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Estimation of Frequency for AM/FM Models
Using the Phase Vocoder Framework
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Abstract—This paper proposes an extension of the applicability
of phase-vocoder-based frequency estimators for generalized
sinusoidal models, which include phase and amplitude modula-
tions. A first approach, called phase corrected vocoder (PCV),
takes into account the modification of the Fourier phases resulting
from these modulations. Another approach is based on an adap-
tation of the principles of the time-frequency reassignment and
is referred to as the reassigned vocoder (RV). The robustness
of the estimation against noise is studied, both theoretically and
experimentally, and the performance is assessed in comparison
with two state-of-the-art algorithms: an unmodified version of
the reassignment method and a quadratically interpolated fast
Fourier transform method (QIFFT).

Index Terms—AM/FM model, frequency estimation, phase
vocoder.

I. INTRODUCTION

F
OR several decades, sinusoidal parameters estimation
has remained one of the most popular topics in the field

of signal processing and numerous approaches have been
proposed. Some of the most popular estimators are based on
Fourier analysis [1]–[7], on nonlinear least squares analysis [8],
[9] or on subspace methods, such as ESPRIT [10] and MUSIC
[11].

The signal studied by these methods is often expressed
in the form of a complex sinusoid perturbed by noise

(I.1)

where the log-amplitude and the phase are both real
functions of the discrete time , and is a white Gaussian
noise . Herein after, the case for multiple sines will
be considered as an extension of the single-component case, as
long as they are sufficiently resolved in frequency.

and are usually assumed to be analytical functions and
the model (I.1) can thus be locally approximated by a polyno-
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mial model which can be considered as a truncated Taylor ex-
pansion in the neighborhood of :

(I.2)
Widely studied models include the following:
• M01. , : the simplest model where constant-

amplitude and constant-frequency sines are considered;
• M11. , : the first-order AM model (also known

as exponential sinusoidal model or ESM) which considers
exponentially modulated amplitudes;

• M02. , L: the first-order FM model (also
known as chirp model) that considers linearly frequency-
modulated sinusoids;

• M12. , : a more general, first-order AM/FM,
model where both frequency-modulated and amplitude-
modulated sinusoids are considered.

The AM model has recently been actively investigated, in
order to describe transients [12], as for example percussive
sounds in music, speech attacks, and free vibrating systems [13]
such as plucked strings. The FM model has also been widely
used in speech and music, in analysis–transformation–syn-
thesis schemes [14], and to describe glissando or transition
between phonemes. Other applications have been investigated
in the fields of radar and sonar [15], [16], and seismology [17].
Both models have been found useful for coding purposes [18].
Speech and music signals are by nature nonstationary. Thus,
amplitude and frequency are time-varying, and these variations
are sometimes too important to be neglected over the length
of analysis. Moreover, amplitude and frequency modulations
occur simultaneously, as in speech attacks and decays. This
suggests that frequency estimation methods for the AM/FM
model will prove to be useful in audio applications.

For estimating the M01-model parameters, the max-
imum-likelihood (ML) frequency estimation scheme leads
to take the maximum of the periodogram [1], [19], as the
ML-estimate. When more complex models are considered,
however, the problem moves to a multidimensional optimiza-
tion problem [20]–[22]. This optimization usually involves
time-consuming iterative computation [23]. It is therefore
interesting to develop simpler estimators, though suboptimal.
This is the standpoint of this paper, which is applied in the
context of Fourier based frequency estimation.

As mentioned before, a wide number of such estimators
exists, mostly based on the simplest sinusoidal model M01.
For FM models (M02,M12), good efficiency can be achieved
by means of the reassignment method [2]. A recent approach
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[the quadratically interpolated fast Fourier transform method

(QIFFT)] based on an adaptation of an earlier spectrum in-

terpolation method proposes to consider the more general

AM/FM signal model in the case of Gaussian analysis windows

[14], [24]. All these estimators use an initial computation of

a time-frequency transform on a discrete grid for one or two

(in the case of the reassignment) different analysis windows

and further combine the grid values to derive the parameter

estimates.

From the early times of the phase-vocoder [25], the currently

used frequency estimation method consists of deriving a phase

difference between two successive values in the same channel

of the transform. Starting from some considerations relative to

this particular frequency estimator in the AM/FM context, this

paper will in particular introduce a new approach that considers

phase differences across different channels.

