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Abstract: People who exercise may benefit or be injured depending on their foot striking (FS) style.
In this study, we propose an intelligent system that can recognize subtle differences in FS patterns
while walking and running using measurements from a wearable smartwatch device. Although
such patterns could be directly measured utilizing pressure distribution of feet while striking on
the ground, we instead focused on analyzing hand movements by assuming that striking patterns
consequently affect temporal movements of the whole body. The advantage of the proposed approach
is that FS patterns can be estimated in a portable and less invasive manner. To this end, first, we
developed a wearable system for measuring inertial movements of hands and then conducted an
experiment where participants were asked to walk and run while wearing a smartwatch. Second, we
trained and tested the captured multivariate time series signals in supervised learning settings. The
experimental results obtained demonstrated high and robust classification performances (weighted-
average F1 score > 90%) when recent deep neural network models, such as 1D-CNN and GRUs, were
employed. We conclude this study with a discussion of potential future work and applications that
increase benefits while walking and running properly using the proposed approach.

Keywords: healthcare wearables; deep sequence learning; fine-grained motion classification; activity
monitoring; human activity recognition

1. Introduction

As interest in healthcare has increased; research on human activity recognition (HAR)
is also receiving increasing attention. Smart devices offer affordable and less invasive
methods for monitoring such daily activities. For example, most modern smartwatches offer
advanced health-tracking features. With recent advances in machine learning techniques,
human activities are recognized in a more precise and robust way [1–5]. Walking and
running have a high proportion in every facet of daily activities; thus, these two activities
have often been studied as key elements in the process of HAR in the past decades [2,6–12].
Owing to the repetitive nature of these activities, it is generally known that proper walking
and running styles are crucial in simultaneously securing player safety and performance.

In the case of running, the rear-foot (RF) strike pattern associated with greater vertical
loading [13] and larger impact peak forces [14] have been related to the cause of athlete
injuries, such as tibial stress syndrome, plantar fasciitis, tibial stress fractures, patellofemoral
pain, and Achilles tendon injuries [14–16]. Furthermore, a previous study proved that the
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FS patterns are closely related to the destruction of red blood cells, so-called hemolysis,
compared to foot strike-free sports due to the mechanical trauma of foot strike on the
ground [17]. Thus, RF runners with forceful landings on the ground are at a higher risk
of hemolysis [18]. In this vein, although arguable [19], changing FS patterns from RF
strike pattern to non-RF strike pattern, that is, midfoot (MF) or forefoot (FF), is generally
recommended to avoid such injuries associated with running [13,20].

In the case of walking, the FS patterns also significantly affect the whole-body dynamic
posture. For example, young children who are about to learn to walk usually toddle when
walking, owing to their toe-to-heel (i.e., FF strike) walking strategy [21]. Similarly, people
with pathological conditions, such as cerebral palsy, muscular dystrophy, stroke, autism
spectrum disorder, and chronic pain, normally show FF strike pattern [22,23], so that they,
consequently, have a waddling gait pattern.

Therefore, recognizing the striking patterns of running and walking would provide a
meaningful translation of the quality of these physical activities to users, including athletes.
Considering that the physical impact during contact with the foot is propagated through
the whole body while walking and running, we hypothesized that the type of walking
and running patterns (i.e., FS patterns) can be recognized from body parts other than the
foot (e.g., wrist). Measuring the type of FS pattern in a natural and noninvasive manner
is challenging because it normally requires dedicated equipment, such as a force plate or
floor-mounted force platform [24,25]. Recent smart insoles offer portable alternatives for
recognizing FS pattern; however, it may be inconvenient for some users, especially in a
situation where activity needs to be monitored naturally in the presence of an insole. This
may make users feel different or even uncomfortable while exercising. In addition, smart
insole sensors can be contaminated with sweat or dust and are likely to be damaged by
physical pressure from the ground and feet. In this context, we propose an intelligent
wearable system that can recognize subtle differences in walking and running styles in
the form of FS pattern in a portable and less invasive manner by leveraging the sensing
capability of modern smartwatches.

