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Abstract

Estimating stream flow has a substantial financial influence, because this can be of assistance in water resources
management and provides safety from scarcity of water and conceivable flood destruction. Four common
statistical methods, namely, Normal, Gumbel max, Log-Pearson III (LP III), and Gen. extreme value method
are employed for 10, 20, 30, 35, 40, 50, 60, 70, 75, 100, 150 years to forecast stream flow. Monthly flow data
from four stations on Mahanadi River, in Eastern Central India, namely, Rampur, Sundargarh, Jondhra, and
Basantpur, are used in the study. Results show that Gumbel max gives better flow discharge value than the
Normal, LP III, and Gen. extreme value methods for all four gauge stations. Estimated flood values for Rampur,
Sundargarh, Jondhra, and Basantpur stations are 372.361 m3/sec, 530.415 m3/sec, 2,133.888 m3/sec, and
3,836.22 m3/sec, respectively, considering Gumbel max. Goodness-of-fit tests for four statistical distribution
techniques applied in the present study are also evaluated using Kolmogorov–Smirov, Anderson–Darling, Chi-
squared tests at critical value 0.05 for the four proposed gauge stations. Goodness-of-fit test results show
that Gen. extreme value gives best results at Rampur, Sundergarh, and Jondhra gauge stations followed by LP
III, whereas LP III is the best fit for Basantpur, followed by Gen. extreme value.
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Highlights

• Four statistical methods, Normal Distribution, Gumbel Distribution, Log Pearson Type III and Extreme

Distribution method, are employed to forecast stream flow up to 150 years.

• Goodness-of-fit tests for the above four statistical methods were also used to find out the rank of data series at

5% significance level.

• Confidence band in the sense of maximum flow discharge is evaluated up to 95% of confidence limit.

• Sensitivity of all physical parameters is also discussed for the four statistical methods.

• Hydrological data are discussed through various statistical indices.
INTRODUCTION

Consistent and precise stream flow forecasting is needed for numerous issues such as water resources
planning, strategy improvement, maneuver and upkeep events. In water management, forecasting
high-quality stream flow and effective usage of this estimate gives substantial financial and communal
assistance. For the hydrologic constituent, there is the requirement of interim as well as enduring
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events of stream flow forecasting for optimizing systems or for planning future growth or drop.
Interim forecasting denotes hourly or day-to-day forecasting, which is vital for caution against flood
and safety, and enduring forecasting is on the basis of monthly, seasonal or annual timescales
which is very beneficial in reservoir processes and irrigation administration choices like distributing
water to consumers downstream, arranging discharges, famine extenuation and handling river agree-
ments or applying compacted acquiescence.
Masmoudi & Habaieb (1993) developed seven statistical channeling models, which were used on