The paper is organized as follows. The principles of the clas-

sical phase vocoder are summarized in Section II. The extension

of the phase vocoder to the FM model are presented in Sec-

tion III along with two new estimators, namely the phase-cor-

rected vocoder (PCV) and the reassigned vocoder (RV). Then,

it is shown in Section IV that the reassigned vocoder can be

directly applied to the first-order AM/FM model. The theoret-

ical influence of noise on the phase vocoder is studied in Sec-

tion V. Experimental comparisons with existing estimators are

given in Section VI, and finally some conclusions are drawn in

Section VII.

II. PHASE VOCODER

The term “vocoder,” derived from “voice coder,” originally

refers to a speech analyzer and synthesizer. The phase vocoder

uses a polar representation of the short-time spectrum [25]. In-

stantaneous frequency estimation is at the heart of the method

and is computed as a discrete derivative of the phase.1 This anal-

ysis/synthesis method is known for its ability to analyze [26],

modify [27]–[29], and resynthesize [30] a sound, and for its use

as an electronic musical instrument [31].

A. Phase Vocoder Analysis Framework

The phase vocoder analysis framework is based on the uni-

form-rate short-time Fourier transform (STFT). Hereafter, the

zero-phased (or centered) form of the Fourier transform (FT)2

is used.

(II.1)

where is the analysis window, is the sample size of the

Fourier transform, is the sampling frequency, is the fre-

quency bin, and is the time in seconds of the cor-

responding sample number . The time corresponding to the

1Another more restricted meaning for the term phase vocoder refers only to
this particular frequency estimator.

2in reference to the property of the phase spectrum for a symmetric analysis
window

center of the STFT window is noted . Finally,

is the frequency of the bin .

The signal processing based on the vocoder framework re-

lies on the definition of the local model .

This model is assumed to be valid in the neighborhood of ,

and in particular, on the analysis interval centered in , with

a length . This interval usually includes a few overlapping

frames .

B. Basic Phase Vocoder Scheme

The basic version of the phase vocoder hypothesizes the

linear phase model M01, i.e., locally constant frequency and

amplitude:

(II.2)

where is the initial phase. The parameters and

also implicitly depend on , but the has been dropped

to emphasize that they have a constant value on the interval of

analysis. For a time in the analysis interval ,

the local phase is equal to .

Incorporating (II.2) in (II.1) for an even window , leads to

the identity between the Fourier phase and

the sinusoid phase in the th-channel, next to the frequency

. For a hop-size , the basic phase-vocoder

computes an estimate of the latter parameter as

(II.3)

The tuning of the hop-size is a critical part of the method.

The original phase vocoder described in [25] uses a one sample

interval, . In this case, the frequency estimation re-

quires two adjacent Fourier transforms, even if for some spe-

cific windows, such as Hann or rectangular windows, only one

FT computation is made, with the second one being recursively

derived from the former [32]. When the first-order phase dif-

ference is done from sample to sample, the obtained frequency

estimates often display a large variance. In order to derive more

efficient estimates, larger hop sizes are suggested [26]. How-

ever, this can lead to phase indetermination issues: when the

phase increment between two successive FT is larger than

. The frequency estimate then becomes

(II.4)

where is an integer, practically computed as [33]:

round (II.5)

is the frequency bin next to . A sufficient condition on

for this equation to be valid is , or equivalently ,

if is the hop size in samples. This condition is different from

the one presented in [27] and [28], where , because

here the phase vocoder is applied only to the maximal bins of

the Fourier transform.
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Fig. 1. Discrete quadratic phase transform of two different analysis windows. (a) Hann window; (b) Hann window (zoom); (c) rectangular window; and
(d) rectangular window (zoom).

III. FM MODELS FOR THE PHASE VOCODER

In this section, the more elaborated quadratic phase model

M02 is considered. Already widely used in frequency estima-

tion problems (and, in particular, for frequency reassignment

methods [2]), it supposes a local linear frequency (quadratic

phase) and constant amplitude

(III.1)

where , , and are, respectively, the phase, frequency,

and frequency change rate (FCR) for the time . To emphasize

that the amplitude and the FCR are constant within the anal-

ysis window, the has been dropped. For a time in the

analysis interval , the corresponding local phase is equal to

, and the local frequency is

equal to .

Let us consider two frames centered in and such that

. From the definition of , the

following expression is obtained:

(III.2)

One of the differences with the previous linear model is the

necessity to specify the time at which the frequency is esti-

mated, as the frequency is not constant anymore. Here,

and is an estimation of .

