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Estimation of Forest Leaf Area Index Using
Vegetation Indices Derived From

Hyperion Hyperspectral Data
Peng Gong, Ruiliang Pu, Greg S. Biging, and Mirta Rosa Larrieu

Abstract—Field spectrometer data and leaf area index (LAI)
measurements were collected on the same day as the Earth Ob-
serving 1 satellite overpass for a study site in the Patagonia region
of Argentina. We first simulated the total at-sensor radiances using
MODTRAN 4 for atmospheric correction. Then ground spectro-
radiometric measurements were used to improve the retrieved re-
flectance for each pixel on the Hyperion image. Using the improved
pixel-based surface reflectance spectra, 12 two-band “vegetation
indices (VIs)” were constructed using all available 168 Hyperion
bands. Finally, we evaluated the correlation of each possible vege-
tation index with LAI measurements to determine the most effec-
tive bands for forest LAI estimation. The experimental results indi-
cate that most of the important hyperspectral bands with high 2

are related to bands in the shortwave infrared (SWIR) region and
some in the near-infrared (NIR) region. The bands are centered
near 820, 1040, 1200, 1250, 1650, 2100, and 2260 nm with band-
widths ranging from 10–300 nm. It is notable that the originally
defined VIs that use red and NIR bands did not produce higher
correlation with LAI than VIs constructed with bands in SWIR
and NIR regions.

Index Terms—Hyperion, hyperspectral data, leaf area index
(LAI), shortwave infrared (SWIR), vegetation index.

I. INTRODUCTION

L EAF AREA index (LAI) is defined as the total one-sided
area of all leaves in the canopy within a defined region

(m m ). LAI is an important structural parameter for quanti-
fying the energy and mass exchange characteristics of terres-
trial ecosystems such as photosynthesis, respiration, transpira-
tion, carbon and nutrient cycle, and rainfall interception (e.g.,
[1]–[6]). Direct measure of canopy LAI is relatively accurate
but extremely labor intensive and destructive. Thus, it is prac-
tical to measure LAI only on limited experimental plots. Con-
sequently, field estimation of LAI over large areas is problem-
atic. Remote sensing techniques, particularly the use of satellite
imagery, have been used to measure LAI on a landscape scale
or even global scale [7]. With remote sensing techniques, sci-
entists have made progress in developing methods that corre-
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late remotely sensed data with regional estimates of a number
of forest ecosystem variables, including LAI, absorbed fraction
of photosynthetically active radiation (APAR), canopy temper-
ature, and community type. In the past three decades, the tra-
ditional broadband vegetation indices (VIs), such as the The-
matic Mapper (TM)-derived normalized difference vegetation
index (NDVI), have been widely applied to estimate canopy LAI
(e.g., [1], [2], [8], and [9]). The broadband indices, usually con-
structed with near-infrared (NIR) and red (R) bands, use average
spectral information over broad bandwidths, resulting in loss of
critical information available in specific narrow bands [10]. In
addition, the broadband indices are known to be heavily affected
by soil background at low vegetation cover [11], [12].

The advent of imaging spectrometers on board aircraft has
made it possible to construct more refined VIs through the use
of distinct narrow bands. Narrow bands can be crucial for pro-
viding additional information over broad bands in quantifying
biophysical characteristics of vegetation [13]. For instance, TM
band 3 (630–690 nm, R band) and TM band 4 (760–900 nm,
NIR band) can be further separated into six and 14 Airborne
Visible/Infrared Imaging Spectrometer (AVIRIS) narrow bands,
respectively. It is possible to improve the indices by using some
of the distinct narrow bands for correction of soil background
effects. Earth Observing 1 (EO-1) is the world’s first satellite
that carries a hyperspectral sensor—Hyperion [35], which has
the same spatial resolution as TM. In this study, we evaluate 12
VIs, constructed with bands across the Hyperion spectral range
of 0.4–2.5 m to find some important bands with potential for
improving LAI estimation at the landscape level.

