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Estimation of Forest Leaf Area Index Using
Vegetation Indices Derived From
Hyperion Hyperspectral Data

Peng Gong, Ruiliang Pu, Greg S. Biging, and Mirta Rosa Larrieu

Abstract—Field spectrometer data and leaf area index (LAI) late remotely sensed data with regional estimates of a number
measurements were collected on the same day as the Earth Ob-of forest ecosystem variables, including LAI, absorbed fraction
serving 1_satelllte_over_pass for a study site in the Patggonla region ¢ photosynthetically active radiation (APAR), canopy temper-
of Argentina. We first simulated the total at-sensor radiances using f
MODTRAN 4 for atmospheric correction. Then ground spectro- aftL.Jre, and community type_. In .the- past three decades, the tra-
radiometric measurements were used to improve the retrieved re- ditional broadband vegetation indices (VIs), such as the The-
flectance for each pixel on the Hyperion image. Using the improved matic Mapper (TM)-derived normalized difference vegetation
_pixc_sl-based surface reflectance spectra, 12 t_wo-band “vegeta_ltion index (NDVI), have been widely applied to estimate canopy LAl
indices (\_/Is)“ were constructed using al! available 168 I—_|yper|on (e.g., [1], [2], [8], and [9]). The broadband indices, usually con-
bands. Finally, we evaluated the correlation of each possible vege- . .
tation index with LAl measurements to determine the most effec- structed W'th near-mfrared (NIR) and re.d (R) bands-, usg average
tive bands for forest LAl estimation. The experimental results indi- ~ SPectral information over broad bandwidths, resulting in loss of
cate that most of the important hyperspectral bands with highR>  critical information available in specific narrow bands [10]. In
are relfitet?] to baﬂqsfin thg ?S?F;t)wavﬁ inff?:]ed éSV\élR) regio”tandd addition, the broadband indices are known to be heavily affected
some in the near-infrare region. The bands are centere ; ;
near 820, 1040, 1200, 1250, 1650, 2100, and 2260 nm with band>Y S Packground at low vegetation cover [11], [12].
widths ranging from 10-300 nm. It is notable that the originally The_adven.t of imaging spectrometgrs on board aircraft has
defined Vs that use red and NIR bands did not produce higher Made it possible to construct more refined Vis through the use

correlation with LAI than Vis constructed with bands in SWIR  of distinct narrow bands. Narrow bands can be crucial for pro-

and NIR regions. viding additional information over broad bands in quantifying
Index Terms_Hyperion‘ hyperspectra| data, leaf area index biOphySical characteristics Of Vegetation [13] For instance, ™
(LAI), shortwave infrared (SWIR), vegetation index. band 3 (630-690 nm, R band) and TM band 4 (760-900 nm,

NIR band) can be further separated into six and 14 Airborne
Visible/Infrared Imaging Spectrometer (AVIRIS) narrow bands,
respectively. It is possible to improve the indices by using some

EAF AREA index (LAI) is defined as the total one-sidecbf the distinct narrow bands for correction of soil background

area of all leaves in the canopy within a defined regiosffects. Earth Observing 1 (EO-1) is the world’s first satellite
(m?/m?). LAl is an important structural parameter for quantithat carries a hyperspectral sensor—Hyperion [35], which has
fying the energy and mass exchange characteristics of terng same spatial resolution as TM. In this study, we evaluate 12
trial ecosystems such as photosynthesis, respiration, transpifss, constructed with bands across the Hyperion spectral range
tion, carbon and nutrient cycle, and rainfall interception (e.gf 0.4—2.5um to find some important bands with potential for
[1]-[6]). Direct measure of canopy LAl is relatively accuratémproving LAl estimation at the landscape level.
but extremely labor intensive and destructive. Thus, it is prac-
tical to measure LAI only on limited experimental plots. Con-
sequently, field estimation of LAl over large areas is problem- ) ) _
atic. Remote sensing techniques, particularly the use of satellitdn Studies of forest ecosystems with remote sensing data, the
imagery, have been used to measure LAI on a landscape sfafst commonly used vegetation indices are computed from
or even global scale [7]. With remote sensing techniques, S§imple functions based on the R and NIR bands. Reflectances
entists have made progress in developing methods that cotfeR and NIR wavebands, denotedir andpr have been used