the Medjerdah River (Tunisia) to forecast dangerous flood occurrences. Model performance is
described by statistical measures of accuracy, ultimate fault, and ultimate interruption among the
measured and predicted flow with their alterations. Evensen (1994) discussed a novel chronological
data integration technique based on predicting error statistics utilizing Monte Carlo procedures which
served as a superior alternative to solve customary and computationally enormous challenging esti-
mated error covariance equations utilized in extended Kalman filter. Bartholmes & Todini (2005)
studied the possibility of extending flood predicting lag times equal to 10 days by engaging an amal-
gamation of innovative climatological and hydrological models and presented outcomes of the joined
approach among a numerical weather forecast system and rainfall-runoff model. Griffis & Stedinger
(2007) explored features of LP III distribution in real and log space. Assessments with outlines of US
flood data revealed that LP III distribution offers a sensible model for yearly flood sequence distri-
bution from unfettered catchments for log space skews. Moreover, for LP III distribution relations
of L-moment ratio were established so as to compare them to overall statistics of a province. Rowinski
et al. (2002) discussed two probability density functions, prevalent in hydrological studies, i.e., Log-
Gumbel and Log-Logistic, with regard to use of the functions to hydrological numbers and problems
ensuing from their mathematical properties. The maximum likelihood method promises merging of
the estimators away from the area of reality of the two L-moments. Rath et al. (2018) employed the
autoregressive integrated moving average (ARIMA) model to predict flow discharge at Mahanadi
River basin. Helsel & Hirsch (1992) discussed probabilistic approaches usually accomplished in
hydrology. Gumbel max value and LP III distribution are considered to be the best prevalent probabil-
istic models related to solving water resources problems. Kamal et al. (2017) applied statistical
distribution on discharge data for two locations and discovered that Log-normal is applicable for Har-
idwar and Gumbel EV1 for Garhmukteshwar. Subsequent to finding an appropriate distribution for a
region, the distribution helps in predicting discharge for a certain return period. Brandimarte & Di
Baldassarre (2012) proposed another method on the basis of applicability of uncertain flood profile
to estimate uncertainty in hydraulic modeling and FFA, where the major considerable uncertainty
sources are clearly scrutinized. Ewemoje & Ewemooje (2011) investigated Normal, Lognormal,
and LP III distributions to model at-site annual peak flood flow in Ogun-Oshun River, Nigeria.
Chen et al. (2012) analyzed the risk of flooding resulting from the occurrence of flood, taking into con-
sideration flood enormity and time of incidence applying LP III and mixed von Mises distribution.
Mukherjee (2013) developed a mathematical model regarding peak flood discharge and return
period utilizing GEV. Bezak et al. (2014) explored the influence of threshold value in the peaks-
over-threshold method on FFA results, compared different statistical distribution functions and eval-
uated three parameter estimation techniques. Haddad & Rahman (2011a) investigated the usability of
the quantile regression method as a feasible regional FFA technique for New South Wales, Australia.
Haddad & Rahman (2011b) examined flood data from Tasmania, Australia considering an assortment
of models’ criteria: Akaike information criterion (AIC), AIC-second order variant, Bayesian IC, and a
customized ADC. Results obtained by simulating the Monte Carlo model shows that ADC is better at
recognizing parent allocation fittingly. Grimaldi & Serinaldi (2006) modeled trivariate joint distri-
bution of flood peak, volume, and duration using a class of copulas called asymmetric
Archimedean copulas. Hirabayashi et al. (2013) presented universal flood hazard for this century
on the basis of results obtained from climate models and employed a condition of skill for the
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universal stream steering model with a barrage system for computing river discharge and flood area.
Haddad & Rahman (2012) proposed a model utilizing Bayesian generalized least squares regression in
an authoritative area structure for RFFA of ungauged watersheds in eastern Australia. Yue (2001) inves-
tigated the usability of a two variable gamma model comprising five constraints to describe combined
probability actions of multiple variable flood occurrences. Reis & Stedinger (2005) explored Bayesian
Markov chain Monte Carlo techniques to evaluate subsequent circulation of flood magnitude, flood
menace, and constraints of Log-normal and LP III distributions. Subyani (2011) quantified hydro-geologi-
cal distinctiveness and probability of flood occurrence of several main valleys in western Saudi Arabia by
applying GEV and LP III distributions to peak daily precipitation data. Sraj et al. (2015) examined 58
flood occurrences at Litija station on Sava River, Slovenia applying different bivariate copulas and con-
trasted them utilizing various arithmetic, graphic, and higher extremity reliance experiments. Merz &
Thieken (2005) explored the difference between natural and epistemic uncertainty in FFA. Ouarda
et al. (2001) projected an apparent theoretical framework for application of canonical correlations in
RFFA using data from 106 stations in Ontario province, Canada. Micevski et al. (2015) presented a sub-
stitute RFFA technique that is predominantly valuable when adequately harmonized areas cannot be
recognized on the basis of region of influence. Sahoo et al. (2020) studied bivariate low flow frequency
analysis of Mahanadi basin, which has major deviations in hydrological performance from upstream to
downstream, for two main low flow characteristics. Parhi (2018) estimated peak floods at Mahanadi
River at the Hirakud dam and Naraj of up to 100 years’ recurrence interval utilizing HEC-RAS and Gum-
bel’s distribution. Pawar & Hire (2018) applied LP III distribution for flood data of four locations on the
Mahi River and studied peak stream flow frequency and magnitude in the field of flood hydrology. Lima
et al. (2016) estimated local and regional GEV distribution for flood frequency analysis of Rio Doce basin,
Brazil in a multilevel, hierarchical Bayesian framework, to explicitly model and reduce uncertainties.
Bhat et al. (2019) carried out flood frequency analysis of the River Jhelum employing Gumbel and LP-
III distributions for simulating future flood discharge scenarios from three positions. Tanaka et al.
(2017) examined the impact of river overflow and dam operation of upstream areas on downstream
extreme flood frequencies at Yodo River basin combining a flood-inundation model of upstream Kyoto
City area with a rainfall-based flood frequency model and accounting for the probability of spatial and
temporal rainfall pattern over the basin.
Here, various statistical methods are established for estimation of flow discharge at four gauge