II. BACKGROUND

In studies of forest ecosystems with remote sensing data, the
most commonly used vegetation indices are computed from
simple functions based on the R and NIR bands. Reflectances
in R and NIR wavebands, denoted and have been used
to formulate various vegetation indices (VIs) as indicators of
surface vegetation conditions (e.g., [1], [11], and [14]). Among
the various VIs (Table I), the ratio-based NDVI [15], and the
simple ratio vegetation index (SR) [16] are the most frequently
used to correlate with LAI and other canopy structure pa-
rameters from airborne and spaceborne remoter sensing data
(e.g., [2], [9], and [17]). With increases in LAI, red reflectance
decreases as light is absorbed by leaf pigments (such as chloro-
phylls), while the NIR signal increases as more leaf layers
are present to scatter the radiation upward [2] because plant
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TABLE I
SUMMARY OF 12 TWO-BAND VEGETATION INDICES ANALYZED IN THIS STUDY. NOTE: � AND � ARE DENOTED ASREFLECTANCES INR AND NIR

WAVELENGTHS, BUT IN THIS STUDY THEY REPRESENTBANDS 1 AND 2 ACROSSALL AVAILABLE 168 BANDS OF HYPERIONDATA

cell walls—notably the lignin component—cause scattering
of NIR energy, resulting in relatively high NIR transmittance
and reflectance [18]. However, the VIs are sensitive to optical
properties of the soil background. Their application is limited
if one does not account for the effects of soil background.

Richardson and Wiegand [19] proposed the perpendicular
vegetation index (PVI) in an attempt to reduce the effect of
soil background on VIs. However, experimental and theoretical
investigations indicate that it is still affected by soil background
(e.g., [14] and [20]): brighter soils result in higher index values
for a given quantity of incomplete vegetation cover. Additional
indices have been proposed to overcome this problem. For
instance, an index named weighted difference vegetation index
(WDVI) was proposed in [21] and [22]. However, Baret and
Guyot [11] found that WDVI held no advantage over PVI. This
has led to the development of alternative formulations that
include correction factors or constants attempting to account
for or minimize the effect of varying background reflectance
on VIs. For examples, the soil-adjusted vegetation index

(SAVI) developed in [14] was derived from the NDVI, but
an adjustment factor L was introduced in order to minimize
soil-brightness influences and to produce vegetation isolines
more independent of the soil background [11]. Graphically, the
SAVI involves a shifting of the origin of reflectance spectra
plotted in NIR-R wavelength space to account for the first-order
soil—vegetation interactions and differential R and NIR flux
extinction through vegetated canopies [14]. The constant

can range from zero (for very high vegetation cover, the
corresponding SAVI being equivalent to NDVI) to 1 (for very
low vegetation cover). If tends toward infinity, it is equivalent
to PVI. Huete [14] suggested that an adjusted factor
for intermediate vegetation amounts should be used, resulting
in a spectral index (SAVI) superior to the NDVI and PVI for
a relatively wide range of vegetation conditions. In order to
further reduce error for a vegetation index (e.g., SAVI) for plant
canopies with varying low densities, Baretet al. [23] proposed
the transformed soil adjusted vegetation index (TSAVI). TSAVI
equals zero for bare soil and is close to 0.7 for very dense
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canopies. It can compensate for soil variability due to changes
in solar elevation and canopy structure.

To simulate nonlinear relationships between VIs and surface
biophysical parameters, Goel and Qin [24]–[26] proposed the
nonlinear vegetation index (NLI), the renormalized difference
vegetation index (RDVI), and the modified simple ratio vege-
tation index (MSR), respectively. The nonlinear vegetation in-
dices attempt to linearize relationships with surface parameters
that tend to be nonlinear. To preserve the merits of existing VIs
while improving their performance in LAI estimation, in this
study, we also tested three modified or combined VIs from the
existing ones. MNLI modifies NLI and incorporates merits of
SAVI. Under conditions of low LAI, where is relatively high
and relatively low, a small change in produces a larger
proportional change in NDVI than SR. With higher LAI, in gen-
eral, where is higher and lower, a change in will
induce a larger proportional change in SR than NDVI [9]. There-
fore, the NDVI SR is expected to balance the two phenomena to
increase correlation with LAI, while the SAVISR simply com-
bines the merit of SAVI (eliminating effect of soil background)
with that of SR (a wider range of VI values corresponding to
a narrower range of vegetation cover). All 12 VIs mentioned
above were tested in this study and are summarized in Table I.