to formulate various vegetation indices (VIs) as indicators of

, , _ _ surface vegetation conditions (e.g., [1], [11], and [14]). Among
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SUMMARY OF 12 Two-BAND VEGETATION INDICES ANALYZED IN THIS STUDY. NOTE: pr AND pnir ARE DENOTED ASREFLECTANCES INR AND NIR
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TABLE |

WAVELENGTHS, BUT IN THIS STUDY THEY REPRESENTBANDS 1 AND 2 ACROSSALL AVAILABLE 168 BANDS OF HYPERION DATA

Index Formula Description References (e.g.)
SR / Near-infrared / Red rreflectance ratio (Simple Ratio VI). Baret and Guyot, 1991;
P ! Pr Related to changes in amount of green biomass, pigment Tucher, 1979.
content and concentraion and leaf water stress etc.

NDVI Pz =P Prir + Pr) Normalized Difference Vegetation Index. Fassnacht et al., 1997;
Related to changes in amount of green biomass, pigment Smith et al., 1991.
content and concentraion and leaf water stress etc.

PVI 1 Perpendicular Vegetation Index, orthogonal to the soil line. Baret and Guyot, 1991,

Q’;?ij(p””* mars —b) Attempts to eliminate differences in soil background and is Huete et al., 1985.
a = slope of the soil line  most effective under conditions of low LAI, applicable for
b = soil line intercept arid and semiarid regions.
SAVI O = )1+ L) Soil Adjusted Vegetation Index. L ranges from 0 for very high Huete, 1988;
Tp—— Jr——-;ﬁ vegetation cover to 1 for very low vegetation cover; Leeuwen and Huete, 1996.
g Pr minimizes soil brightness-induced variations
L = a correction factor L=0.5 can reduce soil noise problems for a wide range of LAI.
NLI Non-Linear vegetation Index. Goel and Qin, 1994
(Pim — Pr) (P +Pr)  Consider the relationship between many Vis and surface
biophysical parameters is often nonlinear, and NLI linearizes
relationships with surface parameters that tend to be nonlinear.
RDVI ( —p) K + ) Re-nomalized Difference Vegetation Index. Roujean and Breon, 1995.
Py = Pr) A Prmm * Pr RDVI linearizes relationships with surface parameters
that tend to be nonlinear.
MSR Gu! P ~1) Modified Simple Ratio. It can be an improvement over RDVI Chen, 1996.
G/ PO +1 for linearizing the relationships between the index and
MR IR biophysical parameters.
WDVI » Cap Weighted Difference Vegetation Index. Clevers, 1988;
e " WDVI assumes that the ratio between NIR and R Clevers, 1991.
a = slope of the soil line  reflectances of bare soil is constant; it is related to PVI,
but it has an unrestricted range.
MNLI R Modified Non-linear vegetation Index. MNLI is an improved Developed in this paper.
(Prm = Pr)X1+L) version of NLI, and it also consider merit of SAVI.
(P +pr+1L) L=0.5 may be applicable for a wide range of LAI.
L = a correction factor For detailed description, see text.
NDVI*SR 2 Attemps to combine merit of NDVI with that of SR. Developed in this paper.
(L’V’L%’-‘l For detailed description, see text.
(Pryr+PR)
SAVI*SR ) Attemps to combine merit of SAVI with that of SR. Developed in this paper.
_ (Pm=Pr) For detailed description, see text.
(PaurtpPr+L)pr
TSAVI a(pyg —apr —b) Transformed Soil Adjusted Vegetation Index. Baret and Guyot, 1991;

Modify Huete (1988) SAVI to compensate for soil variability
due to changes in solar elevation and canopy structure.