A. Phase Error Using the FT

The other major difference with the vocoder based on the

linear-phase model is that the FT becomes a biased estimator

of the phase. In fact, the FCR introduces an error term which

depends on three parameters: the window , the FCR , and

the difference between the sinusoid frequency at the instant

and the frequency of the closest bin for the analysis window

centered in [34]:

(III.3)

(III.4)

The last equality comes from a symmetry hypothesis on . Sim-

ilarly, to the linear phase model, if is large enough, an un-

wrapping factor will be needed when considering the phase

difference .

It is interesting to note that the function can be interpreted

as the discrete quadratic phase transform (DQPT) of the window

, which is a transform used to analyze chirp signals [35], [36].

As an illustration, Fig. 1 represents the DQPT of two different

analysis windows. When the window is applied to a linear chirp,

the window response is translated in the frequency-FCR plane.

B. Maximum Bins Tracking

The error term is more influenced by the FCR

than by when is less than . This is illustrated in

Fig. 1(b) and (d): for the frequency varying from (here

), identical amplitude values are almost on

vertical lines, i.e., the error term is dominated by the FCR in-

fluence. On the other hand, when considering larger frequency

intervals, in Fig. 1(a) and (c), it can be seen that this is not true

anymore; the error equally depends on both terms.

It suggests that the use of a maximum bin tracker would im-

prove the phase vocoder. If the bins used to compute the phases

and are both the closest maximum bins to the true fre-

quency in and , respectively, the influence of will

be approximately negligible [Fig. 1(b) and (d)]. Since the FCR

parameter is supposed identical for both frames, the error term

(III.4) in and will approximately cancel each other in

formula (III.2).

Another obvious advantage of using maximum bins, is to re-

duce the influence of the noise, because the more a component

is energetic, the less it will be sensitive to noise perturbation.

This maximum-bin phase difference will be referred as

(III.5)
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where (respectively, ) is the frequency of the closest bin

(respectively, ) to the sinusoid, for the time (respec-

tively, ).

Implementation Details: A simple tracking method can be

adapted from [33]. The tracking is done locally on three consec-

utive frames, and the maximum frequency variation supposed in

[33], corresponds here to a bound on the FCR: .

Equivalently, it corresponds to a maximum bin variation

, for a time interval of . The procedure is sum-

marized as follows.

1) Compute the zero-phased FFTs , , for the times

, and .

2) Compute the maximum bin for the time .

3) Compute .

4) Compute .

C. Phase Corrected Vocoder

As mentioned earlier, the FT is not a direct estimator of the

phase for chirp signals. A further improvement to the phase

vocoder consists in correcting the Fourier phase estimation, as

in [34], using the error function . The estimation

scheme proposed involves the following two steps:

1) estimation of the corrected phases (modulo ) and ,

and the unwrapping factor ;

2) estimation of using the phase vocoder formula3

(III.6)

The function requires the knowledge of the frequencies cor-

responding to and (namely and ). Therefore, the

first step of the estimation scheme will involve a first frequency

estimation for and . As there is no knowledge about the

FCR in this step, it is proposed to use one of the frequency es-

timators based on the M01 sinusoidal model. Although these

estimators are biased for the FM model, it is shown in [34]

that this scheme can greatly improve the precision on the phase

estimates.

The parameter , and the unwrapping factor can be deduced

from the frequencies and , using the formulas

round

In order to compute fast corrections of the STFT phase, the

function can be precomputed or modeled for the predefined

finite intervals: and . The latter interval

comes from the fact that, for the FM model, the selected bin

(maximum bin) corresponds to the closest bin to . There is

no need to precompute the error for the negative values of the

parameters, as the function is symmetric with respect to

and antisymmetric with respect to .

3mod() is the modulo 2� function.

Implementation Details: The scheme of the algorithm is pre-

sented in Fig. 2. The initial frequency estimation can be done by

using one-frame-based frequency estimators, such as spectrum

interpolation methods. We have chosen to use the interpolation

method described in [37], because of its precision and its ability

to work with any window. Methods exist to estimate the FCR

within a frame, but they are complex and very sensitive to noise

[38], [39]. This is another motivation for using a local tracking:

the greater the interval is, the better the FCR will be estimated.

The phase error function has been modeled by a two-dimen-

sion lookup table. When a couple falls between the pre-

computed values, is linearly interpolated from the

closest elements of the table.

Algorithm: Phase corrected vocoder (PCV)

1) Maximum bin tracking: the FFTs and , and are

computed (cf. Section III-B).

2) Estimation of the corrected phases:

— Compute a first estimation (respectively, ) of the

frequency in (respectively, ).

