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Abstract

The estimation of the population total ty, by using one or more auxiliary variables, and
the population ratio θxy = ty/tx, tx is the population total for the variable X, for a finite
population are heavily discussed in the literature. In this paper, the idea of estimating
the finite population ratio θxy is extended to use the availability of auxiliary variable Z
in the study. The availability of such variable can be used to increase the precision of
estimating the population ratio θxy. Our idea is supported by the fact that the variable Z
may be more correlated with the variable Y than the correlation between the variables X
and Y. To our knowledge, this idea is not discussed in the literature, and may be extended
to use the availability of p auxiliary variables.

The bias, variance and the mean squares error are given for our approach. Simulation
from real data set, the empirical relative bias and the empirical relative mean squares error
are computed for our approach and for different estimators proposed in the literature for
estimating the population ratio θxy. Analytically and the simulation results show that, by
suitable choices, our approach gives negligible bias and has less mean squares error.

Further, under simple random sampling without replacement, the population variances
of the estimators that are used in this paper are computed. Based on the random samples,
that are used for estimating the population ratio θxy, the sample variances for the different
estimators that are used in our approach are compared with the population variances for
each estimators i.e. the empirical mean, the empirical relative bias, and the empirical
relative mean squares error for the sample variances are reported. As a result of this
simulation study, our approach is more efficient than other estimators proposed in the
literature.

Keywords: population ratio, auxiliary variables, bias, mean squared error, general sampling
design, mean, variance.

1. Introduction

Consider a finite population U of N units indexed by the set {1, 2, · · · , N}. For the ith unit,
let yi, and xi be the values of the variables Y and X, respectively. One of the main interest
in survey sampling is to estimate the population ratio θyx = ty/tx, where ty =

∑
i∈U yi be the

population total for the variable Y , and tx =
∑

i∈U xi be the population total for the variable
X. In the literature, there are different ideas for estimating the population ratio θyx. To our
knowledge, none of them used the availability of another auxiliary variable Z in the study.
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The availability of such auxiliary variable can be used to improve the precision of estimating
θyx. Our idea is to use the auxiliary variable Z to improve the precision of the estimator of
θyx.

Under simple random sampling without replacement (srs) design, Hartley and Ross (1954)
proposed an exactly unbiased estimator for θyx. The proposed estimator is given by

θ̂HR = r̄s +
n (N − 1)

N (n− 1) x̄u
(ȳs − r̄sx̄s) , (1)

where, ȳs =
∑

i∈s yi/n, r̄s =
∑

i∈s ri/n, ri = yi/xi, x̄s =
∑

i∈s xi/n, and x̄u = tx/N. This
estimator can be rewritten under general sampling design p (·). In this case, this estimator is
no longer unbiased but still with negligible bias (Al-Jararha 2012).

Under general sampling design, Al-Jararha and Al-Haj Ebrahem (2012) proposed an estimator
for estimating the population ratio θyx. This estimator, has negligible relative bias especially
for small sample sizes n and approaches zero with increasing n. Under srs, and based on
simulation results, the performance of this estimator is better than Hartley and Ross (1954)
estimator. Their estimator is defined by

θ̂JM = r̄s +
1

x̄u
(ȳs − r̄sx̄s) . (2)

Under General sampling design, Al-Jararha (2012) obtained an exactly unbiased estimator
for the population ratio θ. This estimator, under srs design, gives the Hartley and Ross (1954)
estimator. Further, the variance and an unbiased estimator of the variance of such estimator
were obtained. This estimator, works well in stratified sampling designs.

Define πi, the first order inclusion probability, by

πi = Pr
(
ith element ∈ s

)
=
∑
s3i

p (s) .

For i 6= j, the second order inclusion probability is defined by

πij = Pr
(
ith and jth elements ∈ s

)
=
∑
s3i, j

p (s) .

The Horvitz and Thompson (1952) estimator of the population total ty =
∑

i∈U yi is defined
by

t̂yπ =
∑
i∈U

yi
I{i∈s}

πi
,

where I{i∈s} is one if i ∈ s and zero otherwise. Further,

ȳs =
1

N
t̂yπ,

can be used to estimate the population mean ȳu = 1
N ty. It can be noted that t̂yπ and ȳs are

unbiased estimators for ty, and ȳu respectively. However, t̂yπ and ȳs do not use the availability
of auxiliary variables in the study. In similar way,

x̄s =
1

N
t̂xπ, and r̄s =

1

N
t̂rπ

are unbiased estimators for x̄u and r̄U respectively.

The availability of more than one auxiliary variable is used in literature for estimating the
finite population total ty, or finite population mean yu.
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Under srs, Olkin (1958) was the first one who deals with the problem of estimating the
population mean using more than one auxiliary variables. His estimator is given by

ˆ̄yu =

p∑
i=1

wix̄iuθ̂yxi ,

where p is the number of the auxiliary variables, θ̂yxi = ȳs/x̄is, wi is the weight of the ith
auxiliary variable such that

∑p
i=1wi = 1, ȳs is the sample mean of Y and x̄iu, x̄is are the

population mean and the sample mean of Xi, respectively, for i = 1, . . . , p.