[P e +px — @b+ X (1+a*)]
a = slope of the soil line
b = soil line intercept
X = adjustment factor to

minimize soil noise.

cell walls—notably the lignin component—cause scatterin@AVI) developed in [14] was derived from the NDVI, but
of NIR energy, resulting in relatively high NIR transmittancean adjustment factor L was introduced in order to minimize
and reflectance [18]. However, the Vls are sensitive to opticabil-brightness influences and to produce vegetation isolines
properties of the soil background. Their application is limitethore independent of the soil background [11]. Graphically, the
if one does not account for the effects of soil background. SAVI involves a shifting of the origin of reflectance spectra
Richardson and Wiegand [19] proposed the perpendiculaotted in NIR-R wavelength space to account for the first-order
vegetation index (PVI) in an attempt to reduce the effect gbil—vegetation interactions and differential R and NIR flux
soil background on VIs. However, experimental and theoretioaktinction through vegetated canopies [14]. The constant
investigations indicate that it is still affected by soil backgroundl can range from zero (for very high vegetation cover, the
(e.g., [14] and [20]): brighter soils result in higher index valuesorresponding SAVI being equivalent to NDVI) to 1 (for very
for a given quantity of incomplete vegetation cover. Additiondbw vegetation cover). If. tends toward infinity, it is equivalent
indices have been proposed to overcome this problem. ForPVI. Huete [14] suggested that an adjusted fadtor 0.5
instance, an index named weighted difference vegetation indek intermediate vegetation amounts should be used, resulting
(WDVI) was proposed in [21] and [22]. However, Baret anéh a spectral index (SAVI) superior to the NDVI and PVI for
Guyot [11] found that WDVI held no advantage over PVI. Thia relatively wide range of vegetation conditions. In order to
has led to the development of alternative formulations thaitrther reduce error for a vegetation index (e.g., SAVI) for plant
include correction factors or constants attempting to accowgnopies with varying low densities, Badtal.[23] proposed
for or minimize the effect of varying background reflectancthe transformed soil adjusted vegetation index (TSAVI). TSAVI
on Vlis. For examples, the soil-adjusted vegetation indequals zero for bare soil and is close to 0.7 for very dense



GONGet al: ESTIMATION OF FOREST LAI USING VI DERIVED FROM HYPERION HYPERSPECTRAL DATA 1357

canopies. It can compensate for soil variability due to change®squede) are also found over this site. The average elevation
in solar elevation and canopy structure. is 850 m, with variations within 100 m.

To simulate nonlinear relationships between VIs and surface
biophysical parameters, Goel and Qin [24]-[26] proposed tie Data Acquisition and Measurement

nonllnegr vggetatlon index (NLI), the r_e_normahzed d|fference Hyperion datawere acquired on March 27,2001, around 10:30
vegetation index (RDVI), and the modified simple ratio vege-

0 . . . ~2°AM. local time. From March 27-29, 2001, we took reflectance
tation index (MSR), respectively. The nonlinear vegetation i

) : _ i . ) Mheasurements in the field from targets such as road surface
dices attempt to linearize relationships with surface parame\tiéi

. . o avel material), bare soil, young tree canopies (ponderosa
that tend to be nonlinear. To preserve the merits of eX|st|ng_ e and lodgepole pine), and grasses and shrub using a Field-

while impraving their performance in LAl estimation, in th'SS e®Pro FR (Analytical Spectral Devices, Inc.). These spectral

study, we also tested three modified or combined VIs from tl? flectance measurements were then used for atmospheric
existing ones. MNLI modifies NLI and incorporates merits Of:orrection for the Hyperion data as described below