— Compute an estimation of the FCR:

— Compute the corrected phases , :

— Compute the phase unwrapping factor:

round

3) Estimation of frequency in :

Note that this scheme could also be applied to improve the

frequency precision after an initial sinusoidal tracking such as

[33] and [40].

D. Reassigned Vocoder

In this section, a different approach is proposed, based on

Taylor expansions of the error term in (III.3). The starting point

of this approach is the phase difference formula for chirp signals

[directly derived from (III.3)]:

(III.7)

where .
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Fig. 2. Phase corrected vocoder (PCV) analysis scheme.

The first step is to express as a function of , the

frequency to be estimated. In this process, and can be

decomposed into two bounded terms and , described below.

Let us define as the mean bin frequency and as half the

frequency variation in bins, as follows:

(III.8)

In addition, from the definition of the quadratic phase model

(III.1), the FCR follows this relation:

(III.9)

Let and . From the previous

definitions, can be expressed as

(III.10)

and since and are, respectively, the closest bins to

and , then and , where is the half FT

precision.

The symmetry in the expression of and will sim-

plify the remaining developments. Using first-order Taylor ex-

pansion in in (III.7) leads to the following simplified

expressions (see the Appendix for further details)4:

(III.11)

4<() is the real part operator.

TABLE I
MAXIMUM HOP-SIZE VALUES IN SAMPLES FOR THE RV METHOD

(N = 512, F = 16000)

where and where is the reassigned time. It

can be observed that the frequency estimator is split in a main

term related to the basic vocoder and a corrective term related

to the reassigned time. Note that (III.11) also indicates that the

time of estimation of the basic vocoder (i.e with ) is

in fact the reassigned time of a frame centered on for the

frequency .

The last problem to solve is the computation of the unwrap-

ping factor . It will be achieved using the estimator (II.5), but

considering a different frequency of reference instead of

[33]. As in Section II-B, this choice imposes a theoretical limit

on the hop-size length of the phase vocoder, which is now dis-

cussed. From (III.7), verifies this relation:

(III.12)

where . The chosen estimator of is

round (III.13)

After straightforward but tedious developments [41], it can be

shown that a sufficient condition for identity between and is

(III.14)

where is the hop-size in samples and is the max-

imum value of the corrective term for the considered system

parameters

(III.15)

When , we find the classical unwrapping condition

. This maximum is difficult to solve analytically in the

general case, but for a given set of parameters, a numerical eval-

uation can be done. Table I gives maximum hop-size values for

various system parameters. It can be seen that the maximal theo-

retical hop-sizes decreases very slowly when the FCR increases.

For usual applications, which use much lower hop-sizes than

this limit, this means that the FCR will have no impact on the

unwrapping estimation. The rectangular window cannot be used

with this method (the time reassignment requires smooth func-

tions) and is therefore not present in the table.

Implementation Details: The reassigned vocoder (RV) is im-

plemented similarly to the PCV using three consecutive over-

lapping frames localized at , and (see Fig. 3).
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Fig. 3. Reassigned vocoder analysis scheme. X denotes the FFT computed
with the window h at time t .

When the maximum bins and differ, the frequency

for the middle frame centered at

may not fall on a STFT bin. In order to be able to compute the

reassigned time using the STFT [cf. (III.11)], or has to be

moved to an adjacent bin. The new bin is chosen as the highest

in amplitude between these adjacent bins.

Algorithm: Reassigned Vocoder (RV)

1) STFT computing and maximum bin tracking: Compute

the FFTs using the window and the window for the

time . Compute the FFTs using the window , for the

adjacent times and .

Compute , and .

2) Compute the phase unwrapping factor in two steps:

round

round

3) Compute the estimated frequency:

This estimation is made for the time:

In order to reduce phase unwrapping problems for the AM

model case, the unwrapping factor is computed in two steps

(cf. Section IV-A).

IV. AM/FM RATE MODEL

In this section, the more realistic AM/FM model M12 is con-

sidered. In fact, variation in frequencies are often combined with

variations on amplitude in real audio signals and in particular

for speech attacks and decays. The first-order AM and FM si-

nusoidal model can be written as

(IV.1)

where is the FCR, is the instantaneous log-amplitude, and

is the log-amplitude change rate (ACR). As for the other local

models, all these parameters correspond to the time , and

the has been droped for and to emphasize that they are

considered constant on the interval of analysis.

In this section, it will be shown that the RV is also a valid

frequency estimators in the AM/FM case. The frequency reas-

signment and QIFFT methods are also briefly presented.