stations in Mahanadi River basin, India. Also, goodness of fit is applied for analyzing data sets.
Flow discharge is calculated through various confidence limits (up to 95%) and is also discussed here.
STUDY AREA

Mahanadi (Figure 1) is a major interstate east-flowing river in peninsular India. The river length from
the origin to convergence in the Bay of Bengal is 851 km. In Chhattisgarh the river flows for 357 km
and the other 494 km is in Odisha. Details of geographical and hydrological details of four gauging
stations are shown in Table 1. Four gauge stations, Rampur, Sundargarh, Jondhra, and Basantpur,
are considered for our research.
METHODOLOGY

Generalized extreme value

Generalized extreme value is a continuous probability distribution developed within extreme value
theory. It is a combination of Gumbel, Fréchet, and Weibull extreme value distributions and is a
aponline.com/h2open/article-pdf/3/1/189/863310/h2oj0030189.pdf



Figure 1 | Proposed river gauge stations.

Table 1 | Details of geographical and hydrological data for gauge stations

Hydro-
meteorological
station

Length of
record (years)

Hydrological Geographical

Mean SD Skewness Kurtosis
Maximum flow
discharge

Drainage area
(km2)

Elevation from
MSL (m)

Rampur 29 16,187.16 12,070.06 1.576 2.597 49,857.57 8,348.27 290

Sundargarh 29 36,514.85 13,998.42 1.276 1.637 74,916.31 9,183.73 243

Jondhra 29 92,300.91 52,456.69 1.432 2.526 242,549 10,930.43 272

Basantpur 29 225,305 110,452.4 1.533 3.472 561,700 10,672.87 236
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bounded distribution of standardized maxima of a series of autonomous and indistinguishable dis-
persed arbitrary variables. GEV is utilized as an estimate for modeling maxima of lengthy (limited)
series of arbitrary variables. Significantly, while using this distribution, the upper bound is unidenti-
fied and hence has to be projected; when Weibull is applied, the lower bound is identified as zero.
Frequency factor for GEV distribution is:

Kt ¼
p
6
p

0:5772þ ln ln
T

T � 1

� �� �� �
(1)

To express T in terms of Kt:

T ¼ 1

1� exp �exp � 0:5772þ pKtp
6

� �� �� � (2)
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Predicted discharge (Qp) is calculated with the standard normal distribution formula for the differ-
ent return periods, and expressed as:

Qp ¼ mþKts (3)

where Qp ¼ predicted discharge, μ¼ standard mean, σ¼ standard deviation.
Normal distribution

In statistics, normal distribution is a type of distribution where the data are characterized by a bell-
shaped curve. Discrete form and curve location are obtained by mean and standard deviation. As
many natural phenomena fit into this, it is a highly significant probability distribution in statistics.
This distribution illustrates how variable data are dispersed. The majority of annotations group
about a central peak as it is symmetric and the probability is for data to shrink off uniformly in
both directions away from the mean. The arithmetic mean of sample x1, x2…..xn typically represented
by μ is the sum of the sampled value divided by item number(n):

Simple mean (C) ¼ x1 þ x2 þ . . . . . . . . . xn
n

¼ 1
n

Xn
i¼1

xn (4)

For the required return period (T ), the probability factor (P) is evaluated in percentage. The conver-
sion formula used to evaluate the probability is given as:

P ¼ 1
T
(%) (5)

From the standard normal distribution table, by interpolation, the frequency factor (Kt) is computed
based on the different return periods, where frequency factor equals to standard normal deviate (z).
Finally, the predicted discharge (Qp) is found using the standard normal distribution formula for
the different return periods for the respective seasons:

Qp ¼ mþKt (6)
Gumbel max

Gumbel is a type of statistical distribution which began from extreme theory. Function in this distri-
bution is unrestrained on whichever side, leading to negative flow calculation. This represents
distribution of extreme values, either highest or lowest of samples, used in various distributions and
for modeling distribution of peak levels. This is utilized for predicting earthquake, flood, and other
natural hazards. It also models operational threat in managing threat and product life which wears
out rapidly prior to a certain age. For the required return period (T ), abridged variate (Yt) has been
assessed by using the formula:

Yt ¼ ln{ln (T=(T � 1)} (7)
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The abridged mean and abridged standard deviation have been obtained from the Gumbel distri-
bution table for the given sample size (N ). Then the frequency factor is estimated using the formula:

Kt ¼ (Yt � Yn)
Sn

(8)

where Kt¼ frequency factor, Yt¼ abridged variate, Yn¼ abridged mean, Sn¼ abridged standard
deviation.
Thus, the predicted discharge (Qp) is computed using the standard normal distribution formula for

diverse return period for respective seasons:

Qp ¼ mþKts (9)
Log-Pearson III

LP III is a statistical method of fitting frequency distribution values for predicting flood at a few sites
of a specified river. Frequency distribution is built after calculating data related to statistics at a par-
ticular river site. Flood occurrence probability of different densities can be taken out from the curve.
This particular method helps in extrapolating event data with return periods ahead of pragmatic
occurrence of flood. After finding the actual discharge, we then calculate the natural logarithm of
the actual discharges (Z) and find the standard logarithmic mean (μ) and standard logarithmic devi-
ation (σ) of the calculated discharges for the respective seasons:

Z ¼ log10 Q (10)

Then the coefficient of skewness (Cs) is calculated using the logarithmic discharges (Z) and for the
required return period (T ), we calculated the probability (P) in percentage, as per the formula:

P ¼ 1
T
(%) (11)

From the standard normal distribution table, by interpolation, we calculate the standard
normal deviate (z). The frequency factor depends on coefficient of skewness and return period.
When Cs¼ 0, the frequency factor is equal to standard normal deviate z and is calculated as in the
case of Normal deviation. When Cs≠ 0, the frequency factor (Kt) is modified by using the formulae
developed by Kite (1977):

Kt ¼ zþ (z2 � 1)kþ 1
3
(z3 � 6z)k2 � (z2 � 1)k3 þ zk4 þ 1

3
k5 (12)

where z¼ normal deviate

k ¼ Cs
6

(13)

Kt¼ frequency factor

Now, predicted logarithmic discharge is calculated by using the formula:

qp ¼ mþKts (14)
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where qp¼ predicted logarithmic discharge, μ¼ standard logarithmic mean, σ¼ standard logarithmic
deviation.
Hence, the predicted discharge (Qp) is calculated by taking the antilog of qp:.

Qp ¼ antilog (qp) m3=s

Goodness-of-fit test

For a given set of data, whether a certain distribution is fit or not is checked using this test. Quality of
fit for the observed data set is ranked through calculation of statistical parameters. Affinity of samples
from the expected theoretical probability distribution is assessed. To evaluate null hypothesis, it is
applied and discarded if the observed test surpasses the critical value for the constant significance
level. Chi-squared, Anderson–Darling (AD) and Kolmogorov–Smirnov (KS) tests are employed here
at significance level 0.05.

Kolmogorov–Smirnov test

Discovering whether a sample is from an assumed continuous probability distribution is the main
objective of this test. It is on the basis of empirical cumulative distribution functions (CDF), that is:

Fm(y) ¼ 1
m

� [Observation number � y] (15)

The Kolmogorov–Smirnov test statistic (K) is given by prevalent perpendicular difference in
hypothetical and experiential CDF:

K ¼ max
1�j�m

F(yj)� j� 1
m

,
j
m

� F(yj)
� �

(16)

Anderson–Darling test

This associates the fit of an observed to an expected CDF, hence giving additional weight to distri-
bution tails compared to previous experiments.