SAVI. Under conditions of low LAI, wherery, is relatively high A LAI-2000 Plant Canopy Analyzer (PCA) was used in the

andpxi relatively low, a small change ix produces alarger o4+ measure forest LAI. The LAl measurement taken by the
proportional change in NDVI than SR. With higher LAI, in 9eNpA is the “effective” LAI [1], [5]. The instructions for oper-
eral, wherepnr is higher ancpr lower, a change ipxr will '

. . . ating the LAl instrument were carefully followed to ensure each
induce a larger proportional change in SR than NDVI [9]. Ther?’AI point was measured accurately. From March 27-29, 2001,

fore, the NDVI SR is expected to balance the two phenomenaéo[otal of 32 LAl measurements were taken. Each LAl measure-

Increase corrglatlon with L.AIZ Wh.'le the SAVER _3|mp|y COM- ment represents an average of ten PCA readings that were taken
bines the merit of SAVI (eliminating effect of soil background}nainly from overstory in an area between 100—1060Te lo-

with that of SR (a wider range of VI values corresponding ations of PCA readings in each plot were selected, based on the

abnarrower rtan?e dqf \t/r(:,_get?t:jon C%\/er)' All 12 V.IS (rjn.en_ltjogle nopy closure, age of stands, and nutrient level so as to make
above were tested in this Study and are summarized in fa 'em representative of the variability in the plot. Because the

The 12 Vis were originally constructed only as functions Y Al measurement plots are all forest plantations, for plots with

R agdelg. Hfi\r']v_evtir’ sS<)Vr\r/1|eRreseatrcrl1ers _(e.g., O[ZZ]E[BOD algﬂ LAI > 2.0, almost no understory was found. For plots whose
used bands within the spectral region {.0-2.54m), LAl is lower than 2.0, there existed a varying proportion of un-

especially the ratio of m_iddl'e—infrared (MIR) (1'55._1'7@) erstory that may contribute to LAl measurement. The under-
_to dNIR. asa nlev;/ \ée?e:r?tl?l:r;gex. lthv‘éﬁs hypothet_5|zedf mat_t ry mostly consists of some broad-leaf species. In considera-
indexs corretated o the rough the summation ot e I, ¢ the fact that a Hyperion pixel spectrum always responds

d|y|dual leaf equwalent_vvaterthlckness_ foreach leaflayerto o 0 poth the understory and overstory, especially for those sparse
tain a total canopy equivalent water thickness [27] because I? ests, we did not attempt to separate contributions of the un-

reflectances of the SWIR region are dominated by liquid wat Erstory and overstory to the LAl measurement in this study.

absorpnon. MOt'V"’.lteq by _th|s, we W'I.I test all 1.2. Vis across a fter taking the LAl measurement, its exact location (i.e., a plot)
Hyperion band pairs in spite of violating the original deflnltlon\sN

of bands used to compute the VIs, especially for those definﬁﬁS marked on the color composite image of high spatial reso-

I ith il line in R-NIR In addition. b fth on AVIRIS data or on a forest inventory polygon map. These
aisowith a sorfiine in =-INIR space. In addition, because otthelle .o \,saq as references for subsequent spectral data extraction
simple definition, explicit underlying physical processes, a

tensi f1h wo-band Vi il h om the Hyperion image. Since the effective LAl is less vari-
extensive use ot these two-ban S, e wiltTocus on tn€ evaip, . o4 easier to measure than LAl is an intrinsic attribute of

uation of these 12 two-band VIs in this study instead of consi fant canopies [1], and has also a proportion relation with LAI

ering Vls constructed with more than two bands. After removi . . .
, ) X , we directly used the effective LAl throughout this research
those Hyperion bands with strong water absorption (134614 1, we di yu v ughouttht

and 1800-1961 nm) and weak and noisy signal bands (wa\{;le—d referred it to as LAl
length shorter than 437 nm and longer than 2405 nm), we have
168 Hyperion bands available in this test. We expect that some
new two-band VIs, constructed from the 168 bands, may Be Atmospheric Correction
found that produce higher correlations with forest LAl than cur-

rently used Vis.