The 12 VIs were originally constructed only as functions of
R and NIR. However, some researchers (e.g., [27]–[30]) also
used bands within the SWIR spectral region (1.0–2.5 m),
especially the ratio of middle-infrared (MIR) (1.55–1.75m)
to NIR as a new vegetation index. It was hypothesized that the
index is correlated to the LAI through the summation of the in-
dividual leaf equivalent water thickness for each leaf layer to ob-
tain a total canopy equivalent water thickness [27] because leaf
reflectances of the SWIR region are dominated by liquid water
absorption. Motivated by this, we will test all 12 VIs across all
Hyperion band pairs in spite of violating the original definitions
of bands used to compute the VIs, especially for those defined
also with a soil line in R-NIR space. In addition, because of their
simple definition, explicit underlying physical processes, and
extensive use of these two-band VIs, we will focus on the eval-
uation of these 12 two-band VIs in this study instead of consid-
ering VIs constructed with more than two bands. After removing
those Hyperion bands with strong water absorption (1346–1447
and 1800–1961 nm) and weak and noisy signal bands (wave-
length shorter than 437 nm and longer than 2405 nm), we have
168 Hyperion bands available in this test. We expect that some
new two-band VIs, constructed from the 168 bands, may be
found that produce higher correlations with forest LAI than cur-
rently used VIs.

III. STUDY SITE AND DATASETS

A. Study Site

During the 2001 EO-1 campaign in Argentina, we established
a site (4110 59 S/71 20 27 W) in the Rio Negro province in
the Patagonia region of southern Argentina. The study area is a
relatively flat semiarid region with conifer forest plantations of
young- to mid-aged ponderosa pine, lodgepole pine, and Oregon
pine. Other broad-leaf species, shrub, and grasses (mainly con-
sisting of nire brush acaena, coiron, barberis, laura, and rosa

mosquede) are also found over this site. The average elevation
is 850 m, with variations within 100 m.

B. Data Acquisition and Measurement

HyperiondatawereacquiredonMarch27,2001,around10:30
A.M. local time. From March 27–29, 2001, we took reflectance
measurements in the field from targets such as road surface
(gravel material), bare soil, young tree canopies (ponderosa
pine and lodgepole pine), and grasses and shrub using a Field-
Spec®Pro FR (Analytical Spectral Devices, Inc.). These spectral
reflectance measurements were then used for atmospheric
correction for the Hyperion data as described below.

A LAI-2000 Plant Canopy Analyzer (PCA) was used in the
field to measure forest LAI. The LAI measurement taken by the
PCA is the “effective” LAI [1], [5]. The instructions for oper-
ating the LAI instrument were carefully followed to ensure each
LAI point was measured accurately. From March 27–29, 2001,
a total of 32 LAI measurements were taken. Each LAI measure-
ment represents an average of ten PCA readings that were taken
mainly from overstory in an area between 100–1000 m. The lo-
cations of PCA readings in each plot were selected, based on the
canopy closure, age of stands, and nutrient level so as to make
them representative of the variability in the plot. Because the
LAI measurement plots are all forest plantations, for plots with
an LAI , almost no understory was found. For plots whose
LAI is lower than 2.0, there existed a varying proportion of un-
derstory that may contribute to LAI measurement. The under-
story mostly consists of some broad-leaf species. In considera-
tion of the fact that a Hyperion pixel spectrum always responds
to both the understory and overstory, especially for those sparse
forests, we did not attempt to separate contributions of the un-
derstory and overstory to the LAI measurement in this study.
After taking the LAI measurement, its exact location (i.e., a plot)
was marked on the color composite image of high spatial reso-
lution AVIRIS data or on a forest inventory polygon map. These
were used as references for subsequent spectral data extraction
from the Hyperion image. Since the effective LAI is less vari-
able and easier to measure than LAI, is an intrinsic attribute of
plant canopies [1], and has also a proportion relation with LAI
[36], we directly used the effective LAI throughout this research
and referred it to as LAI.