A. Application of the First-Order AM/FM to the Phase Vocoder

The PCV algorithm is not suited for the AM/FM model

without using an auxiliary algorithm to estimate the ACR .

However, the reassigned vocoder can be straightforwardly

applied to this new model, as it will be shown below.

Let us define

(IV.2)

The STFT of the signal (IV.1) can be expressed as

(IV.3)

Since the term is independent of , the ap-

proach followed in Section III-D to derive (III.11) can be ap-

plied using instead of .

Even if the expression (III.11) remains valid, the practical

algorithm described in Section III-D presents a major drawback

concerning the phase unwrapping factor estimation when the

amplitude varies. According to the definition of the AM/FM rate

model, the energy attributed to each frequency will be shifted

depending on the ACR. The maximum of energy will no longer

correspond to , the sinusoid frequency for the middle of the

window, as shown in Fig. 4(a). Therefore, the are no longer

bounded by , but rather by another term depending on the

maximum ACR tolerated.

As a consequence, the maximum theoretical hop-sizes for

the unwrapping estimation are more difficult to compute in this

case. They should be lower than the values presented in Table I.

Nevertheless, this problem can be minimized by using inter-

mediate phases as it is done in the practical algorithm given in

Section III-D.

B. QIFFT Algorithm

In the QIFFT method [14], [24], the first-order AM/FM

model parameters are derived from the analytical formula of
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Fig. 4. Effect of high ACR and high FCR on windows. (a) Amplitude maximum is shifted for high ACR and high FCR (� = 5000,  = 8000); (b) the Gaussian
window’s response is no longer parabolic for high modulations (� = 50,  = 8000).

the Fourier Transform of a Gaussian window. It can be shown

[24] that log-amplitude and phase are both quadratic functions

of the Fourier frequency. Furthermore, a quadratic interpolation

of both amplitude and phase will allow us to compute all the

parameters of the model. Here, only the frequency estimator is

studied.

Following the notations of [24], will be the inverse of the

variance of the Gaussian window: . The Gaussian

window is defined by

The log-amplitude and the phase are quadratic functions of the

frequency, i.e., they are equivalent to and

, respectively. and are computed using

parabolic interpolations on the three closest bins to the max-

imum of the amplitude spectrum (cf. [24] for more details). The

following estimators can be derived:

The QIFFT algorithm can be used with non-Gaussian win-

dows, using window response adaptation. Although this adap-

tation has proven quite accurate, it remains only an approxima-

tion of the frequency response of the Gaussian window with the

same resolution. This is why the Gaussian window has been pre-

ferred for the experiments. The tuning of the Gaussian window

resolution is discussed in Section VI.

The frequency response of an infinite Gaussian window is

exactly parabolic. In practice, the window is truncated and, for

high ACR and FCR values, the response may not be parabolic

anymore [see Fig. 4(b)]. The same problem occurs with a Hann

window with the same resolution. Increasing the window length

will reduce this problem.

C. Frequency Reassignment

The frequency reassignment is known to perfectly localize

chirp signals [2]. A simple demonstration for the continuous

Fourier transform in the FM case is presented in [7]. Using the

same method, it can be shown easily that the time-frequency

reassignment is also perfectly valid for the AM/FM model [41].

In keeping with the usual formulation of the reassignment,

let’s define . The discrete version of the

reassignment method can be defined as5

The discrete formulation of the reassignment introduces a small

bias in the estimation which can be seen only for very high

signal-to-noise ratios (SNRs) [42]. This method involves three

FFT computation. It is the more complex of the method studied

in this article, as the PCV and the QIFFT require one FFT, and

the RV requires two FFT. The difference in complexity between

all methods is mainly determined by the number and the size of

the FFTs needed since they all share the same peak selection

scheme.

V. INFLUENCE OF NOISE ON THE PHASE VOCODER

The influence of a white noise on the basic phase vocoder

is studied in [26]. A more recent reference [43] uses the same

method, but presents a simpler formula applicable to any

window. The results presented in [26], [43] are generalized

here for the AM/FM model, defined by (IV.1).

If and are the

Fourier transform of and respectively, then

where . The conjugate product can be written

as

where .

5=() is the imaginary part operator.
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As it is assumed that the STFT resolves the sinusoid, from the

disturbance , it can be supposed that dominates in the

bins close to the maximum, or equivalently that

.