IV. METHODS

In this study, we used a hybrid method of atmospheric cor-
rection to retrieve surface reflectance from Hyperion data. The
sensor measures radiantehat is a combination of the radi-

[ll. STUDY SITE AND DATASETS ance from the surface and scattered from the atmosphere. In a
A. Study Site simplified form, the at-sensor radiande, can be related to the

] o ) ~ Lambertian surface reflectanpeas
During the 2001 EO-1 campaign in Argentina, we established

a site (421059 S/71°2027" W) in the Rio Negro province in Top  E,-cos(6y)
the Patagonia region of southern Argentina. The study area is a L=1La+ 1—pS )
relatively flat semiarid region with conifer forest plantations of

young- to mid-aged ponderosa pine, lodgepole pine, and OreguamereT> is the sun-surface sensor two-way transmittarice;
pine. Other broad-leaf species, shrub, and grasses (mainly dgrthe path radiance caused by atmospheric scattesingthe
sisting of nire brush acaena, coiron, barberis, laura, and raganerical albedo of the atmosphefgjs the solar zenith angle;

)

™
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and E; is the exoatmospheric solar irradiance. Further, re¢ 454 - ; g;_w
range (1) for retrieval of surface reflectangeas —= i 0.450.50
e —— ; 0.50-0.55
P, TS el S = Lyam :
I_1 _ f——{jip a ' s
p= T @ § | E=gdiees e
(L—Ly)S+Ts- E+S(<) g 1 _le._i;.'e‘!lﬁ@_ Vo >
- - - E i "'“' iﬁl—§I5: m ;" ; o iBnnd.ﬂ :;’];i?nnu
According to (1) and (2), once a satellite-measured radian % b R ;.,_..f'w it 53 N 6l
L is given and solving (1) for parameteis, S, andL, through 2 44 sty ;‘-'f JEicak 1, a e
simulation with an atmospherically radioactive transfer coc® i s "-e-.—-::{' R 81 12454
such as MODTRAN 4, a surface reflectance spectrum can 4! [ LA |J 4 “|J| H o
retrieved. . AT ey SRS % I;} ;;3‘;
The hybrid method for retrieving surface reflectance fror x e N
Hyperion data is briefly described as follows. With MODTRAN 1 . i
4 [31], the simulated output radiance is used.as (1). With 121 4 81 81 101 121 141 161
three at-sensor total radiances, we can construct a group of tf Band number (Band 1)

equations from (1), and solve them s, S, andL,. Using
sensor pixel radiance values as at-sensor radiance and sol\'/zl'ﬁgj . ;

. . . calctlated from any band pairs among 168 Hyperion bands spread across
Ty, S, and L,, with (2), we can easily calculate a pixel-based3o-2410 nm. Different color areas represent diffef@htlass values, which

retrieved surface reflectance from the Hyperion image, callegre ranked and from which best band centers and best bandwidths were
as the initial reflectance. With the ground reflectance spectrifiicuiated for the Vi used for estimating the forest LAI (Table I1).

and initial reflectance of the same location (target), a set of ra-

tios across all spectral bands is calculated by dividing the ground V. RESULTS AND ANALYSIS

reflectance b_y its corresponding i_nitial refle_ctance. In or_d(_ar ' Atmospheric Correction

make the ratios more representative of various targets, it is ap- )

propriate to use an average ratio calculated from different targetdnPuts to the MODTRAN 4 included three surface reflectance
(e.g., road surface and vegetation in this study). Multiplying thé&/ues, 0.0, 0.3, and 0.5, a water vapor value of O.7lcﬁh/cm
initial reflectance of each pixel by its corresponding ratio in eadhe Midlatitude Summer (45South Latitude) atmospheric geo-
band, we can improve the initial reflectance. We call the grougi@Phical-seasonal model, and other necessary parameters [31].