D2 ¼ �m� 1
m

Xm
j¼1

(2j� 1)� [lnF(yj)þ ln (1� F(ym�jþ1))] (17)

Chi-squared test

This is applied to find out whether a sample has come from a population with a given distribution.
Binned data are applied, and hence the value of the test statistic depends on how data are binned.

x2 ¼
Xl

j¼1

(Oj � Ej)
2

Ej
(18)

where

Oj ¼ observed frequency
aponline.com/h2open/article-pdf/3/1/189/863310/h2oj0030189.pdf



H2Open Journal Vol 3 No 1
196 doi: 10.2166/h2oj.2020.004

Downloaded from http://iw
by guest
on 21 August 2022
j¼ observations’ number
Expected frequency (Ej) ¼ F(Y2)� F(Y1)
F¼ cumulative distribution function

l ¼ 1þ log2 m

where

m¼ sample size.
RESULTS AND DISCUSSION

Parameters like shape (k, a), scale (s, b), and location (m, g) for different distribution methods at the
four gauge stations are presented in Table 2. Probability density function (PDF) and the cumulative
density function (CDF) graph for respective gauge stations are displayed in Figure 2.
Three goodness-of-fit tests (as presented in the section ‘Goodness-of-fit test’) were used to analyze

rainfall data series at the four stations chosen. Test statistics in correspondence to each test were cal-
culated, and hypothesis testing was done at significance level 0.05. For KS, AD, and Chi-squared tests,
the tests reject the hypothesis concerning distribution level if the statistics found are more than the
critical value 2.5, 0.12555, and 12.592, respectively (Millington et al. 2011). KS, AD and Chi-squared
tests were applied in Easy Fit software for selecting the best fit distribution (s) and outcomes obtained
are specified in Table 3.
At Rampur, Sundergarh, and Jondhra gauge stations, extreme value distribution gives best results fol-

lowed by LP III, whereas LP III is the best fit for Basantpur followed by extreme value. Therefore,
Table 2 | Details of distribution fitting parameters for GEV, LP III, Gumbel Max, and Normal method

Sl. no. Distribution Parameters

Rampur

1 Gen. extreme value k¼ 0.21516, s¼ 599.29, m¼ 842.82

2 Gumbel max s¼ 784.25, m¼ 896.25

3 Log-Pearson III a ¼ 9:4308, b ¼ �0:25742, g ¼ 9:3736

4 Normal s¼ 1,005.8, m¼ 1,348.9

Sundargarh

1 Gen. extreme value k¼ 0.1665, s¼ 766.83, m¼ 2,450.5

2 Gumbel max s¼ 909.54, m¼ 2,517.9

3 Log-Pearson III a ¼ 14:593, b ¼ 0:09202, g ¼ 6:6161

4 Normal s¼ 1,166.5, m¼ 3,042.9

Jondhra

1 Gen. extreme value k¼ 0.1469, s¼ 2,891.3, m¼ 5,535.6

2 Gumbel max s¼ 3,408.4, m¼ 5,724.4

3 Log-Pearson III a ¼ 157:42, b ¼ �0:04439, g ¼ 15:793

4 Normal s¼ 4,371.4, m¼ 7,691.7

Basantpur

1 Gen. extreme value k¼ 0.1349, s¼ 6,117.9, m¼ 14,310.0

2 Gumbel max s¼ 7,176.6, m¼ 14,633.0

3 Log-Pearson III a ¼ 2302:6, b ¼ �0:00973, g ¼ 32:135

4 Normal s¼ 9,204.4, m¼ 18775.0
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Figure 2 | (a) PDF and (b) CDF for (i) Rampur, (ii) Sundargarh, (iii) Jondhra, and (iv) Basantpur gauge stations. (Continued.)
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extreme value can be utilized to calculate flood return periods for the present study area. The poor rank-
ing of Normal distribution fitted results is perhaps due to its nature. Given that Normal distribution is
based on central limit theorem while the data considered in this study (annual maximum) are at the
extreme right of all considered distributions, it was expected that normal fit to the data would be
least efficient. In addition, it is observed that at Rampur, Jondhra, and Basantpur stations the Chi-
squared test correctly rejects normal fit to data as both statistics are related to central limit theorem.
Gen. extreme value