Singh and Chaudhary (1986) proposed the following estimator

ˆ̄yu = ȳs

(
w1
x̄1u
x̄1s

+ w2
x̄2u
x̄2s

)
for estimating the population mean yu, where w1 + w2 = 1.

Abu-Dayyeh, Ahmad, Ahmad, and Hassen (2003) studied the general form of Singh and
Chaudhary (1986) estimator. They proposed two classes of estimators using two auxiliary
variables to estimate the population mean for the variable of interest Y.

Kadilar and Cingi (2004) suggested a new multivariate ratio estimator using the regression
estimator instead of ȳs which used in Singh and Chaudhary (1986) estimator. Their estimator
is given by

ȳpr =
2∑
i=1

wi
ȳs + bi (x̄iu − x̄is)

x̄is
x̄iu,

where bi, i = 1, 2 are the regression coefficients. Based on the mean squares error (MSE),
they found that their estimator is more efficient than Singh and Chaudhary (1986) estimator
when

MSE (ȳpr) < MSE (ȳu) ,

where MSE (ȳpr) , and MSE (ȳu) are defined by Equations (2.4), and (1.2) of Kadilar and
Cingi (2004), respectively.

Other authors are using different ideas for estimating the population mean ȳu. On the other
side, there are different ideas for estimating θyx, to our knowledge, none of them discussed
the idea of using the availability of other auxiliary variable Z for estimating the population
ratio θyx. In this article, under general sampling design, a family of estimators is adopted
for estimating the population ratio θyx. For such family, the bias, variance, MSE are given.
Based on simulation from real data set, we will compare between given estimators for θyx,
proposed in the literature and our approach.

2. Proposed Family

The existence of one or more auxiliary variables can be used to improve the estimate of θyx.
In our approach, for the ith unit, let yi, xi and zi be the values of the variable of interest
Y, and the auxiliary variables X, and Z respectively. Our goal is to estimate the population
ratio θyx = ty/tx when the auxiliary variable Z is available in the study.

Our approach is summarized by rewriting the definition of θyx as

θyx = λθyx + (1− λ) θzxθyz, (3)

for given λ and θzx = tz/tx. Usually, tx and tz are assumed to be known; therefore, we assume
θzx to be known. Based on this, estimate θyx by

θ̃yx = λθ̂yx + (1− λ) θzxθ̆yz. (4)
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Remark 2.1. The estimators θ̂yx, and θ̆yz can be computed from proposed estimators for the

population ratio in the literature. Both, θ̂yx, θ̆yz can be computed from the same estimator of
the population ratio, or from different estimators.

From Equation(4), take the expectation of θ̃yx, we have

E
(
θ̃yx

)
= λE

(
θ̂yx

)
+ (1− λ) θzxE

(
θ̆yz

)
. (5)

Therefore,

bias
(
θ̃yx

)
= λbias

(
θ̂yx

)
+ (1− λ) θzxbias

(
θ̆yz

)
. (6)

Remark 2.2. From Equation(6), θ̃yx is unbiased or asymptotically unbiased is achieved by

choosing θ̂yx, and θ̆yz to be unbiased or asymptotically unbiased.

From Equation(4), the variance of θ̃yx is

var
(
θ̃yx

)
= λ2var

(
θ̂yx

)
+ (1− λ)2 θ2zxvar

(
θ̆yz

)
+ 2λ (1− λ) θzxcov

(
θ̂yx, θ̆yz

)
. (7)

From Equations (6), and (7), the MSE of θ̃yx is

MSE
(
θ̃yx

)
= var

(
θ̃yx

)
+ bias2

(
θ̃yx

)
. (8)

Assume that θ̃yx to be unbiased or asymptotically unbiased, by choosing θ̂yx, and θ̆yz to be

unbiased or asymptotically unbiased. In this case, MSE
(
θ̃yx

)
= var

(
θ̃yx

)
. The optimal

value of λ, can be obtained by differentiating the right hand side of Equation(8) with respect
to λ, equate to zero, and solve for λ we have

λopt =
1

1 + λ∗
, (9)

where

λ∗ =
var

(
θ̂yx

)
− θzxcov

(
θ̂yx, θ̆yz

)
θ2zxvar

(
θ̆yz

)
− θzxcov

(
θ̂yx, θ̆yz

) . (10)

From Equations (4) and (9) the optimal estimator for θyx is

θ̃yx = λoptθ̂yx + (1− λopt) θzxθ̆yz. (11)

Remark 2.3. In general, the transformation given by Equation (11) is not a convex trans-
formation. However, the transformation is a convex transformation when 0 ≤ λopt ≤ 1, this
condition holds if λ∗ ≥ 0. In this case, the numerator and the denominator of λ∗ should be
positive; equivalently, from Equation (10), if

ρ
(
θ̂yx, θ̆yz

)
≤ min

 1

θzx
·

√√√√√var
(
θ̂yx

)
var

(
θ̆yz

) , θzx ·
√√√√√var

(
θ̂yz

)
var

(
θ̆yx

)
 for θzx > 0,

where ρ
(
θ̂yx, θ̆yz

)
is the correlation between θ̂yx and θ̆yz.
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In real applications, λopt is unknown; however, λopt can be estimated from random sample.
Under general sampling design p (·), draw the random sample S, estimate λopt by