IV. M ETHODS

A. Atmospheric Correction

In this study, we used a hybrid method of atmospheric cor-
rection to retrieve surface reflectance from Hyperion data. The
sensor measures radiancethat is a combination of the radi-
ance from the surface and scattered from the atmosphere. In a
simplified form, the at-sensor radiance,, can be related to the
Lambertian surface reflectanceas

(1)

where is the sun-surface sensor two-way transmittance;
is the path radiance caused by atmospheric scattering;is the
spherical albedo of the atmosphere;is the solar zenith angle;
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and is the exoatmospheric solar irradiance. Further, rear-
range (1) for retrieval of surface reflectance,, as

(2)

According to (1) and (2), once a satellite-measured radiance
is given and solving (1) for parameters,, , and through

simulation with an atmospherically radioactive transfer code
such as MODTRAN 4, a surface reflectance spectrum can be
retrieved.

The hybrid method for retrieving surface reflectance from
Hyperion data is briefly described as follows. With MODTRAN
4 [31], the simulated output radiance is used asin (1). With
three at-sensor total radiances, we can construct a group of three
equations from (1), and solve them for, , and . Using
sensor pixel radiance values as at-sensor radiance and solving

, , and , with (2), we can easily calculate a pixel-based
retrieved surface reflectance from the Hyperion image, called
as the initial reflectance. With the ground reflectance spectrum
and initial reflectance of the same location (target), a set of ra-
tios across all spectral bands is calculated by dividing the ground
reflectance by its corresponding initial reflectance. In order to
make the ratios more representative of various targets, it is ap-
propriate to use an average ratio calculated from different targets
(e.g., road surface and vegetation in this study). Multiplying the
initial reflectance of each pixel by its corresponding ratio in each
band, we can improve the initial reflectance. We call the ground
reflectance corrected reflectance, the improved reflectance.

B. Correlation Analysis of Vegetation Indices Extracted From
Hyperion Data With LAI

Pixel-based retrieved reflectance spectra from the calibrated
Hyperion images at the 32 LAI measurement plots were ex-
tracted from the image. One to four homogenous pixels were
extracted and averaged for each LAI plot. The 12 VIs were ap-
plied to any possible pair of the 168 Hyperion bands. Note that
R bands and NIR bands used for constructing one VIs in Table I
have been extended to all 168 bands. Consequently, for each pair
of bands we have 12 VIs for each of the 32 LAI measurements.

For each of the 12 VIs, a linear correlation coefficient ()
was calculated between the VI and LAI measurement (32 sam-
ples). Due to the fact that most LAI measurements are less than
five in this study (over which spectral saturation may happen
and this in turn will reduce the linear correlation between VI
and LAI), a linear is a suitable indicator for finding some
important bands contributing to better correlation between a
two-band index and LAI. However, if LAI measurements are
higher than five, a nonlinear correlation indicator (e.g., mean
square error) maybe more appropriate. In this study, a linear
was adopted as an indicator of effectiveness in correlation anal-
ysis. Since each VI in Table I could be constructed from any
pair among the possible 168 bands, a linear correlation coeffi-
cient ( ) matrix (e.g., Fig. 1) could be constructed. From the
correlation matrices, hyperspectral bands with high correlation
coefficients were examined.

Fig. 1. Color plots showing correlations (R ) between LAI and NDVI
calculated from any band pairs among 168 Hyperion bands spread across
430–2410 nm. Different color areas represent differentR class values, which
were ranked and from which best band centers and best bandwidths were
calculated for the VI used for estimating the forest LAI (Table II).

V. RESULTS AND ANALYSIS

A. Atmospheric Correction

Inputs to the MODTRAN 4 included three surface reflectance
values, 0.0, 0.3, and 0.5, a water vapor value of 0.7 cm/cm,
the Midlatitude Summer (45South Latitude) atmospheric geo-
graphical–seasonal model, and other necessary parameters [31].
The total radiances of Hyperion were simulated as an output for
solving the simplified radioactive transfer model (1). A water
vapor of 0.7 was determined according to the “smoothness test”
by [32]. With the three simulated at-sensor total radiances and
three surface reflectance values, the path radiance (), the sun-
surface sensor two-way transmittance (), and the spherical
albedo of atmosphere () were obtained by solving the three-
equation group of (1). A corrected radiance image (i.e.,

) was produced by replacing the simulated at-sensor radiance
with the image pixel value (suppose ) and then sub-
tracting the path radiance . With two other parameters (
and ), the initial surface reflectance image was produced ac-
cording to (2).