For Rampur watershed, the value of flood calculated during monsoon period ranges between
177.4414 m3/sec to 321.6385 m3/sec for 10 years to 150 years’ return period (Table 4). Similarly
for Sundargarh estimated flood fluctuates from 304.3543 m3/sec to 471.5889 m3/sec. For Jondhra
aponline.com/h2open/article-pdf/3/1/189/863310/h2oj0030189.pdf
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watershed, designed flood lies within 893.1144 m3/sec to 1,944.325 m3/sec for 10 years to 150 years
return period. The magnitude of peak floods with respect to the return period is found to be
2,052.522 m3/sec to 3,372.061 m3/sec for Basantpur watershed. This range is the highest among all
seasonal peak floods.

Gumbel max

The intended flood value for Rampur watershed lies within 198.8535 m3/sec to 372.361 m3/sec for 10
years to 150 years’ return period (Table 5). Correspondingly for Sundargarh, the appraised flood
diverges from 329.1873 m3/sec to 530.415 m3/sec. For Jondhra watershed, the premeditated flood
aponline.com/h2open/article-pdf/3/1/189/863310/h2oj0030189.pdf
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lies within 986.1719 m3/sec to 2,133.888 m3/sec for 10 years to 150 years’ return period. The
magnitude of peak floods with respect to the return period is found to be 2,248.463 m3/sec to
3,836.22 m3/sec for Basantpur watershed.

Normal method

For 10 years to 150 years’ return period the calculated flood value deviates within 175.76 m3/sec to
255.892 m3/sec for Rampur watershed (Table 6). Consistently for Sundargarh, the assessed flood is
from 302.4046 m3/sec to 395.3386 m3/sec. For Jondhra watershed, premeditated flood contrasts
within 885.808 m3/sec to 1,234.06 m3/sec for 10 years to 150 years’ return period. The enormity of
aponline.com/h2open/article-pdf/3/1/189/863310/h2oj0030189.pdf
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extreme flood with respect to the return period is found to be 2,037.138 m3/sec to 2,770.419 m3/sec
for Basantpur watershed.
Log-Pearson III

The gauged flood value diverges within 177.4024 m3/sec to 317.6723 m3/sec for 10 years to 150 years’
return period for Rampur watershed (Table 7). Reliably for Sundargarh, the projected flood is from
303.5037 m3/sec to 532.3849 m3/sec. For Jondhra watershed, the planned flood contrasts within
897.3183 m3/sec to 2,183.191 m3/sec for 10 years to 150 years’ return period. The enormity of
aponline.com/h2open/article-pdf/3/1/189/863310/h2oj0030189.pdf



Table 3 | Goodness-of-fit test results for (i) Rampur, (ii) Sundargarh, (iii) Jondhra, and (iv) Basantpur gauge stations

Sl. no. Distribution

Kolmogorov–Smirov (critical
value at 0.05¼ 0.19458)

Anderson–Darling (critical
value at 0.05¼ 2.5018)

Chi-squared (critical value at
0.05¼ 3.8415)