To validate our approach, we first conducted experiments in which the participants
were asked to walk and run with different striking patterns. Multivariate time-series data
(MTS) were collected from a smartwatch using a custom software. We then evaluated
whether captured motion signals reveal enough information to differentiate FS patterns in
a supervised learning setting by utilizing recent deep learning architectures [26], includ-
ing gated recurrent neural networks (RNNs) (e.g., long short-term memory (LSTM) [27],
gated recurrent units (GRUs) [28]), and one-dimensional convolutional neural networks
(Conv1D) [29,30]. In this study, conventional feature-based machine learning algorithms
along with extensive feature engineering processes were employed to measure the baseline
performance levels. The experimental results demonstrated that the proposed approach
could recognize different types of walking and running styles with inertial measurements
from the hand. In summary, this study primarily contributes to the literature in the follow-
ing two ways:

1. With the hypothesis that different types of ground contact during walking and running
would result in differences in whole-body movements, we propose an intelligent
system that can indirectly observe and recognize the FS patterns based on MTS signals
measured from a smartwatch.

2. We conducted two experiments (i.e., walking and running) to validate the proposed
approach, which aims to investigate whether captured motion signals from the wrist
deliver enough information to differentiate FS patterns.

In the next section, we will briefly review the relevant work.

2. Related Work

Human activity recognition (HAR) plays a significant role in various fields, including
healthcare, surveillance, and human-computer interaction applications. Among the modal-
ities of sensor-based approaches [31], we mainly focus on body-worn sensors throughout
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this study because these wearable sensors are ubiquitous (e.g., smartphones [6,8,9,32,33],
smartwatch/band [32,34,35], and generic embedded devices [12,36–38]), and, thus, are
unobtrusively applicable to users who exercise.

2.1. Human Activity Recognition

An earlier pioneering work proposed a wearable system that recognized a variety of
daily activities using multiple embedded sensors [12]. By exploiting a variety of acceleration
feature values, the system successfully recognized a set of everyday human activities,
such as walking, sitting, bicycling, working on a computer, riding an escalator, etc. The
experimental results also suggested that the use of multiple sensors aided the recognition
of complex activities. With advances in mobile and wearable computing technologies, the
number of HAR studies that utilize smart devices has increased accordingly. For example,
in a previous study, Kwapisz et al. proposed an activity recognition system based on cell
phone accelerometers that utilized the sensing capability of smartphones [33]. Their system
could recognize six different physical activities using the 10-s of activity segmentations. In
a recent study, Reyes-Ortiz et al. further extended the activity recognition capabilities by
predicting not only a specific activity but also the transition between activities [39].

Recent advances in deep learning have enabled fine-grained motion analysis, which is
challenging because similar activities normally require the extraction of subtle differences
in motion features. For example, a recent study proposed the use of a wearable smartwatch
device-based system for recognizing various hand-oriented everyday activities [34]. Their
experimental results validated the feasibility of using the smartwatch measurements to
differentiate similar activities, such as shaving and putting on lipstick with one’s hands.
In a recent work, Haque et al. proposed an attention-based recurrent neural network that
recognized six different nursing activities [40]. They achieved reasonable classification
results by utilizing the proposed location and motion features. Another study presented an
attention-based neural network system for recognizing user activities. By utilizing the CNN
and GRU along with the attention model, the proposed system could learn both spatial
and temporal dependencies from the complex multivariate time-series motion signals [41].
More recently, we formulated a classification problem for a variety of walking patterns,
such as regular walking, walking while carrying objects (e.g., dumbbell, mobile phone, and
umbrella) and walking with different gestures (e.g., walking with arms crossed, walking
with hands behind the back, walking with hands in pockets, etc.) as a supervised machine
learning problem [42]. Remarkably, it was found that human hand motion delivered
sufficient information to recognize subtle differences between walking contexts.