λ̂opt =
1

1 + λ̂∗
, (12)

where

λ̂∗ =
v̂ar

(
θ̂yx

)
− θzxĉov

(
θ̂yx, θ̆yz

)
θ2zxv̂ar

(
θ̆yz

)
− θzxĉov

(
θ̂yx, θ̆yz

) . (13)

From Equation (11), θ̃yx is computed from

θ̃yx = λ̂optθ̂yx +
(

1− λ̂opt
)
θzxθ̆yz. (14)

In the next section, we describe how we can apply our approach. In most applicable cases, tx
and tz are known from previous studies or from a pilot study. However, the worst scenario
happens when θzx = tz/tx is unknown. In this case, estimate θyx by

θ̃yx = λθ̂yx + (1− λ) θ́zxθ̆yz, (15)

where θ́zx is an estimate for θzx. Our goal is to find the bias, variance, and the MSE of θ̃yx.

As it is clear from Equation (15), θ̃yx is not a linear function in θ́zx, and θ̆yz, and to avoid
the 3rd and 4th order inclusion probabilities, to first order and by using Taylor expansion,
expand the right hand side of Equation(15), we have

θ̃yx ∼= λθ̂yx + (1− λ)
{
θyx + θzx

(
θ̆yz − θyz

)
+ θyz

(
θ́zx − θzx

)}
. (16)

Remark 2.4. The first order linearization is widely used in survey practice, but that in general
it is very difficult to evaluate the quality of approximation analytically. Therefore, simulations
are presented that show reasonable results at least in the particular case described.

From Equation(16), the bias of θ̃yx is

bias
(
θ̃yx

)
∼= λbias

(
θ̂yx

)
+ (1− λ)

{
θzxbias

(
θ̆yz

)
+ θyzbias

(
θ́zx

)}
. (17)

The variance of θ̃yx is

var
(
θ̃yx

)
∼= λ2var

(
θ̂yx

)
+ (1− λ)2

{
θ2zxvar

(
θ̆yz

)
+ θ2yzvar

(
θ́zx

)
+ 2θyxcov

(
θ̆yz, θ́zx

)}
+ 2λ (1− λ)

{
θzxcov

(
θ̂yx, θ̆yz

)
+ θyzcov

(
θ̂yx, θ́zx

)}
, (18)

From Equations (17) and (18), the MSE of θ̃yx is

MSE
(
θ̃yx

)
= var

(
θ̃yx

)
+ bias

(
θ̃yx

)2
. (19)

Remark 2.5. From the right hand side of Equation(17), it is clear that the need of using
unbiased or asymptotically unbiased estimators for estimating θyx, θzx, and θyz. In this case,

bias
(
θ̃yx

)
is zero or asymptotically zero i.e. θ̃yx is unbiased or asymptotically unbiased esti-

mator for θyx. As a result of this,

MSE
(
θ̃yx

)
∼= var

(
θ̃yx

)
. (20)
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Under the assumption θ̂yx, θ́zx, and θ̆yz are unbiased (or asymptotically unbiased) estimator
for θyx, θzx, and θyz, respectively. The optimum value of λ which is minimizing the right hand
side of Equation(19) is

λopt =
var
(
θzxθ̆yz + θyz θ́zx

)
− θzxcov

(
θ̂yx, θ̆yz

)
− θyzcov

(
θ̂yx, θ́zx

)
var
(
θzxθ̆yz + θyz θ́zx − θ̂yx

) (21)

In real applications, λopt needs to be estimated from random sample. In this case, the estimate
value of λopt is

λ̂opt =
4v̂ar

(
θ̆yz θ́zx

)
− θ́zxĉov

(
θ̂yx, θ̆yz

)
− θ̆yz ĉov

(
θ̂yx, θ́zx

)
v̂ar
(

2θ́zxθ̆yz − θ̂yx
) (22)

Remark 2.6. Insert λ̂opt into Equation(15), we have the optimal choice of estimating θyx
i.e. estimate θyx by

θ̃yx = λ̂optθ̂yx +
(

1− λ̂opt
)
θ́zxθ̆yz. (23)

In real application, the first case, θzx = tz/tx is known, is more applicable than the second
case, θzx = tz/tx is unknown. Therefore, in the next section, we will describe how we can
apply the first approach. However, the second approach can be used in similar way as the
first one.

3. Applying Our Approach

In this section, we will apply the first case, θzx = tz/tx is known. However, the second
approach, θzx = tz/tx is unknown, can be used in similar way as the first one. Based on
Remark(2.2), we restrict ourselves to the estimation of θyx, and θyz, by unbiased or asymp-
totically unbiased estimators from the literature. In this paper, we will use the classical ratio
estimator, and the estimators given by Equations (1) and (2).

3.1. Classical Ratio Estimator

In this subsection, we will compute θ̂yx and θ̆yz from the usual classical ratio estimator, i.e.

