likelihood for each type of failure is calculated and then
parameters  namely , ,  Consequently,  Eq.  (16)  has the full log Likelihood is obtained. In this example, fivej j j

3 × m unidentified parameters. By solving the non-linear modes of failures are observed during the time interval 0
system of equations of the first order derivatives with to 5000 days. Therefore, the total unidentified parameters
respect to the model parameters of the log Likelihood will be 3×5. Now, these parameters have been obtained
function, the MLE estimations of , ,   can be obtained. through MLE process. In this process, by solving thej j j

In this study, confidence intervals on , ,  have been non-linear equations of the first order derivatives withj j j

obtained using the MATLAB (R2007a) software. respect to the model parameters of the log Likelihood

Numerical Study: In order to verify the proposed model, obtained. The results of the proposed model are given in
a water distribution network as a sample is considered. Table 2. 
The main aim is to predict trends of failures over a time In the     second     step,     the   instantaneous
period. Furthermore, the reliability of the system will be failure  intensity  for  each  type  of  failure  is  obtained
calculated. In this example, the total length of pipes in the based upon estimated parameters in the previous step
network is 20 kilometers and the material of pipes  is  grey (Fig. 4). 

cast iron with the mean age of 16 years. For simplifying
the data process, it is assumed that only five types of
failure modes may be occurred in the network pipes.
Network pipes data has been taken from a pilot city and is
used in the analysis. This database contains time of each
reported failure, type of failure and cumulative number of
failures.

Fig.  2   shows   the   recorded   number   of  failures
in  the  period  of  5000  days.  The  time  between  each
type of failure is the difference between consecutive
times. Based upon the recorded data, the number of
failures  for  each  type  of failure for 5000 days is shown
in Fig. 2.

Also, the cumulative number of observed failures of

days using proposed model. This calculation is arranged

function, the MLE estimates , ,  for j = 1,2,..5 can bej j j
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Table 2:Parameter Estimates for the water distribution network

Type of Failure

--------------------------------------------------------------------------------------------------------------------------------------------------------------------

Model Parameter COR D &C FP OVP WH

1.716 1.955 1.884 1.961 1.950j

5.043e-06 1.426e-05 2.558e-04 2.004e-05 3.558e-05j

-3.440e-02 -9.450e-02 -1.657e-01 -8.910e-02 -9.960e-02j

Fig. 5: The predicted number  of  failures  for  next  2000 presented. The proposed method is able to model the
days,  (superscript  *  denote  the  predicted effects of failure modes and repairs using a modified
values  by proposed model) power law. The model has several parameters which

Fig. 6: Reliability function of the pipe for each type of method is a feasible method for large water distribution
failure networks in which many failure modes can be considered

In Fig. 4, the failure intensity increase first and then effect parameter. The model can be extensively used in
decreases. The increase could be caused by the fact that management and planning the water networks.
more and more functions and components are tested and
used. Then the rate of uncovering latent failures REFERENCES
increases. The decrease is caused by the repair activities.
Then the expected number of failures for next 2000 days 1. Shamir, U. and D.D. Howard, 1979. An Analytic
is predicted using the proposed model and the results are Approach to Scheduling Pipe Replacement, J.
shown in Fig. 5. From case study, it can  be  shown  that AWWA, 71: 248-258.

the proposed model can fit repairable system data very
well and the repair effects are reflected by introducing one
more model parameter.

Furthermore, Fig. 6 has shown the reliability
functions for each type of failure mode for successive
failures. The reliability functions become steeper as the
failures numbers increase. Also, the increase is caused by
the repair activities. This situation implies that the average
time between failures becomes shorter and shorter.

CONCLUSION

In this paper, a statistical model for predicting failures
for each pipe in a water distribution network has been

include both the effects of repair and the types of failure.
Thus, this model which uses the failure intensity function
is capable and convenient for prediction of failures. The
model has been used in a numerical example for the urban
water network. The pipes in the network have been
divided into groups based on different failure
characteristics. The case study showed that after each
repair, the repair will have positive effects and repairs
make system improved. That means, after each repair, the
failure intensity has been reduced. In additional, the
parameters appear in model can be easily obtained by
Maximum Likelihood Estimation (MLE) method. In the
present study it is possible to select the most effective
modes from total modes. It is important that the proposed

besides the other probabilities parameters, such as repair
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