Using the notations of Section IV-A, the Fourier transform of

for the time and can be put under the form

where , . From (III.2),

and becomes

The PCV and RV methods will use estimates of and

. Given that the sinusoids are well resolved by the Fourier

transform, no error is done on the estimation of , and it can

be shown that the stochastic error resulting from the estimation

of is negligible compared to [41]. For both

methods, the frequency estimate can be written as

(V.1)

where is the frequency to be estimated, which is for the

PCV and for the

RV estimator. is the estimator for and is given by (III.6)

for the PCV and (III.11) for the RV. is the deterministic bias,

which comes from the approximation described in the Appendix

for the RV, and from the use of biased estimates in the first step

for the PCV. For both methods, the stochastic error is approxi-

mately .

The expectation of the estimators is , and their variance

is given by

(V.2)

The derivation of the variance is rather tedious and can be

found in [41]

(V.3)

where is the SNR, and are, respectively, the log-am-

plitude and the phase difference between and . At last,

and are factors depending only on the window

From this equation, the variance for the AM, FM, and basic

models can be deduced directly.

Fig. 5. Comparison of the theoretical vocoder variance (‘+’ markers) to the
CRB (doted lines) and to the MSE of the RV method (“o” markers). Upper
curves corresponds to the AM/FM model with � 2 [0; 100] and  2 [0; 8000],
and lower curves to the FM model.

Fig. 6. Performance of the algorithms for a quadratic phase model as a function
of the frequency resolution, for SNR = 30 db and W = 48 ms.

For the basic model, , , , and

, . Equation (V.3) simplifies to

(V.4)

where

This last equation is the same as in [43].

Two examples are given on Fig. 5, one for the FM model

(lower curves) and one for the AM/FM model (upper curves).

In areas where the stochastic errors dominate, the theoretical

variance match the experimental MSE of the estimators. For the

AM/FM model (upper curves), biases appear at high SNRs and

low SNRs. In the former case, it is caused by the deterministic

error of the estimator and, in the latter case, by the tracking

scheme (cf. the AM/FM case in Section VI).

VI. EVALUATION

As a preamble, three important remarks can be made. The

first remark concerns the peak detection step. In most exper-
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Fig. 7. Comparison of Hann and Gaussian windows for a 45 Hz resolution. (a) Hann and normalized Gaussian windows; (b) Hann and Gaussian frequency
response.

imental evaluations of STFT-based frequency estimators, the

highest amplitude bin will be selected as the correct peak. If this

approach is very satisfactory for high SNR, it may lead to sig-

nificant errors for low SNR. Since we do not aim at evaluating

the bin selection algorithm, we assume, in the remaining of this

paper, that the correct bins are known, i.e., the closest bins to the

mean frequency of the sinusoid, . To allow meaningful com-

parison of all methods, the correct bin is supposed to be known

only for the central frame.

The second remark concerns the performance dependence of

the algorithms on the STFT resolution (see Fig. 6). In fact, for a

rigorous evaluation, all methods shall have the same resolution

(or approximately the same). The resolution is defined as the

size of the main lobe in the magnitude spectrum of the window,

at 3 db from the maximum.6 The chosen resolution, i.e., 45

Hz, shown in Fig. 6, falls in an area where all methods perform

well. It corresponds to a Hann window size of 32 ms, or

511 samples for a sampling frequency of , which

is a classical tradeoff between time and frequency resolution

for fast-varying signals such as speech. To obtain an equivalent

resolution for the Gaussian window, the parameter

has to be set to . The corresponding window and their

frequency response are drawn for in Fig. 7.

The third remark concerns the Cramér–Rao bound (CRB)

[19], [44] of the frequency estimation. For a quadratic phase

model, it depends on the time of estimation of the frequency.

For a white Gaussian additive noise, the CRB is minimal for the

middle of the window [16] where it has the same values as the

CRB of the frequency estimation for a linear phase model, i.e.,

(VI.1)

6It corresponds to the root-mean-square amplitude. For a sinusoidal signal

and if the maximum of amplitude is normalized to 1, A = 1=
p
2. If the

amplitude is measured in decibels, 20: log (A ) � �3.01 db.

where is the SNR. For the AM/FM model, this bound becomes

[17]

(VI.2)

where ,

and is given by (V.3). As

for the FM CRB, the bound is given for the center of the

window. It is a function of , which is allowed to vary from

one experiment to another. The CRB drawn on these experi-

ments will be the expectation of (VI.2) given the distribution

of the parameter . Although the CRB applies to the variance

of unbiased estimators, it can be usefully compared to the

mean-squared error of biased estimators.