The initial reflectance still has a lot of “spikes” along the
reflectance curve. These might be caused by supplying less
than optimal input values to MODTRAN 4, especially for those
sensitive gases such as water vapor, and also by inadequate
simulation of atmospheric conditions during the satellite
overpass. It is, therefore, necessary to further modify the initial
reflectance with ground spectroradiometeric measurements.
We used ground spectrometer data measured from road surface
(gravel, four spectra) and plant canopies (lodgepole pine, five
spectra) to calibrate the Hyperion image to obtain the con-
version ratios, then applied the ratios to the initial reflectance
image to produce the improved reflectance image. After the
calibration with the ground-based measurements, the improved
reflectance curve looks better although some small “spikes”
near 0.94 and 1.14m still exist due to the residue of the water
vapor effect.
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TABLE II
POTENTIAL HYPERSPECTRALBANDS FOR12 VEGETATION INDICES APPLIED FORFORESTLAI ESTIMATION. NOTE: Optim.= OPTIMAL CORRELATIONR .

BOLDFACE CHEMICALS ARE PRINCIPAL FOR THEABSORPTIONFEATURES

B. Correlation of Vegetation Indices With LAI

For each VI, a correlation matrix was constructed for each
pair of spectral bands. In the correlation matrix, the color
legend indicates the class value of between the two-band
index and LAI. For the 12 correlation matrices, values for
some matrices are symmetrical for the diagonal of the matrix
(e.g., NDVI, PVI and SAVI), and others are not (see MNLI,
NDVI SR, SAVI SR, and TSAVI). From all 12 correlation ma-
trices, some bands (expressed as band centers and bandwidths)
having high potential in LAI estimation are summarized in
Table II. The column in the table lists two values:
a highest value for the actual use of NIR and R bands,
selected from all possible VIs between any two NIR and R
bands, and an optimal value derived from VIs constructed
from the SWIR and NIR regions.

matrices for SR, NDVI, and MSR have similar patterns
(e.g., Fig. 1 for NVDI). The patches with high mainly cluster
in four band regions centered at 825, 1038, 1250, and 1648 nm
with 140–290-nm bandwidths. Compared to thevalue cal-
culated from the original VI definition using R and NIR bands,
some important band pairs can be found in the NIR and SWIR or
the SWIR regions. In particular, some bands in the NIR and MIR
regions yielded higher values. These bands are related to
plant leaf water content that has a close correlation with canopy
biomass and LAI (Hunt, 1991) and indirectly to the absorption

Fig. 2. Color scale plots showing correlations (R ) between LAI and PVI.
More explanation is found in Fig. 1.

features of protein, nitrogen, lignin, cellulose and starch concen-
trations. With PVI and WDVI (see Fig. 2 for PVI), we did not
find higher values than those of NDVI and SR. This might
be because soil background was simple, i.e., dry, bright and sim-
ilar among the 32 LAI measurement plots. For WDVI, the upper
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Fig. 3. Color scale plots showing correlations (R ) between LAI and SAVI.
More explanation is found in Fig. 1.

Fig. 4. Color scale plots showing correlations (R ) between LAI and MNLI.
More explanation is found in Fig. 1.

right quarter of the matrix is similar to that of PVI, which
may account for their close relationship [11]. For both PVI and
WDVI, some important bands are also found in the SWIR and
the NIR and SWIR regions. The values for SAVI (Fig. 3)
are again similar to those of NDVI or SR due to the simple soil
background.

NLI and MNLI can linearize the nonlinear relationships
with surface parameters. This resulted in an improvement in

values (0.73, 0.75) when compared to that of NDVI (0.70).
Their matrices are not symmetrical along the diagonal.
MNLI (Fig. 4), developed in this study, improved the per-
formance (from 0.73 to 0.75) of its original version NLI,
especially for wavelengths longer than 1500 nm. The potential
bands for estimating forest LAI might be wavelengths centered
near 821, 1200, 1250, and 1640 nm with bandwidths from
157–578 nm, which are affected directly or indirectly by water,
protein, nitrogen, lignin, cellulose sugar absorption features
[33], and cell structure reflection feature. Although RDVI also

Fig. 5. Color scale plots showing correlations (R ) between LAI and TSAVI.
More explanation is found in Fig. 1.