2.2. Recognition of Foot Motions from Other Body Parts Apart from Feet

All body parts are organically connected; therefore, the movement of one part of the
body can be transmitted to another. This human characteristic has often been exploited
as a method to ensure natural interaction or additional modality, especially in the field of
human-computer interaction. For example, in a previous study, Scott et al. proposed an
interaction system that recognized fine-grained foot gestures, such as ankle dorsiflexion,
plantar flexion, and heel and toe rotations, utilizing measurements from a sensor located in
a pocket. Because foot motion subsequently moves the lower body parts, though subtly, a
sensor located even in a pocket on the upper body parts (e.g., near the waist) could capture
this motion [8].

Similarly, wearable sensors have recently been used to recognize gait patterns to detect
certain medical symptoms. For example, a previous study proposed a wearable system
consisting of multiple accelerometers mounted around the waist to analyze gait patterns.
Their experimental results validated the feasibility of using gait features obtained from
body-worn sensors for diagnosing cognitive declines [43].
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2.3. Sensor-Based Recognition of Foot Strike Patterns

Efforts have been made to recognize different fine-grained running styles (i.e., foot
strike patterns) through the use of wearable devices. For example, a recent study proposed
a wearable system that explored pressure-sensitive insoles incorporated in the normal run-
ning shoes to predict foot-strike patterns while running. Experimental results demonstrated
a high recognition rate (over 90%), although precise recognition of the MF strike pattern
was found to be more challenging than those of FF and RF strikes [44]. Similarly, another
recent work proposed a foot-striking recognition system based on a pressure-measuring
sensor mounted inside a running shoe [45]. The experimental results revealed that the FS
patterns were accurately recognized, similar to those reported previously [44]. Contrary to
previous studies [44,45], that used pressure-measuring wearable insoles, another recent
study utilized an accelerometer inside a running shoe to recognize two different landing
styles (e.g., RF and FF strikes) while running [46]. The study found that a cross-correlation
measure between acceleration signals from different axes could be used as a feature to
recognize the foot strike patterns and the study envisioned the use of acceleration signals
for foot strike classification while running.

Although measuring pressures [44,45] and inertial motions [46] of the foot or leg can
directly provide information regarding foot strike patterns, we hypothesized that such
information can also be observed in body parts other than the feet or legs, such as the hands,
since the human body parts are connected organically; thus, different loading patterns
while striking on the ground would result in significant differences in whole-body motions.
From this perspective, we utilized a wearable smartwatch as a sensing device to observe
and recognize the hand motion affected by foot strike patterns. To prove hypothesis, we
developed a smartwatch-based wearable system that can recognize detailed running and
walking patterns, such as FF, MF, and RF striking patterns. We then evaluated whether
the captured motion signals from the hand were sufficient to differentiate between foot
strike patterns.

3. Proposed Approach

In this section, we describe a wearable system and machine learning pipelines for
learning features extracted from the MTS signals captured while walking and running with
a set of machine learning algorithms.

3.1. Activity Definition

As discussed in the previous section, we focused on three different foot striking
strategies while running and walking, as shown in the figure below. FF strike or toe
walking refers to the metatarsal heads of the foot touching the ground. In the case of an MF
strike, the foot contacts the ground across the metatarsal head and subsequently contacts
the ground. Although arguable, the MF strike pattern is considered to be more efficient
and safer than RF because physical impacts are mitigated during the landing phase [47,48].
This type of striking strategy is often adopted by professional mid- and long-distance
runners [48]. In the case of the RF strike, the so-called heel strike or heel-to-toe walking,
the foot contacts the ground with the heel first. Figure 1 illustrates three types of striking
strategies: FF, MF, and RF.