reflectance corrected reflectance, the improved reflectance. TNe total radiances of Hyperion were simulated as an output for
solving the simplified radioactive transfer model (1). A water

B. Correlation Analysis of Vegetation Indices Extracted Fronl\;ap[grz?f\?v'izhvﬁz ?ﬁ::g{:ﬁﬂ:&ogggr:gérfotzrrggigrﬁzsstzﬁz
Hyperion Data With LAl y ‘ :
three surface reflectance values, the path radiahgg the sun-

Pixel-based retrieved reflectance spectra from the calibrataaface sensor two-way transmittande)( and the spherical
Hyperion images at the 32 LAl measurement plots were eatbedo of atmospheres| were obtained by solving the three-
tracted from the image. One to four homogenous pixels wegguation group of (1). A corrected radiance image (I.gng —
extracted and averaged for each LAl plot. The 12 VIs were ap;,) was produced by replacing the simulated at-sensor radiance
plied to any possible pair of the 168 Hyperion bands. Note thaith the image pixel value (suppogge.., ~ L) and then sub-

R bands and NIR bands used for constructing one Vls in Tablgdcting the path radianck,. With two other parameters§
have been extended to all 168 bands. Consequently, for each pait.S), the initial surface reflectance image was produced ac-
of bands we have 12 VIs for each of the 32 LAl measurementsrding to (2).

For each of the 12 Vis, a linear correlation coefficieRE) The initial reflectance still has a lot of “spikes” along the
was calculated between the VI and LAl measurement (32 saraflectance curve. These might be caused by supplying less
ples). Due to the fact that most LAl measurements are less thihan optimal input values to MODTRAN 4, especially for those
five in this study (over which spectral saturation may happesensitive gases such as water vapor, and also by inadequate
and this in turn will reduce the linear correlation between \Wimulation of atmospheric conditions during the satellite
and LAI), a linearR? is a suitable indicator for finding someoverpass. It is, therefore, necessary to further modify the initial
important bands contributing to better correlation betweenreflectance with ground spectroradiometeric measurements.
two-band index and LAI. However, if LAl measurements ar@/e used ground spectrometer data measured from road surface
higher than five, a nonlinear correlation indicator (e.g., medgravel, four spectra) and plant canopies (lodgepole pine, five
square error) maybe more appropriate. In this study, a liRéar spectra) to calibrate the Hyperion image to obtain the con-
was adopted as an indicator of effectiveness in correlation anarsion ratios, then applied the ratios to the initial reflectance
ysis. Since each VI in Table | could be constructed from angnage to produce the improved reflectance image. After the
pair among the possible 168 bands, a linear correlation coeffalibration with the ground-based measurements, the improved
cient (%) matrix (e.g., Fig. 1) could be constructed. From theeflectance curve looks better although some small “spikes”
correlation matrices, hyperspectral bands with high correlatioear 0.94 and 1.14m still exist due to the residue of the water
coefficients were examined. vapor effect.

1. Color plots showing correlationg?¢) between LAI and NDVI
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TABLE I
POTENTIAL HYPERSPECTRALBANDS FOR 12 VEGETATION INDICES APPLIED FORFORESTLAI E STIMATION. NOTE: Optim.= OPTIMAL CORRELATION R2.
BOLDFACE CHEMICALS ARE PRINCIPAL FOR THE ABSORPTIONFEATURES