θ̂yx, and θ̆yz are computed from

θ̂yx =
t̂yπ

t̂xπ
(24)

and

θ̆yz =
t̂yπ

t̂zπ
, (25)

respectively. In this case,

v̂ar
(
θ̂yx

)
=

∑
ij∈S

ŵi
πi

ŵj
πj

∆ij

πij
, (26)

v̂ar
(
θ̆yz

)
=

∑
ij∈S

w̆i
πi

w̆j
πj

∆ij

πij
, (27)

ĉov
(
θ̂yx, θ̆yz

)
=

∑
ij∈S

ŵi
πi

w̆j
πj

∆ij

πij
, (28)
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respectively. Where

ŵi =
(
yi − θ̂yxxi

)
/Nx̄u, (29)

and

w̆i =
(
yi − θ̆yzzi

)
/Nz̄u. (30)

For more details, see Al-Jararha and Al-Haj Ebrahem (2012).

In order to use Equation (14), insert the estimators in Equations (26), (27), and (28) into
Equation (13) to compute λ̂∗, use the result in Equation (12). Now Equation (14) is ready to
be used.

3.2. Hartley and Ross Estimator

Under srs sampling design, Hartley and Ross (1954) proposed an exactly an unbiased estimator
for estimating the population ratio. This estimator can be rewritten under general sampling
design (Al-Jararha 2012). In this case, θ̂yx and θ̆yz are computed from

θ̂yx = r̄yxs +
n (N − 1)

N (n− 1) x̄u
(ȳs − r̄yxsx̄s) (31)

and

θ̆yz = r̄yzs +
n (N − 1)

N (n− 1) z̄u
(ȳs − r̄yzsz̄s) , (32)

respectively. To compute v̂ar
(
θ̂yx

)
, v̂ar

(
θ̆yz

)
, and ĉov

(
θ̂yx, θ̆yz

)
reuse Equations (26),

(27), and (28) but with the following definitions

ŵi =
n (N − 1)

N2 (n− 1) x̄u
(yi − r̄yxsxi)−

N − n
N2 (n− 1)

riyx , (33)

and

w̆i =
n (N − 1)

N2 (n− 1) z̄u
(yi − r̄yzszi)−

N − n
N2 (n− 1)

riyz . (34)

For more details, see Al-Jararha and Al-Haj Ebrahem (2012).

3.3. Al-Jararha and Al-Haj Ebrahem Estimator

Under general sampling design, Al-Jararha and Al-Haj Ebrahem (2012) proposed an asymp-
totic unbiased estimator for estimating the population ratio. This estimator is working better
than Hartley and Ross (1954). In this case, θ̂yx and θ̆yz are computed from

θ̂yx = r̄yxs +
1

x̄u
(ȳs − r̄yxsx̄s) (35)

and

θ̆yz = r̄yzs +
1

z̄u
(ȳs − r̄yzsz̄s) , (36)

respectively. To compute v̂ar
(
θ̂yx

)
, v̂ar

(
θ̆yz

)
, and ĉov

(
θ̂yx, θ̆yz

)
reuse Equations (26),

(27), and (28) but with the following definitions
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ŵi = (yi − r̄yxsxi) /Nx̄u, (37)

and

w̆i = (yi − r̄yzszi) /Nz̄u. (38)

For more details, see Al-Jararha and Al-Haj Ebrahem (2012).

Remark 3.1. In order to compute the ĉov
(
θ̂yx, θ̆yz

)
when θ̂yx and θ̆yz are to be computed

from different estimators, for example, θ̂yx is computed from Equation (24), and θ̆yz is com-
puted from Equation (32); in this case, use Equation (28) with the definition of ŵi as given
in Equation (29), and w̆i as given in Equation (34).

4. Simulation Studies and Conclusions

4.1. Estimation the Population Ratio θyx

Consider the real data set FEV: Forced Expiratory Volume. FEV is an index of pulmonary
function that measures the volume of air expelled after one second of constant effort. This
data is downloaded from http://www.amstat.org/publications/jse/datasets/fev.dat.txt. The
FEV data set was taken from a study conducted in East Boston, Massachusetts, 1980, on
654 children aged from 3 to 19 years who were seen in the childhood respiratory disease
(CRD). The variable of interest is Y: Forced expiratory volume, and the auxiliary variables
are X: Children age, from 3-19 years age, and Z: Children height in inches. For this data set,
ty = 1724, tx = 6495, and tz = 39988. In this section, we will assume that tx = 6495, and
tz = 39988 are known.

In this section, our main goal is to estimate the population ratio θ = ty/tx = 0.2655 by using
our approach i.e. by using Equation (14) and the three estimators given by Equations (24),
(31), and (35) under different sampling designs i.e. under srs, probability proportional to size
and without replacement πps; in this case, the size variable will be the age, and stratified
sampling design; in this case, the FEV data set will be divided into H = 2 non-overlapping
strata according to the variable sex.