As a preliminary study, we investigated whether the motion sequences of other body
parts (e.g., hand) are affected by the FS patterns using a motion capture system. Using a
smartwatch worn on the dorsal part of the left wrist, we visualized the angular movements
(i.e., roll, pitch, and yaw) of the left forearm. Figure 2 shows the three-dimensional motions
of 37 reflective markers tracked at a sampling rate of 240 Hz with a multi-camera motion
capture system (NaturalPoint Inc., Corvallis, OR, USA) and examples of calculated angular
motions (i.e., roll, pitch, and yaw) of the left hand.
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Figure 2. Motion tracking examples while walking with different FS types (right). Angular motions
(roll, pitch, and yaw) of the (left) forearm are displayed.

As shown in Figure 2, different hand motions (e.g., arm swing patterns) were sys-
tematically observed with respect to the striking strategy. Based on this observation, we
hypothesized that FS patterns could be differentiated using inertial measurements from
the hand.

3.2. System for Data Collection

We implemented a custom software for capturing inertial motions in the form of MTS
signals (e.g., accelerations and angular velocities) for a commercial smartwatch (Sport
Smartwatch FTW6024 by Fossil), which runs on Wear OS by Google. The sampling rate was
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set to 50 Hz, which was the fastest setting for the device. Figure 3 shows the smartwatch
employed in this study, with its axis displayed.
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3.3. Models

We adopted both feature-based machine learning and recent deep learning-based
algorithms to learn the captured MTS data in a supervised setting.

3.3.1. Baseline: Feature-Based Machine Learning

As the baseline, we employed a range of feature-based machine learning algorithms,
such as naïve Bayes [49], random forest [50], and support vector machines [51].

The naïve Bayes classifier is a probabilistic machine learning model that uses the
Bayes theorem [52]. This approach is simple yet well suited for many practical classification
problems. However, its performance is often hindered by the naïve assumption that features
are conditionally independent and contribute equally to the output. A random forest
classifier utilizes a large number of decision trees in an ensemble on various subsamples of
the dataset [53]. In particular, random forests demonstrate robust and reliable performance
across many application fields. In addition, we utilized SVM [51], which is effective in
classification problems in high-dimensional spaces, as a classifier. A radial basis function
(RBF) kernel was used for SVM.

For feature-based approaches, we conducted extensive feature engineering work
beforehand according to a recent work [54], which identifies the significant time-series
characteristics statistically [55].

3.3.2. End-to-End Machine Learning

To learn complex and hierarchical features from raw sensor signals in an end-to-end
learning fashion, we adopted recent deep learning algorithms, such as Conv1D [29,30],
gated RNNs, such as LSTM [56] and GRUs [28]. In particular, both LSTM and GRU typically
outperform vanilla RNN (i.e., RNN with a traditional tanh unit) in many sensor-based
applications [3,4,31,42,57–60] because these models can capture long-term dependencies
efficiently by mitigating the vanishing gradient problem utilizing memory cells and/or
gating units. Refer to [28] for further details.



Int. J. Environ. Res. Public Health 2022, 19, 1279 7 of 18

4. Experiment

This section describes experiment procedures designed for the proposed sequence
classification tasks.

4.1. Data Acquisition

This study was approved by the Institutional Review Board of the Hallym University
(HIRB-2021-058). Written informed consent was obtained from all participants. Data were
collected under three types of running and walking conditions. The experimenter provided
instructions on which part of the foot hit the ground first to participants who walked or ran
with different strike patterns. The participants had sufficient time before data acquisition
to practice the desired for strike types. Based on visual inspection, the researcher provided
feedback to adjust the target pattern for each subject. The participants were recruited from
local universities. Most of the participants were recreational and elite athletes. In total,
1,279,500 data points (approximately 7.10 h) of walking data and 2,891,000 data points
(approximately 16.06 h) of running data were collected. We screened and categorized the
recorded data into three types of FS patterns by visual inspection.