Statistic Reject Rank Statistic Reject Rank Statistic Reject Rank

Goodness-of-fit test result for Rampur

1 Gen. extreme Value 0.09132 No 1 0.16422 No 1 0.21782 No 1

2 Gumbel max 0.13533 No 3 0.37817 No 3 1.9633 No 3

3 Log-Pearson III 0.11411 No 2 0.24095 No 2 0.46307 No 2

4 Normal 0.28707 Yes 4 1.0013 No 4 4.87192 Yes 4

Goodness-of-fit test result for Sundergarh

1 Gen. extreme value 0.1253 No 1 0.28958 No 2 2.164 No 4

2 Gumbel max 0.12535 No 2 0.35893 No 3 1.0898 No 1

3 Log-Pearson III 0.13375 No 3 0.28844 No 1 1.8507 No 3

4 Normal 0.16402 No 4 0.76682 No 4 1.5181 No 2

Goodness-of-fit test result for Jondhra

1 Gen. extreme value 0.13655 No 2 0.1963 No 1 3.00264 No 1

2 Gumbel max 0.25327 Yes 3 3.65089 Yes 2 7.8113 Yes 2

3 Log-Pearson III 0.10113 No 1 8.20485 Yes 4 18.4183 No 3

4 Normal 1.3962 Yes 4 6.75286 Yes 3 25.6016 Yes 4

Goodness-of-fit test result for Basantpur

1 Gen. extreme value 0.11865 No 2 1.27191 No 2 3.2324 No 1

2 Gumbel max 0.19128 No 3 3.29665 Yes 3 7.49081 Yes 3

3 Log-Pearson III 0.10621 No 1 0.27077 No 1 4.4729 No 2

4 Normal 0.25211 Yes 4 4.34754 Yes 4 12.709 Yes 4

Table 4 | Flow discharge with respect to return period at four gauge stations

Return period (year)

Discharge (m3/sec)

Rampur Sundargarh Jondhra Basantpur

10 177.4414 304.3543 893.1144 2,052.522

20 215.091 348.0189 1,056.74 2,397.051

30 236.7499 373.1381 1,150.87 2,595.25

35 244.9403 382.6371 1,186.466 2,670.201

40 252.02 390.8479 1,217.234 2,734.987

50 263.8245 404.5383 1,268.537 2,843.009

60 273.4491 415.7006 1,310.366 2,931.083

70 281.5748 425.1245 1,345.68 3,005.441

75 285.2086 429.3388 1,361.473 3,038.693

100 300.3435 446.8917 1,652.899 3,177.191

150 321.6385 471.5889 1,944.325 3,372.061
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extreme flood with respect to the return period is established to be 2,047.682 m3/sec to 3,525.389 m3/
sec for Basantpur watershed.
Actual data from 2011 to 2019 are considered here for testing purposes. Comparison graphs of

observed and simulated flood discharge for all proposed stations are presented in Figure 3.
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Table 5 | Flow discharge with respect to return period at four gauge stations

Return period (year)

Discharge (m3/sec)

Rampur Sundargarh Jondhra Basantpur

10 198.8535 329.1873 986.1719 2,248.463

20 244.2809 381.8724 1,183.6 2,664.167

30 270.1493 411.8736 1,296.025 2,900.887

35 280.2443 423.5814 1,339.898 2,993.265

40 288.4465 433.094 1,375.544 3,068.323

50 302.958 449.9239 1,438.612 3,201.117

60 314.3149 463.0952 1,487.969 3,305.043

70 324.4099 474.803 1,531.842 3,397.422

75 328.8264 479.9251 1,551.036 3,437.837

100 347.1236 501.1455 1,842.462 3,605.273

150 372.361 530.415 2,133.888 3,836.22

Table 6 | Flow discharge with respect to return period at four gauge stations

Return period (year)

Discharge (m3/sec)

Rampur Sundargarh Jondhra Basantpur

10 175.76 302.4046 885.808 2,037.138

20 200.571 331.1791 993.636 2,264.179

30 213.312 345.9552 1,049.01 2,380.768

35 217.335 350.6214 1,066.49 2,417.585

40 221.358 355.2875 1,083.98 2,454.403

50 227.393 362.2867 1,110.21 2,509.629

60 232.758 368.5082 1,133.52 2,558.719

70 236.781 373.1744 1,151.01 2,595.536

75 238.793 375.5075 1,159.75 2,613.945

100 248.985 387.3283 1,204.05 2,707.216

150 255.892 395.3386 1,234.06 2,770.419

Table 7 | Flow discharge with respect to return period at four gauge stations

Return period (year)

Discharge (m3/sec)

Rampur Sundargarh Jondhra Basantpur

10 177.4024 303.5037 897.3183 2,047.682

20 216.9286 357.3192 1,038.848 2,425.163

30 238.7493 389.9993 1,144.289 2,644.386

35 245.8349 401.1399 1,192.41 2,717.519

40 253.0086 412.7043 1,215.78 2,792.611

50 263.9266 430.8866 1,177.567 2,909.031

60 273.7815 447.9389 1,367.25 3,016.452

70 281.2598 461.3095 1,500.813 3,099.53

75 285.0255 468.1896 1,531.547 3,141.897

100 304.3574 505.1676 1,818.622 3,365.321

150 317.6723 532.3849 2,183.191 3,525.389

H2Open Journal Vol 3 No 1
202 doi: 10.2166/h2oj.2020.004

Downloaded from http://iwaponline.com/h2open/article-pdf/3/1/189/863310/h2oj0030189.pdf
by guest
on 21 August 2022