The empirical mean (EM) of the estimator θ̃ of θ is defined by

EM
(
θ̃
)

=
1

m

m∑
i=1

θ̃i, (39)

where θ̃i is the estimate of θ based on the ith simulated random sample, and m is the number
of simulated random samples under different random sampling designs. The empirical relative
bias (ERB) of θ̃ is defined by

ERB
(
θ̃
)

=
1
m

∑m
i=1 θ̃i − θ
θ

× 100%. (40)

The empirical mean squares error (EMSE) of θ̃ is defined by

EMSE
(
θ̃
)

=
1

m

m∑
i=1

(
θ̃i − θ

)2
, (41)

and the empirical relative mean squares error (RE) of the estimator θ̃ is defined by



Austrian Journal of Statistics 41

RE
(
θ̃
)

=

1
m

∑m
i=1

(
θ̃i − θ

)2
1
m

∑m
i=1

(
θ̂i − θ

)2 =
EMSE

(
θ̃
)

EMSE
(
θ̂
) , (42)

where θ̂ is another estimator for θ.

From Equation (14), recall our approach,

θ̃yx = λ̂optθ̂yx +
(

1− λ̂opt
)
θzxθ̆yz, (43)

to make the notations clear, consider the following

θ̂yx is computed θ̆yz is computed θ̆yz is computed θ̆yz is computed
from from Eq(25) from Eq(32) from Eq(36)

group I Eq(24) θ̃yx.RR θ̃yx.RH θ̃yx.RJ
group II Eq(31) θ̃yx.HR θ̃yx.HH θ̃yx.HJ
group III Eq(35) θ̃yx.JR θ̃yx.JH θ̃yx.JJ

Further, for group I, compute θ̂RR from Equation(24), for group II, compute θ̂HH from Equa-
tion(31), and for group III, compute θ̂JJ from Equation(35). We can see that the computation
of θ̂RR, θ̂HH , and θ̂JJ depend on the variable of interest Y and the auxiliary variable X only.

In order to use Equation (42), and for the ith group, compute EMSE
(
θ̃
)

for the estimators

in this group and the EMSE
(
θ̂
)

for its corresponding group.

From the described population, simulate m = 3, 000 samples under different sampling designs
i.e. srs, πps, and stratified sampling design, when the sample size n = 20, 30, 40, 50 and 60.
Sampling from the population will be achieved by using procedure surveyselect of SAS
Institute, and the computations are computed by using a macro written in SAS. For a given
sample of size n, and based on each sample, compute the estimators θ̃yx, and θ̂ww, w = R,H, J,
as they described above.

4.2. Variance Estimation of the θ̃yx

In this section, under srs, our main goal is to compute the population variances for the 12
estimators described in the Subsection (4.1). Further, we will compute the empirical sample
mean, relative bias, and the MSE for the sample variances computed from the random samples
simulated in the Subsection (4.1).

Recall that t̂yπ =
∑

i∈U yi
I{i∈s}
πi

, the Horvitz and Thompson (1952) estimator of the population
total ty =

∑
i∈U yi. Under srs (Särndal, Swensson, and Wretman 1992),

varsrs
(
t̂yπ
)

= N2 1− f
n

S2
yu, (44)

and

v̂arsrs
(
t̂yπ
)

= N2 1− f
n

s2ys, (45)

where

S2
yu =

1

N − 1

N∑
i=1

(yi − ȳu)2 ,

s2ys =
1

n− 1

n∑
i=1

(yi − ȳs)2 ,
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and f = n/N. Similarly, the covariance between t̂yπ and t̂zπ is computed from

covsrs
(
t̂yπ, t̂zπ

)
= N2 1− f

n
Syzu, (46)

which is estimated by

ĉovsrs
(
t̂yπ, t̂zπ

)
= N2 1− f

n
syzs, (47)

where

Syzu =
1

N − 1

N∑
i=1

(yi − ȳu) (zi − z̄u) ,

and

syzs =
1

n− 1

n∑
i=1

(yi − ȳs) (zi − z̄s)

Remark 4.1. Since the 12 estimators discussed in the Subsection (4.1) are linearized to first
order Taylor expansion (Al-Jararha and Al-Haj Ebrahem 2012), Equations (44)-(47) are ready
to be used for such estimators. The computations in this part are similar to the computations
as in Subsection (4.1), but for variances.

The empirical mean (MV) of the v̂arsrs

(
θ̃
)

of varsrs

(
θ̃
)

is

MV
(
θ̃
)

=
1

m

m∑
i=1

v̂arsrs

(
θ̃
)
i
, (48)

where v̂arsrs

(
θ̃
)
i

is computed from the ith simulated random sample. The empirical relative

bias (RBV) of v̂arsrs

(
θ̃
)

is

RBV
(
θ̃
)

=

1
m

∑m
i=1 v̂arsrs

(
θ̃
)
i
− varsrs

(
θ̃
)

varsrs

(
θ̃
) × 100%. (49)

The empirical mean squares error (MSEV) of v̂arsrs

(
θ̃
)

is

MSEV
(
θ̃
)

=
1

m

m∑
i=1

(
v̂arsrs

(
θ̃
)
i
− varsrs

(
θ̃
))2

, (50)

and the empirical relative mean squares error (REV) of the estimator v̂arsrs

(
θ̃
)

is

REV
(
θ̃
)

=

1
m

∑m
i=1

(
v̂arsrs

(
θ̃
)
i
− varsrs

(
θ̃
))2

1
m

∑m
i=1

(
v̂arsrs

(
θ̂
)
i
− varsrs

(
θ̂
))2 =

MSEV
(
v̂arsrs

(
θ̃
))

MSEV
(
v̂arsrs

(
θ̂
)) , (51)

where v̂arsrs

(
θ̂
)

is another estimator for varsrs

(
θ̂
)
.