For a fair comparison with the vocoder methods, referred as

RV and PCV, the reassignment and the QIFFT will be applied

using three overlapping frames (RF and QIFFT3). Maximal bins

are chosen using local tracking, as described in Section III-B.

The final frequency estimate is taken as the average of the esti-

mates on the three maxima. As the QIFFT is unstable using short

windows for high log-amplitude and frequency change rates as

explained in Section IV-B, an estimation scheme using one long

window is also presented, referred as QIFFT1.

The frequency sampling is , and the resolution

for each method is fixed to 45 Hz. All the estimators studied

are independent of the initial phase and of the initial amplitude.

The error between the true and estimated values is based on an

average of 1000 experiments, using random frequencies inside

[0, 8000], and random FCR and ACR. Two intervals of FCR and

ACR are studied: a short interval, [0, 1000] for and [0, 10]

for , and a large interval, [0, 8000] and [0, 100] respectively.

An ACR of approximately 100 corresponds to an increase in

amplitude by 870 dB per second, which is important but not
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Fig. 8. Comparison of the methods for the basic model ( = 0, � = 0).

Fig. 9. Comparison of the methods for the AM model (� 2 [0; 100]).

unrealistic.7 Increasing the padding factor reduces the bias. It

is especially useful for the PCV and QIFFT3 methods, which

are strongly biased in the AM/FM case. When not specified, all

methods are used with a padding factor of 3.

Basic and First-Order AM Models: Before studying the ef-

fect of frequency modulation, a short description of the perfor-

mances for the basic model (Fig. 8) and the AM model (Fig. 9)

is proposed. In both cases, it can be seen that the PCV and the

RV have equal performances and are unbiased. When there is

no frequency variation the estimators are identical, and equal to

the basic phase vocoder frequency estimator. In the basic case,

all estimators are close to the CRB. The remaining difference

comes from the use of nonrectangular windows. In the short re-

gion of interest (i.e., SNR ), the QIFFT3 performs

slightly better than the others. The bias of the QIFFT methods

comes from the truncation of the Gaussian window (cf. Sec-

tion IV-B). When the window is larger (method QIFFT1), the

bias is reduced. For the reassignment window, the bias comes

from the use of discrete FT instead of continuous FT and ap-

pears at 80 dB [42].

In the AM case, higher MSE is obtained for all estimators.

However, the reassignment and the phase vocoder perfor-

mances are now almost equal to the CRB. As mentioned in

Section IV-B, the frequency response of the Gaussian window

is no longer parabolic for high ACR, leading to important

bias, seen for high SNRs. For low SNR, the QIFFT algorithm

7For example, a sharp trumpet attack can exhibit an amplitude increase by 30
dB in less than 30 ms, leading to an increase by about 1000 dB per second. In
speech, during fast transition between phonemes, the pitch can rise at an FCR
of 5000 Hz/s, not to mention the harmonics.

becomes unstable. This error is due to the propagation of the

high-order parameters errors (here the ACR) to the lower order

parameters (here the frequency), which is a known issue for this

kind of estimators [16], [35]. The same problem will appear for

the FM model, and for the AM/FM model.

First-Order FM Model: This section will compare the esti-

mator presented for the first-order FM model. The experiments

are done for and for a FCR inside [0, 8000] (Fig. 10).

Fig. 10(a) shows the successive improvements that can be

done on the long-term phase vocoder (LV). In this particular

experiments, the zero-padding factor is 1 for all the methods.

The upper curve corresponds to the standard long vocoder and

illustrates the significant bias for high FCR signals. A first im-

provement is obtained when the reassigned time is used for the

time of estimation of the LV. It corresponds to a first-order ap-

proximation with , as shown in Section III-D, (III.11).

Using the closest maximum bins, as described in Section III-B,

leads to a greater improvement. Better performances are ob-

tained with the PCV estimation algorithm, and this especially

for high SNRs. The remaining bias is mainly caused by the bias

on the FCR estimates. At last the RV, combining the use of max-

imum bins and time reassignment, strongly improves perfor-

mances for high SNRs. The estimator is in fact almost unbiased

for the considered intervals of FCR.

Fig. 10(b) is a comparison of the two proposed schemes with

the state-of-the-art estimators described in Section IV. The fre-

quency reassignment and the QIFFT perform equally well for

SNRs above 0 dB. For the QIFFT, and for very low SNRs, the

phenomenon of error propagation from the high-order param-

eters (here the FCR) appears again. For the short region of in-

terest SNR , all methods perform equally with a slight

advantage to the QIFFT.