4.1.1. Walking

Sixteen participants (11 females) with a mean age of 31.06 ± 10.24 years and an average
body mass index (BMI) of 21.89 ± 4.15 kg/m2 were asked to walk in a set of flat grounds
including outdoor flat ground, an indoor corridor, and a treadmill at self-paced speeds with
different walking strategies. As a reference, we also collected data from standstill postures,
such as standing and sitting (e.g., doing something while sitting and standing) from four
different participants. Table 1 shows the acquired results for foot strike patterns. The whole
dataset was split into 70% and 30% for training and testing processes, respectively.

Table 1. Data acquired while walking with different strategies.

Total Duration
(min)

Time per Subject
(Mean ± SD)

Standby 144.45 35.83 ± 7.67
Forefoot strike 80.16 7.13 ± 12.21
Midfoot strike 116.57 9.38 ± 16.18
Rearfoot strike 107.95 9.39 ± 16.07

4.1.2. Running

Seventeen participants (8 females) with a mean age of 28.18 ± 12.12 years and an
average BMI of 20.49 ± 3.69 kg/m2 were asked to run tracks in sports facilities on a
university campus, park, or treadmill at self-paced speeds with different striking strategies,
similar to the walking condition. Table 2 shows the acquired results for foot strike patterns.

Table 2. Data acquired while running with different strategies.

Total Duration
(min)

Time per Subject
(Mean ± SD)

Standby 319.3 79.38 ± 59.84
Forefoot strike 270.21 29.36 ± 46.25
Midfoot strike 529.96 38.86 ± 47.78
Rearfoot strike 65.82 10.83 ± 5.67

4.2. Classification

In this section, we evaluated whether the captured motion signals reveal sufficient
information to differentiate the FS patterns. Raw sensor measurements were normalized
by removing the mean and then scaling to unit variance on each axis for further feature en-
gineering processes. Because walking and running, characterized by repeated movements,
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have different step cycles between activities and individuals, raw signals were partitioned
into four different signal lengths (L = 50, 75, 100, and 150 samples, which correspond to
approximately 1.0, 1.5, 2.0, and 3.0 s, respectively) with no overlaps between partitions.
Therefore, the input to the system is a six-dimensional (6D) tensor, which represents the
waveform data of four different fixed-length windows. Figure 4 illustrates an example sig-
nal with segmentation windows of different lengths, highlighted for visualization purposes.
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Figure 4. Example process of segmenting the raw measurements with different segmenting windows,
highlighted for visualization purposes. Noting that inertial signals have periodic characteristics, the
input 6-axis raw signals were partitioned into data segments (L × 6) with four different fixed-lengths
of signals (L = 50, 75, 100, and 150 samples, each of which corresponds to approximately 1.0, 1.5, 2.0,
and 3.0 s) for investigating the effective signal length of running and walking activities. Note that the
beginning and end of a cycle of repetitive motion are not aligned with a segmenting window so that
an arbitrary part of raw measurements can be segmented.

4.2.1. Feature-Based Classification

Once segmented signals were normalized, target features were extracted with the
tsfresh package [54] with a predefined setting, which was set to calculate 781 predefined
features from a given signal, resulting in 4686 (= 781 × 6 axis) aggregated features for each
segmented input data. The extracted features were then filtered into a subset of signifi-
cant features based on the feature selection algorithm [54], which evaluates the statistical
significance of each time-series feature based on the Benjamini–Yekutieli procedure [55].
Statistical analysis of our dataset showed 2333 features out of 4686 to be significant, and we
selected the 180 most significant features for each segmented input dataset.

Figure 5 illustrates the process of feature extraction, aggregation, and selection process.
As classifiers for the feature-based approach, we utilized naïve Bayes (NB), random forest
(RF), and support vector machine (SVM) classifiers.
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Figure 5. Workflow of feature filtering process. A set of features was extracted from the partitioned
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Table 3 shows examples of selected significant features from the dataset.

Table 3. Examples of selected common features based on the feature significance test. Feature names
were adopted from [54].