Figure 3 | Observed versus simulated flood discharge for (i) Rampur, (ii) Sundargarh, (iii) Jondhra, and (iv) Basantpur gauge
stations. (Continued.)
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Confidence band for difference scenario

For a given return period, xT is determined by Gumbel methods which have errors because of limited
use of sample data. The confidence interval indicates the limits regarding the calculated value
between which the true value can be said to lie with a specific probability based on sampling
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Figure 3 | Continued.
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errors only. Confidence interval of variate bounded by value x1, x2 for a confidence probability c is
x1

2
¼ xt + f(c)Se where f(c) function of confidence probability is:

C(%) 50 68 80 90 95 99
F(c) 0:674 1:00 1:282 1:645 1:96 2:58

Se ¼ probable error ¼ b
sn � 1ffiffiffiffiffi

N
p
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Figure 4 | Confidence band for monsoon season of gauging stations (a) Rampur, (b) Sundargarh, (c) Jondhra, and (d) Basantpur.
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where

K¼ frequency factor given by ¼ yT � yn
Sn

sn � 1 ¼ standard deviation
N¼ sample size

b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1:3kþ 1:1K2

p

For different values of T,XT is calculated and shown in Figure 4. Also 95, 90, 85, 80, and 75% confidence
limits for various values of T are shown. It is seen that while the confidence probability rises, the confidence
interval also increases. Further increase in T causes the confidence band to spread. Thus, Gumbel distri-
bution will give erroneous results if the sample has a value of Cs very much different from 1.14.
Sensitivity analysis

For the Normal distribution method, the probability factor is dependent on the required return period
(T ), which is inversely proportional. Frequency factor (Kt) varies with return periods. Predicted dis-
charge (Qp) increases with respect to the increase in required return period, while the probability
factor (P) decreases. When the frequency factor increases, predicted discharge increases. Predicted
flood increases with regard to the increase in the required return period, while at the same time, fre-
quency factor increases with decrease of standard deviation in the case of the Gen. extreme value
method. Predicted flood increases with reference to the increase in the required return period,
aponline.com/h2open/article-pdf/3/1/189/863310/h2oj0030189.pdf
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while at the same time, frequency factor also increases, whereas reduced mean (Yn) and reduced stan-
dard deviation (Sn) remain constant for all recurrence intervals; however, reduced variate (Yt)
increases in Gumbel max. In LP III, predicted flood increases with an increase in the required
return period, while at the same time, the frequency factor also increases, whereas the coefficient
of skewness (Cs) and reduced standard deviation remain constant for all recurrence intervals.
CONCLUSIONS

In this paper, an effort has been made to forecast discharges at various return periods using statistical
methods. Here, four statistical methods are used to predict flow discharge in the Mahanadi River
basin, covering four stations. Four statistical distribution methods, namely, Normal, LP III, Gumbel
max, and Gen. extreme value method are employed here. Based on the trends of the last 60 years,
the maximum and minimum discharges are found at 150 years and 10 years’ return period, respect-
ively. The rate of increase of discharge is very high at the initial return periods and then it becomes
constant and eventually lower. The shapes of the graphs are common in nature and most of the
time they do not intersect with each other. In most of the cases, Gumbel max gives the peak flood
discharge and normal distribution contributes to the least discharge. The Gumbel max is the most
widely used method to obtain flood discharge as it can be used for infinite sample sizes. The influen-
cing factor of frequency is analyzed on the basis of analysis of the runoff complexity from drainage
basins. It is found that flow probability increases at the upstream of Mahanadi, which may be charac-
terized by the underlying surface condition change influenced by human activities and
geomorphology changes, and be considered for future scope. In other sections, the purpose of the
research is to diminish future flood damage in the river basin. Hence, forecast of flow discharge is
a key indication towards hydrological modeling and development for water resources engineering.
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