Under srs, population variances are computed for every estimator mentioned in Subsection
(4.1). Further, based on every simulated sample used for estimating such estimators is also
used to compute the sample variances for the 12 estimators. Results are reported in Table
(5).

This Subsection is restricted to srs sampling design since there are difficulties to use other
sampling designs. For example, under πps, procedure surveyselect gives the first and
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second order inclusion probabilities for the sample only. Even though, the computations
under srs are not an easy task!

4.3. Results and Conclusions

The nine estimators, θ̃yx.RR, θ̃yx.RH , θ̃yx.RJ︸ ︷︷ ︸
group I

, θ̃yx.HR, θ̃yx.HH , θ̃yx.HJ︸ ︷︷ ︸
group II

, and θ̃yx.JR, θ̃yx.JH , θ̃yx.JJ︸ ︷︷ ︸
group III

,

are used to estimate θyx based on our approach i.e. the estimators θ̃yx.wv, for w, v = R, H, J,
are using the availability of another auxiliary variable Z in the study . However, the three
estimators, θ̂ww, for w = R, H, J, are not using the availability of Z.

From Tables (1), (2), (3), and (4), we can conclude the following:

1. The nine estimators, θ̃yx.wv, for w, v = R, H, J, have negligible empirical relative biased
regardless the sample size n, and the group. This comes from the behavior of the
estimators that are used in each group described above. In general, from Equation (6),
the bias of θ̃yx depends on the behavior of θ̂yx and θ̆yz; the estimators θ̂yx and θ̆yz must
be unbiased or asymptotically unbiased for θyx and θyz, respectively.

2. The use of the estimators, θ̃yx.wv, for w, v = R, H, J, perform much better than the

estimators θ̂ww, for w = R, H, J, from the empirical relative mean squares error point
of view. In other words, the availability of auxiliary variable can be used to improve
the precision of the estimation the population ratio θxy.

Population variances , the empirical means , relative bias, and relative mean squares error
of the sample variances for the estimators discussed in the Subsection (4.1) are reported in
Table (5). From this Table, we can see that all the discussed estimators have negligible
relative biased. Further, in the meaning of the relative efficiency , the estimators based on
our approach, θ̃yx.wv, for w, v = R, H, J, are more efficient than the proposed estimators θ̂ww,
for w = R, H, J. These results are true regardless the sample size n.

The absolute differences between the EV from Table(1), and the MV from Table(5) are
summarized in Table (6). From Table (6), we can see that all the absolute differences are
negligible regardless the sample size.

As a final remark, our approach can be adopted if we carefully choose the estimators θ̂yx and

θ̆yz to be unbiased or asymptotically unbiased for θyx and θyz, respectively. In this case, our
approach can be used to improve the precision of the estimation the population ratio θxy.
Further, in similar steps our ideas can be extended to use more than one auxiliary variable.
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n θ̂RR θ̃yx.RR θ̃yx.RH θ̃yx.RJ θ̂HH θ̃yx.HR θ̃yx.HH θ̃yx.HJ θ̂JJ θ̃yx.JR θ̃yx.JH θ̃yx.JJ

EM 0.266 0.266 0.266 0.266 0.266 0.265 0.266 0.265 0.266 0.266 0.266 0.266
20 ERB 0.076 0.043 0.073 0.042 0.006 -0.003 0.027 -0.004 0.073 0.041 0.071 0.040

EV 1.65E-4 1.42E-4 1.43E-4 1.43E-4 1.68E-4 1.43E-4 1.43E-4 1.43E-4 1.66E-4 1.42E-4 1.42E-4 1.42E-4
RE 1.000 0.863 0.867 0.866 1.000 0.850 0.854 0.852 1.000 0.853 0.857 0.855
EM 0.266 0.266 0.266 0.266 0.266 0.266 0.266 0.266 0.266 0.266 0.266 0.266

30 ERB 0.064 0.052 0.072 0.052 0.018 0.021 0.041 0.021 0.061 0.050 0.070 0.050
EV 1.13E-4 9.61E-5 9.65E-5 9.64E-5 1.14E-4 9.64E-5 9.67E-5 9.66E-5 1.14E-4 9.59E-5 9.63E-5 9.62E-5
RE 1.000 0.853 0.857 0.856 1.000 0.842 0.845 0.844 1.000 0.844 0.847 0.846
EM 0.266 0.266 0.266 0.266 0.266 0.266 0.266 0.266 0.266 0.266 0.266 0.266