Feature Name Descriptions

change_quantiles the average, absolute value of consecutive changes of the time series inside the corridor

cwt_coefficients a continuous wavelet transform for the Ricker wavelet, also known as the “Mexican hat wavelet”

fft_coefficient the Fourier coefficients of the one-dimensional discrete Fourier Transform for real input by fast
Fourier transformation algorithm

agg_linear_trend a linear least-squares regression for values of the time series

quantile the q quantile of time series

permutation_entropy the permutation entropy

autocorrelation the autocorrelation of the specified lag

ar_coefficient the unconditional maximum likelihood of an autoregressive process

fourier_entropy the binned entropy of the power spectral density of the time series

number_peaks the number of peaks of the time series

fft_aggregated the spectral centroid (mean), variance, skew, and kurtosis of the absolute Fourier transform spectrum

ratio_beyond_r_sigma ratio of values that are more than r ∗ std (time series) away from the mean of time series

agg_autocorrelation the autocorrelation of the time series

partial_autocorrelation the value of the partial autocorrelation function at the given lag

spkt_welch_density the cross power spectral density of the time series at different frequencies

4.2.2. End-to-End Machine Learning

As described in the previous section, we employed a set of recent deep learning
architectures for training the acquired MTS data in an end-to-end fashion: Conv1D [29,30],
gated RNNs, such as LSTM [56] and GRUs [28].
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For the Conv1D model shown in Figure 6a, we first obtained convolutional features by
applying 1D convolution operations over one-dimensional input signals and aggregated the
features from the previous layers by applying a max-pooling operation. These operations
were repeated twice to extract and abstract the temporal features. The convolution operation
was performed with a kernel size of 5, no padding, and a stride of 1. Finally, we utilized
the global average pooling layer [61] to calculate average of each feature map instead of
adding a fully connected layer on top of the flattened feature maps.
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representations.

For the GRU- and LSTM-based models shown in Figure 6b, we stacked recurrent
cells twice (i.e., stacked two-layer GRU/LSTM) to increase the depth of the network. The
dimension of the recurrent hidden states was set to 100, which was identical to the length
of the input signal, L.

For all neural-network-based models used in this study, dropout layers were applied
to applied to the network to prevent the networks from overfitting. The last dense layer in
the deep neural network used for the classification task has four neurons with a softmax
activation function corresponding to the four different target motions: three types of foot
strike patterns and one standby action. For the optimization process, we employed an
ADAM optimizer [62].

Feature-based approaches, such as naïve Bayes, random forest, and SVM, were im-
plemented with Scikit-Learn and end-to-end learning approaches were implemented with
Keras using Tensorflow as the backend.
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4.3. Results

We employed Fm, the weighted average of the F1-scores, as a performance metric as
shown in Equation (1).

Fm = 2
C

∑
c=1

Nc

Ntot

Precisionc × Recallc
Precisionc × Recallc

(1)

Here, Nc is the number of samples belonging to class C, and Ntot is the total number of
samples. Table 4 shows the experimental results of the proposed approach in terms of Fm.

Table 4. Experimental results of test Fm.

Type Signal Length
Feature-Based Learning Deep Neural Network

NB RF SVM LSTM GRU Conv1D

walk

50 68.220 78.042 90.103 92.880 93.189 95.536
75 68.929 80.282 92.305 93.847 93.378 95.436

100 71.197 80.964 93.469 94.306 94.280 96.379
150 72.277 83.816 93.927 94.064 94.409 96.313

run

50 47.014 74.896 93.578 96.270 96.050 96.772
75 51.495 77.820 94.493 96.704 96.715 97.150

100 57.143 78.465 94.632 96.720 97.013 97.596
150 56.129 78.082 95.303 96.881 97.426 98.056

The average elapsed times for inferencing 100 samples (= 100 × L × 6) using pretrained
NB, RF, SVM, LSTM, GRU, and Conv1D classifiers are displayed according to the data
types in Table 5. For feature-based learning, we extracted the 180 preselected features from
each segment of the data (L × 6), determined during the training phase (see Table 3).