Index R? Band  Bandwidth Band description
NIR-R/Optim. center (nm) (nm) (spectral region and possible absorption features)
SR 0.55/0.70 825 140 NIR region, cell structure multi-reflected spectra.
1038 230 NIR-SWIR region, water, proten, lignin, starch & oil absorption
1250 180 SWIR region, water, cellulose, starch and lignin absorption
1648 290 SWIR region, protein, nitrogen, lignin, cellulose,
sugar, starch absorption.
NDVI 0.55/0.70 4 bands similar to SR's
PVI 0.45/0.64 814 140 NIR region, cell structure multi-reflected spectra.
1050 100 NIR-SWIR region, proten, lignin, and oil absorption
1250 190 SWIR region, water, cellulose, starch and lignin absorption
2100 10 SWIR region, starch, cellulose absorption
SAVI 0.50/0.67 4 bands similar to NDVI's or SR's
NLI 0.50/0.73 821 157 NIR region, cell structure multi-reflected spectra.
1200 578 NIR-SWIR region, water, proten, starch, lignin, cellulose,
and oil absorption
1250 191 SWIR region, water, cellulose, starch and lignin absorption
1640 300 SWIR region, protein, nitrogen, lignin, cellulose,
sugar, starch absorption.
RDVI 0.45/0.66 810 170 NIR region, cell structure multi-reflected spectra.
1054 10 SWIR region, lignin and oil absorption
1255 161 SWIR region, water, cellulose, starch and lignin absorption
1669 10 SWIR region, lignin and starch absorption
2093 10 SWIR region, starch and cellulose absorption
MSR 0.50/0.70 4 bands similar to NDVI's or SR's
WDVI 0.45/0.63 1639 10 SWIR region,non apparent absorption
2113 10 SWIR region, starch and cellulose absorption
2285 30 SWIR region, starch, cellulose and protein absorption
MNLI 0.45/0.75 4 bands similar to NLIs
NDVI*SR _ 0.50/0.71 4 bands similar to NDVI's or SR's, but
SAVI*SR  0.50/0.71 1 - 4 bands similar to SAVI's or SR's
2083 30 SWIR region, sugar, starch and cellulose absorption
2153 10 SWIR region, protein absorption
TSAVI 0.50/0.71 832 120 NIR region, cell structure multi-reflected spectra.
1038 150 NIR-SWIR region, water, proten, lignin, starch & oil absorption
1240 170 SWIR region, water, lignin, cellulose and starch absorption
1660 260 SWIR region, lignin, cellulose, sugar, starch, protein,
and nitrogen absorption.
2108 20 SWIR region, starch, cellulose and protein absorption
B. Correlation of Vegetation Indices With LAI 161 o%&m
For each VI, a correlation matrix was constructed for eac e
pair of spectral bands. In the correlation matrix, the colc e 055060
legend indicates the class value Bf between the two-band  ,,; Ne000
index and LAI. For the 12 correlation matrice8? values for & sy

e

some matrices are symmetrical for the diagonal of the matig 101

(e.g., NDVI, PVI and SAVI), and others are not (see MNLIE Band # WL(nm)
NDVI*SR, SAVISR, and TSAVI). From all 12 correlation ma- € ' LA
trices, some bands (expressed as band centers and bandwiuz 61 41 3445

. . . . . . . . 61 1043.7
having high potential in LAI estimation are summarized iid 31 12454
Table II. The R% column in the table lists twa?? values: 41 lir B

141 21333
161 23350

a highestR? value for the actual use of NIR and R bands .

selected from all possible ViIs between any two NIR and : “

bands, and an optimat? value derived from VIs constructed

from the SWIR and NIR regions. 101 121 141 161
R? matrices for SR, NDVI, and MSR have similar pattern Band number (Band 1)

(e.g., Fig. 1 for NVDI). The patches with higk? mainly cluster

in four band regions centered at 825, 1038, 1250, and 1648 hig 2- Color_scgle plots ;hoyving correlation??) between LAl and PVI.

with 140-290-nm bandwidths. Compared to #R& value cal- More explanation is found in Fig. 1.