40 ERB 0.107 0.071 0.086 0.071 0.071 0.048 0.063 0.048 0.104 0.070 0.084 0.069
EV 7.97E-5 6.86E-5 6.88E-5 6.88E-5 8.08E-5 6.86E-5 6.88E-5 6.87E-5 8.04E-5 6.83E-5 6.86E-5 6.85E-5
RE 1.000 0.861 0.864 0.863 1.000 0.848 0.851 0.851 1.000 0.850 0.853 0.852
EM 0.266 0.266 0.266 0.266 0.265 0.265 0.265 0.265 0.266 0.266 0.266 0.266

50 ERB 0.024 0.000 0.011 0.000 -0.002 -0.017 -0.006 -0.017 0.023 0.000 0.011 0.000
EV 6.18E-5 5.40E-5 5.42E-5 5.42E-5 6.26E-5 5.39E-5 5.41E-5 5.41E-5 6.23E-5 5.38E-5 5.39E-5 5.39E-5
RE 1.000 0.873 0.877 0.876 1.000 0.861 0.864 0.864 1.000 0.863 0.866 0.865
EM 0.266 0.266 0.266 0.266 0.266 0.266 0.266 0.266 0.266 0.266 0.266 0.266

60 ERB 0.039 0.033 0.042 0.033 0.017 0.018 0.028 0.018 0.038 0.032 0.042 0.032
EV 4.98E-5 4.41E-5 4.42E-5 4.42E-5 5.04E-5 4.40E-5 4.41E-5 4.41E-5 5.02E-5 4.39E-5 4.40E-5 4.40E-5
RE 1.000 0.885 0.888 0.888 1.000 0.873 0.876 0.875 1.000 0.874 0.877 0.876

Table 1: Under srs: Comparisons between different estimators. EV
(
θ̃
)

=∑m
i=1

(
θ̃i − θ̃

)2
/ (m− 1).

n θ̂RR θ̃yx.RR θ̃yx.RH θ̃yx.RJ θ̂HH θ̃yx.HR θ̃yx.HH θ̃yx.HJ θ̂JJ θ̃yx.JR θ̃yx.JH θ̃yx.JJ

EM 0.265 0.266 0.265 0.265 0.265 0.266 0.265 0.265 0.265 0.266 0.265 0.265
20 ERB -0.010 0.095 -0.013 -0.044 -0.075 0.052 -0.055 -0.086 -0.010 0.095 -0.013 -0.044

RE 1.000 0.864 0.879 0.867 1.000 0.918 0.935 0.920 1.000 0.864 0.879 0.867
EM 0.265 0.266 0.265 0.265 0.265 0.266 0.265 0.265 0.265 0.266 0.265 0.265

30 ERB -0.027 0.045 -0.026 -0.046 -0.070 0.017 -0.054 -0.074 -0.027 0.045 -0.026 -0.046
RE 1.000 0.826 0.835 0.830 1.000 0.861 0.870 0.864 1.000 0.826 0.835 0.830
EM 0.265 0.266 0.265 0.265 0.265 0.265 0.265 0.265 0.265 0.266 0.265 0.265

40 ERB -0.057 0.012 -0.062 -0.076 -0.088 -0.009 -0.082 -0.097 -0.057 0.012 -0.062 -0.076
RE 1.000 0.791 0.802 0.799 1.000 0.820 0.830 0.826 1.000 0.791 0.802 0.799
EM 0.266 0.266 0.266 0.265 0.266 0.266 0.265 0.265 0.266 0.266 0.266 0.265

50 ERB 0.032 0.105 0.008 -0.003 0.007 0.089 -0.008 -0.020 0.032 0.105 0.008 -0.003
RE 1.000 0.695 0.717 0.716 1.000 0.722 0.741 0.739 1.000 0.695 0.717 0.716
EM 0.265 0.266 0.265 0.265 0.265 0.265 0.265 0.265 0.265 0.266 0.265 0.265

60 ERB -0.063 0.011 -0.067 -0.076 -0.083 -0.002 -0.080 -0.089 -0.063 0.011 -0.067 -0.076
RE 1.000 0.696 0.711 0.710 1.000 0.718 0.732 0.730 1.000 0.696 0.711 0.710

Table 2: Under πps: Comparisons between different estimators.

n θ̂RR θ̃yx.RR θ̃yx.RH θ̃yx.RJ θ̂HH θ̃yx.HR θ̃yx.HH θ̃yx.HJ θ̂JJ θ̃yx.JR θ̃yx.JH θ̃yx.JJ

EM 0.266 0.266 0.266 0.266 0.266 0.265 0.266 0.265 0.266 0.266 0.266 0.266
20 ERB 0.089 0.027 0.057 0.027 0.020 -0.018 0.012 -0.019 0.086 0.025 0.055 0.025

RE 1.000 0.851 0.855 0.853 1.000 0.837 0.840 0.839 1.000 0.840 0.843 0.842
EM 0.266 0.266 0.266 0.266 0.266 0.265 0.266 0.265 0.266 0.266 0.266 0.266

30 ERB 0.062 0.022 0.041 0.021 0.017 -0.008 0.012 -0.008 0.061 0.021 0.041 0.021
RE 1.000 0.867 0.871 0.870 1.000 0.855 0.858 0.857 1.000 0.857 0.860 0.859
EM 0.266 0.266 0.266 0.266 0.266 0.266 0.266 0.266 0.266 0.266 0.266 0.266