Fig. 6. Color scale plots showing correlations (R ) between LAI and
NDVI SR. More explanation is found in Fig. 1.

linearizes the relationships between VI and surface biophysical
parameters, it has relatively low correlations. Since the RDVI
is a renormalization of NDVI, its values in the correlation
matrix were expected to have similar patterns to those of NDVI.
However, we found the correlation levels in the RDVI matrix
to be lower than those in the NDVI matrix. For TSAVI, the

values have a similar distribution pattern as those in the
SAVI correlation matrix, but the level of correlation is higher
than observed with the SAVI (Fig. 5). This may result from the
compensation of soil variability due to changes in solar eleva-
tion and canopy structure [11]. Some important bands based
on the TSAVI correlation matrix include wavelengths centered
at 832, 1038, 1240, 1660, and 2108 nm with bandwidths from
20–260 nm.

The remaining two combined indices—NDVISR and
SAVI SR (Figs. 6 and 7)—developed in this study have
performed slightly better than the original VIs. The values
have different patterns below the diagonals than those in their
original VIs. The values in their correlation matrices,
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Fig. 7. Color scale plots showing correlations (R ) between LAI and
SAVI SR. More explanation is found in Fig. 1.

therefore, are not symmetrical. The potential bands for LAI
estimation are similar to those found from either the NDVI or
the SR matrices.

Based on the experimental results for the 12 VIs constructed
from all band pairs across the available 168 Hyperion bands,
it is evident that most of the hyperspectral bands producing
high correlation with the forest LAI are found in the SWIR re-
gion and some in the NIR region. They are centered near 820,
1040, 1200, 1250, 1650, 2100, and 2260 nm with bandwidths
ranging from 10–300 nm. The bands used for constructing the
VIs for forest LAI estimation are indirectly controlled mainly by
plant leaf water content. The absorption features by other bio-
chemicals, such as protein, nitrogen, lignin, cellulose, sugar, and
starch, may also indirectly affect the correlation between VIs
and LAI [33]. However, the VIs constructed with the R and NIR
bands did not produce correlations with LAI as high as those VIs
constructed from bands in the SWIR region. This might partly
be attributed to the strong interference of the atmosphere with
the satellite-based hyperspectral data in the visible wavelengths
(mainly Rayleigh and aerosol scattering within visible and NIR
regions or wavelength 1.0 m) for clear sky conditions [34].
Based on their high correlation with LAI measurements, we sug-
gest that MNLI (NLI), SR, and NDVI be some better VIs that
can be used for estimating forest LAI in semiarid environments.
This is because MNLI (NLI) can linearize relationships with
surface parameters that tend to be nonlinear. SR and NDVI can
catch strong spectral differential signals (e.g., spectral differ-
ence between high reflection and absorption features caused by
cell structure, leaf water content, and other biochemicals).

VI. CONCLUSION

In this study, we conducted correlation analyses of forest LAI
with 12 vegetation indices extracted from Hyperion image re-
flectances. We constructed 12 different vegetation indices from
all possible band pairs in the Hyperion image and then corre-
lated each of them with field LAI measurements. Results in-
dicate that many hyperspectral bands in the SWIR region and
some in NIR region have the greatest potential in forming in-

dices for LAI estimation. The most effective band wavelengths
centered near 820, 1040, 1200, 1250, 1650, 2100, and 2260 nm
with bandwidths ranging from 10–300 nm. These bands are con-
trolled by plant leaf water content, yet the absorption features by
other biochemicals such as protein, nitrogen, lignin, cellulose,
sugar, and starch may have indirect impacts. VIs derived from
the R and NIR bands did not produce as high correlations with
LAI as those with bands in the SWIR and NIR regions. Based
on their high correlation with LAI measurements, MNLI (NLI),
SR, and NDVI were recommended for use in environments sim-
ilar to our study site for LAI estimation using satellite-based hy-
perspectral data.
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