culated from the original VI definition using R and NIR bands,

some important band pairs can be found in the NIR and SWIRfeatures of protein, nitrogen, lignin, cellulose and starch concen-

the SWIR regions. In particular, some bands in the NIR and MifRations. With PVI and WDVI (see Fig. 2 for PVI), we did not

regions yielded higheR? values. These bands are related tbnd higher R? values than those of NDVI and SR. This might

plant leaf water content that has a close correlation with canolpg because soil background was simple, i.e., dry, bright and sim-

biomass and LAI (Hunt, 1991) and indirectly to the absorptiotar among the 32 LAl measurement plots. For WDVI, the upper

21

-
3%
F-S
-
[+:]
put 4
[+-]
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Fig. 3. Color scale plots showing correlatiori22) between LAI and SAVI.
More explanation is found in Fig. 1.

161
141
121
101

81

Band number (Band 2)

1 21 41 61 81 101 121 141 181
Band number (Band 1)

Fig. 4. Color scale plots showing correlatior#?() between LAl and MNLI.
More explanation is found in Fig. 1.
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Fig. 5. Color scale plots showing correlatio#?) between LAl and TSAVI.
More explanation is found in Fig. 1.
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Fig. 6. Color scale plots showing correlation®2) between LAl and
NDVI*SR. More explanation is found in Fig. 1.

linearizes the relationships between VI and surface biophysical

right quarter of theR? matrix is similar to that of PVI, which parameters, it has relatively low correlations. Since the RDVI
may account for their close relationship [11]. For both PVI anig a renormalization of NDVI, itsk? values in the correlation
WDVI, some important bands are also found in the SWIR andatrix were expected to have similar patterns to those of NDVI.
the NIR and SWIR regions. Th&? values for SAVI (Fig. 3) However, we found the correlation levels in the RDVI matrix
are again similar to those of NDVI or SR due to the simple sdib be lower than those in the NDVI matrix. For TSAVI, the

background.

R? values have a similar distribution pattern as those in the

NLI and MNLI can linearize the nonlinear relationshipsSAVI correlation matrix, but the level of correlation is higher
with surface parameters. This resulted in an improvementtiman observed with the SAVI (Fig. 5). This may result from the
R? values (0.73, 0.75) when compared to that of NDVI (0.70kompensation of soil variability due to changes in solar eleva-
Their R? matrices are not symmetrical along the diagondion and canopy structure [11]. Some important bands based
MNLI (Fig. 4), developed in this study, improved the peron the TSAVI correlation matrix include wavelengths centered
formance (fromR? 0.73 to 0.75) of its original version NLI, at 832, 1038, 1240, 1660, and 2108 nm with bandwidths from
especially for wavelengths longer than 1500 nm. The potent20—260 nm.
bands for estimating forest LAI might be wavelengths centeredThe remaining two combined indices—ND\WR and
near 821, 1200, 1250, and 1640 nm with bandwidths froBAVI*SR (Figs. 6 and 7)—developed in this study have
157-578 nm, which are affected directly or indirectly by wateperformed slightly better than the original VIs. TE2 values
protein, nitrogen, lignin, cellulose sugar absorption featurbsve different patterns below the diagonals than those in their
[33], and cell structure reflection feature. Although RDVI alsaeriginal VIs. The R? values in their correlation matrices,
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Fig. 7. Color scale plots showing correlation®2) between LAl and

SAVI*SR. More explanation is found in Fig. 1.

dices for LAI estimation. The most effective band wavelengths
centered near 820, 1040, 1200, 1250, 1650, 2100, and 2260 nm
with bandwidths ranging from 10-300 nm. These bands are con-
trolled by plant leaf water content, yet the absorption features by
other biochemicals such as protein, nitrogen, lignin, cellulose,
sugar, and starch may have indirect impacts. VIs derived from
the R and NIR bands did not produce as high correlations with
LAl as those with bands in the SWIR and NIR regions. Based
on their high correlation with LAl measurements, MNLI (NLI),
SR, and NDVI were recommended for use in environments sim-
ilar to our study site for LAl estimation using satellite-based hy-
perspectral data.
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