Table 5. Average elapsed times in milliseconds for inferencing test data with a batch size of 100. For
the feature-based learning, elapsed times for feature extraction are included. Average inference time
is displayed in parentheses after individual numbers.

Type Signal Length
Feature-Based Learning Deep Neural Network

NB RF SVM LSTM GRU Conv1D

walk

50 145.54(3.02) 153.22(9.23) 149.56(4.42) 35.34 36.39 27.70
75 139.91(3.13) 141.74(9.47) 135.13(3.83) 38.51 38.41 27.58
100 131.48(3.13) 138.24(9.43) 131.86(3.37) 42.14 41.49 28.10
150 127.52(3.09) 132.93(9.52) 129.17(3.39) 46.53 46.00 28.95

run

50 143.64(3.03) 150.45(9.39) 145.59(5.04) 35.89 36.27 28.39
75 147.81(3.09) 154.36(9.38) 147.26(4.26) 38.42 38.78 28.18
100 141.39(2.98) 151.23(9.50) 145.17(4.06) 41.58 41.56 27.82
150 130.96(3.11) 139.13(9.42) 134.80(3.70) 46.94 46.31 28.10

The normalized confusion matrix for classification results and two-dimensional embed-
dings of high-dimensional features using the t-distributed stochastic neighbor embedding
(t-SNE) algorithm [63] are described in the Appendix A.

5. Discussion and Limitations
5.1. Classification Performance

Experimental results from feature-based approaches indicate that SVM achieved the
best performance.

The Fm of SVM was 93.927 for walking and 95.303 for running conditions. The Fm of
RF and NB were 83.899 (83.816) and 73.348 (72.277) for walking and 81.242 (78.082) and
50.250 (56.129) for the running condition, respectively. Note that RF and NB have difficulties
not only in learning the training dataset but also in generalizing to the test dataset.
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In the end-to-end deep learning approach, Conv1D achieved the best classification
performance; the test Fm was 96.379 for walking and 98.056 for running conditions. Regard-
ing the convolutional operation, we experimented with kernel sizes of 3 and 5; however,
we obtained similar accuracies: 95.898 for walking and 97.800 for running conditions when
a convolution kernel size of 3 was used.

The test Fm of GRU and LSTM were 94.409 and 94.064 for walking and 97.426 and
96.881 for the running condition, respectively. In summary, deep learning-based approaches
generally demonstrated higher Fm because of their capability to learn a hierarchical feature
representation from raw MTS signals [64].

Figure A2 shows the two-dimensional embeddings of high-dimensional feature space
(64 for Conv1D and 100 for LSTM and GRU in our case) for the walking and running condi-
tions, respectively, using the t-SNE algorithm, which projects points in a high-dimensional
space into a 2D space in such a way that similar points cluster together [63]. Here, each 2D
point represents the projected feature embedding of a data segment containing 1 to 3 s. As
shown in the figures, feature embeddings are well clustered in separate regions, meaning
that fine-grained motion features from the different FS conditions were successfully learned
in an end-to-end manner. In particular, for standby motion, the t-SNE plots showed a
more clustered distribution. Consequently, standby motion represents a more accurate
classification of the results, as shown in Figure A1.

5.2. Data Imbalance

Furthermore, although the dataset from the running condition is imbalanced as RF
cases have fewer observations than the other cases (i.e., 12.42% compared to the dataset
from the MF strike condition), the experimental results showed that deep learning-based
approaches exhibited high Fm of 98.056 for Conv1D, 97.426 for GRU, 96.881 for LSTM. In
addition, as Figure A2 shows, two-dimensional feature embedding of the test sets of the RF
striking condition (shown in red) are well separated from other classes, indicating that our
system extracted and learned features from the imbalanced MTS data successfully.