First-Order AM/FM Model: In this section, the methods are

compared for the first-order AM/FM model. In Fig. 11(d), the

FCR is inside [0, 1000] and the ACR inside [0, 10], which cor-

responds to sinusoids varying moderately. For all other figures,

FCR is inside [0, 8000] and ACR inside [0, 100].

Fig. 11(a) and (c) illustrates the performances obtained

for different window analysis sizes. For a small hop-size

[Fig. 11(c)], the reassigned vocoder uses identical bins

, because the frequency variation is very small

in this case. Its bias almost disappears and its performances are

almost identical compared to the frequency reassignment: for

both methods the bias appears around 80 dB.

For large hop-sizes and low SNRs, the three-frame estima-

tion scheme becomes slightly unstable. Actually, the difficulty

of the task increases when considering larger hop-sizes, because

the amplitude modulation shifts the distribution of the sinusoid

energy to one of the edges of the window . The other edge

has a lower energy, overwhelmed by noise in the low SNRs

cases, causing difficulties to the tracking scheme. This effect

can be slightly seen in Fig. 11(a) for the RV and RF curves.

A 16 ms hop-size is a good compromise, keeping good perfor-

mances with a reasonable length between frames. The bias of the

reassignment is identical as in previous experiments, whereas

the bias of the RV method slightly increases. In the short region

of interest SNR , the RV and the RF methods are both

close to the CRB with a slight advantage to RV method (Fig. 6).
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Fig. 10. Comparison of the different methods for the FM model ( 2 [0; 8000]). (a) Comparison of vocoder-based methods: Long vocoder (LV); LV using
maximum bin (MaxBin); LV with reassigned time (LV + RT); and RV and PCV. (b) Comparison of the PCV, the reassigned frequency (RF), the QIFFT method,
and the RV.

Fig. 11. Performance of the three methods for an AM/FM model. (a)  2 (0;8000), � 2 (0; 100), W = 767, T = 16 ms; (b)  2 (0;8000), � 2 (0; 100),
W = 767, T = 16 ms (short region); (c)  2 (0;8000),� 2 (0;100), W = 513, T = 0:1 ms; and (d)  2 (0;1000),� 2 (0;10), W = 767, T = 16 ms.

As mentioned in Section VI, too small a Gaussian window

does not have a parabolic response, leading to parameter esti-

mation problems. When increasing the window size, the QIFFT

approach is more accurate but remains unstable for low SNRs

and is outperformed by the other two estimators. In this case,

the PCV estimation is no longer valid, because it does not take

into account amplitude variations III-C. Fig. 11(d) shows that

all methods perform well on slowly varying sinusoids, with a

slight advantage to the QIFFT algorithm (QIFFT3), in the short

region of interest.

VII. CONCLUSION

This paper presented a study of the phase vocoder in the

case of two common models, the chirp (or FM) model and the

first-order AM/FM model. Two methods of estimation using

the phase vocoder framework were derived, the phase-corrected

vocoder, working for frequency modulation only, and the reas-

signed vocoder, working for both models. Performance analysis

showed that the reassigned vocoder is comparable to the reas-

signment, but with a slight decrease in complexity, as one less

STFT is needed.

Several extensions of this work can be considered. First, it

should be necessary to consider more realistic signals involving

multiple sinusoids. Second, further work is needed concerning

the estimation of the frequency and log-amplitude change rates

to extend the low complexity PCV approach to the more general

case of AM/FM signals. Finally, in a similar way as for the phase

vocoder, the influence of frequency varying models on other

well-known frequency estimators, such as the Discrete fourier

spectrum interpolators using phase, should be explored.
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APPENDIX

The first-order Taylor expansion in of and is

given by

where and are the Lagrange remainders. The frequency

derivation property of the STFT leads to

For an order 1 Taylor expansion in 0 of the argument function,

we obtain

This approximation has proven to be quite accurate for the in-

tervals of parameter considered. Indeed the deterministic bias

in the experimental section is seen only below 40 dB and with

a magnitude of in average for and

[cf. Fig. 11(a)]. See [41] for more details.

is in fact equivalent to the dis-

crete version of the reassigned time. Indeed, the STFT can be

rewritten as a function of

where . We can therefore conclude that

and

Using the previous expression in (III.7)

Replacing by its definition leads to

The left part of this expression is the frequency for the time:

. The right part

is the vocoder estimator corrected by a term depending on the

reassigned time and on , which can be interpreted as a

first FCR estimate using frequency bins.
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