40 ERB 0.060 0.036 0.051 0.036 0.027 0.014 0.029 0.014 0.059 0.035 0.050 0.035
RE 1.000 0.857 0.860 0.859 1.000 0.845 0.848 0.847 1.000 0.846 0.849 0.848
EM 0.266 0.266 0.266 0.266 0.266 0.266 0.266 0.266 0.266 0.266 0.266 0.266

50 ERB 0.070 0.038 0.049 0.038 0.044 0.021 0.032 0.021 0.069 0.038 0.049 0.037
RE 1.000 0.879 0.882 0.881 1.000 0.866 0.869 0.868 1.000 0.867 0.870 0.869
EM 0.266 0.266 0.266 0.266 0.266 0.266 0.266 0.266 0.266 0.266 0.266 0.266

60 ERB 0.049 0.035 0.044 0.035 0.026 0.020 0.029 0.020 0.047 0.034 0.043 0.034
RE 1.000 0.851 0.854 0.853 1.000 0.839 0.842 0.841 1.000 0.840 0.843 0.842

Table 3: Stratified sampling design: Under srs, draw random sample of size nh from each
stratum and combined samples into one sample of size n.

n θ̂RR θ̃yx.RR θ̃yx.RH θ̃yx.RJ θ̂HH θ̃yx.HR θ̃yx.HH θ̃yx.HJ θ̂JJ θ̃yx.JR θ̃yx.JH θ̃yx.JJ

EM 0.265 0.265 0.265 0.265 0.265 0.265 0.265 0.265 0.265 0.265 0.265 0.265
20 ERB -0.125 -0.181 -0.282 -0.298 -0.192 -0.203 -0.304 -0.320 -0.125 -0.181 -0.282 -0.298

RE 1.000 0.954 0.980 0.961 1.000 0.997 1.028 1.005 1.000 0.954 0.980 0.961
EM 0.265 0.265 0.265 0.265 0.265 0.265 0.265 0.265 0.265 0.265 0.265 0.265

30 ERB -0.086 -0.141 -0.213 -0.225 -0.128 -0.159 -0.231 -0.244 -0.086 -0.141 -0.213 -0.225
RE 1.000 0.905 0.925 0.916 1.000 0.936 0.958 0.947 1.000 0.905 0.925 0.916
EM 0.266 0.265 0.265 0.265 0.265 0.265 0.265 0.265 0.266 0.265 0.265 0.265

40 ERB 0.028 -0.044 -0.099 -0.108 -0.003 -0.057 -0.112 -0.122 0.028 -0.044 -0.099 -0.108
RE 1.000 0.870 0.884 0.878 1.000 0.896 0.910 0.904 1.000 0.870 0.884 0.878
EM 0.265 0.265 0.265 0.265 0.265 0.265 0.265 0.265 0.265 0.265 0.265 0.265

50 ERB -0.050 -0.082 -0.133 -0.142 -0.075 -0.095 -0.146 -0.155 -0.050 -0.082 -0.133 -0.142
RE 1.000 0.778 0.791 0.789 1.000 0.797 0.810 0.807 1.000 0.778 0.791 0.789
EM 0.265 0.265 0.265 0.265 0.265 0.265 0.265 0.265 0.265 0.265 0.265 0.265

60 ERB -0.143 -0.168 -0.213 -0.220 -0.164 -0.178 -0.223 -0.231 -0.143 -0.168 -0.213 -0.220
RE 1.000 0.795 0.806 0.804 1.000 0.812 0.823 0.821 1.000 0.795 0.806 0.804

Table 4: Stratified sampling design: Under πps, draw random sample of size nh from each
stratum and combined samples into one sample of size n.
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n θ̂RR θ̃.RR θ̃.RH θ̃.RJ θ̂HH θ̃.HR θ̃.HH θ̃.HJ θ̂JJ θ̃.JR θ̃.JH θ̃.JJ
20 1.34E-7 2.74E-5 2.50E-5 8.78E-6 3.36E-5 8.59E-6 9.17E-6 8.35E-6 3.15E-5 8.22E-6 8.29E-6 8.23E-6
30 4.5E-6 1.48E-5 1.37E-5 6.46E-6 2.42E-5 6.21E-6 6.72E-6 6.26E-6 2.34E-5 6.27E-6 6.29E-6 6.26E-6
40 4.85E-8 1.25E-5 1.18E-5 2.29E-6 1.41E-5 1.88E-6 2.33E-6 2.03E-6 1.37E-5 2.04E-6 2.04E-6 2.04E-6
50 7.50E-7 9.60E-6 9.16E-6 1.62E-6 9.86E-6 1.21E-6 1.60E-6 1.38E-6 9.68E-6 1.39E-6 1.39E-6 1.39E-6
60 1.86E-6 8.36E-6 8.04E-6 6.22E-7 6.64E-6 2.44E-7 5.90E-7 4.19E-7 6.57E-6 4.34E-7 4.36E-7 4.37E-7

Table 6: Under srs: Numbers in this Table are the absolute differences between EV, Table(1),
and MV, Table(5).
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