5.3. Effect of Waveform Length

As shown in Table 4 and Figure A1, the performance of the machine learning models
was influenced by the length of the input waveform. In our results, the performance
was generally enhanced as the sample length increased. This is generally consistent
with the results of previous studies that examined the effects of the sample length on the
performance of the suggested systems [65,66]. Interestingly, sample lengths with the highest
performance in walking and running were shown to be slightly different; signal lengths
of 100 samples (approximately 2 s) and 150 samples (approximately 3 s) demonstrated
the best Fm for most classifiers in both walking and running conditions. Considering
that the time required for RNN-based approaches during the inference phase increases
as the input length increases owing to their recurrent nature, as shown in Table 5, the
Conv1D-based approach is advantageous in terms of securing performance and reducing
computational time, especially when longer parts of MTS signals are considered. Based
on the experimental results obtained, we can conclude that foot-striking patterns can
be estimated from the smartwatch, as we hypothesized, although performance varies
depending on data segmentation methods. We believe that the proposed smartwatch-based
recognition would help users to exercise unintrusively and effectively, although a similar
purpose can be achieved through direct measurements from the foot, as in [36,37,46]. In a
similar context, we plan to extend the proposed approach using other types of wearable
devices (e.g., mobile phones in the pocket and necklace-shaped devices).
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5.4. Applications & Explorations

An intelligent system that detects FS patterns in real time is beneficial for many sports
training applications. For example, a wearable smartwatch device may inform runners
when they are running with repetitive RF striking patterns, preventing continuous exposure
to risk factors for musculoskeletal injuries.

In another setting, our system can be used as a new health-monitoring feature. For
example, once unusual striking patterns (e.g., walking waddlingly or walking with a limp)
are detected while walking, the system can provide users or their family members with
informed alarms since individual variability of walking patterns can be a warning sign of
health problems.

5.5. Limitations and Future Work
5.5.1. Inter-User Variability

Throughout this study, we focused on extracting and learning user-independent fea-
tures from the MTS motion signals for the proposed classification task. After conducting a
further classification test, which evaluates whether the captured MTS signals contain suffi-
cient information to differentiate between participants. As shown in Figure A3, deep neural
networks (i.e., GRU) can successfully differentiate a specific user from others. Interestingly,
the experimental results demonstrated that deep learning-based approaches exhibited high
test accuracy (Fm score) of 97.871 (97.874) for Conv1D, 97.075 for GRU, and 97.159 for LSTM
for the running dataset. We expect that inter-user variability can be utilized for opening
a new venue for promising future work: recognition of athletes and their style changes
over time.

5.5.2. Scalability to a Large Dataset

Because we collected data from a limited number of participants (16 for walking; 17 for
running except the standby posture), we acknowledge that models trained with the current
dataset cannot be readily applicable to classify the data from arbitrary participants. For the
model to be more generalizable, we plan to collect datasets from diverse participants.

6. Conclusions

In this paper, we have presented a novel wearable system that can estimate FS patterns
using inertial measurements from a smartwatch, hypothesizing that walking and running
styles affect not only the pressure distribution on the foot but also whole-body movements.
To evaluate this hypothesis, we first collected MTS signals using a commercial smartwatch
with custom software and then trained the dataset with a set of supervised learning
models, which included feature-based and recent deep learning-based architectures. The
experimental results validated the feasibility of the proposed approach. The deep learning-
based approach exhibited high performance; The Fm of the Conv1D-based model was
96.379 for classifying the walking data, and 98.056 for the running data, while feature-based
approaches demonstrated lower classification performance despite the extensive feature
engineering process.

Because our experimental results demonstrate that motion signals captured from the
hand reveal enough information to differentiate subtle walking and running styles, we
believe that the proposed intelligent system can be utilized for monitoring the quality of
motion in an unintrusive and natural manner.

In summary, we expect that the proposed approach would inspire a variety of intrigu-
ing HAR applications in which only indirect motion consequences are measurable.
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walking and running condition). As a nonlinear dimensionality reduction technique, t-SNE was
applied in Figure A2. Each 2D point represents the projected feature embedding of a data segment of
approximately 1 s.
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