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Estimation of Fundamental Frequencies in

Stereophonic Music Mixtures
Martin Weiss Hansen, Student Member, IEEE, Jesper Rindom Jensen, Member, IEEE,

and Mads Græsbøll Christensen, Senior Member, IEEE

Abstract—In this paper, a method for multi-pitch estimation
of stereophonic mixtures of harmonic signals, e.g., instrument
recordings, is presented. The proposed method is based on a
signal model which includes the panning parameters of the
sources in a stereophonic mixture, such as those applied ar-
tificially in a recording studio. If the sources in a mixture
have different panning parameters, this diversity can be used
to simplify the pitch estimation problem. The mixing param-
eters of the sources might be shared, resulting in a multi-
pitch estimation problem, which is solved using an approach
based on an expectation-maximization algorithm for Gaussian
sources, where the fundamental frequencies and model orders are
estimated jointly. The fundamental frequencies may be related,
resulting in overlapping harmonics, complicating the estimation
of the parameters. A codebook of harmonic amplitude vectors
is trained on recordings of instruments playing single notes, and
used when estimating the amplitudes of the mixture components.
The proposed method is evaluated using stereophonic mixtures
of instrument recordings, and is compared to state-of-the-art
transcription and multi-pitch estimation methods. Experiments
show an increase in performance when knowledge about the
panning parameters is taken into account. The proposed method
provides a full parametrization of the components of the observed
signal. Possible applications include instrument tuning, audio
editing tools, modification of harmonic mixture components, and
audio effects.

Index Terms—Multi-pitch estimation, multi-channel pitch es-
timation, music information retrieval, model selection, vector
quantization, sterephonic signal analysis.

I. INTRODUCTION

THE fundamental frequency, or pitch, of a periodic signal,

e.g., a short segment of recorded speech or music, is

related to the period with which the signal repeats itself. Com-

monly occurring signals often contain multiple such signals,

e.g., recordings of multiple speakers that talk simultaneously,

or music recordings where several instruments are active

at the same time, which complicates the estimation of the

fundamental frequencies of the sources. Determination of the

fundamental frequencies of the individual harmonic sources

facilitates many tasks, e.g., automatic music transcription [1],

source separation [2]–[4], classification of music [5], instru-

ment recognition [6], enhancement [7], and localization [8].

The main types of methods for (single-channel) pitch esti-

mation are non-parametric methods, parametric methods, and

methods based on the human auditory system. Examples of
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non-parametric methods for pitch estimation include those

based on auto-correlation [9], and cross-correlation [10]. Such

methods are generally prone to octave errors, since they

compare a signal to a delayed version of the same signal,

or a modified version of the signal. Parametric methods, as

the name suggests, are based on parametric signal models.

Several types of parametric methods exist, e.g., stastistical

methods, like those based on maximum likelihood (ML), see,

e.g., [11], and Bayesian methods. Other parametric methods

are based on filtering approaches, such as comb filtering,

and optimal filtering. A third class of parametric methods

is based on subspace methods, examples are Multiple Signal

Classification (MUSIC) and Estimation of Signal Parameters

via Rotational Invariance Techniques (ESPRIT), which are

based on decomposing the observed signal using subspace

approaches, see, e.g., [11] and the references herein. Another

class of methods are based on the human auditory system. An

example is the approach proposed in [12].

In terms of multi-pitch estimation, some notable existing

methods are non-parametric methods, such as those based

on the autocorrelation function (ACF), see, e.g., [13], and

statistical, parametric approaches, such as the maximum like-

lihood (ML) method [11], which can be used iteratively

to resolve multiple fundamental frequencies, using, e.g., the

harmonic matching pursuit (HMP) [14], and the expectation-

maximization (EM) algorithm [11]. Within the area of auto-

matic music transcription, the main goal is to form score-like

representations [1], resulting in discrete pitch estimates, even

though the pitch is a continuous parameter. Such methods are

often based on spectrogram factorization methods, where an

input time-frequency representation is decomposed into note

templates and activations. Examples are methods based on

non-negative matrix factorization (NMF) [15] and probabilistic

latent component analysis (PLCA) [16], [17].

Estimating multiple concurrent pitches is a difficult prob-

lem, especially when the sources share energy at some of

their harmonics, i.e., when the fundamental frequencies are

related in a simple way, as is often the case for music signals.

A method for multi-pitch estimation of recordings of piano

signals, where overtones might overlap, is presented in [18].

The method is based on a smooth autoregressive model of

the spectral envelope of the harmonics of each note. The

spectral smoothness principle is presented in [19]. An NMF-

based method for multi-pitch estimation, which takes spectral

smoothness into account is presented in [20]. Another ap-

proach is presented in [21], where a structure (block sparsity)

is imposed on the components in a multi-pitch signal. The
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fundamental frequencies are found by solving an optimization

problem. In [22], a framework is presented which allows

incorporating prior information in source separation. However,

to estimate the fundamental frequencies of the sources an

additional step is required where the output of the separation

algorithm is fed to a pitch estimation algorithm.

Most of the music recordings available are recorded in

stereophonic format, i.e., two channels. Because the signals

in the channels typically share information, it makes sense to

exploit all available channels of data, and the performance is

expected to increase, when taking both channels into account.

Within the area of array processing, multiple channels of data

are used, e.g., to perform enhancement (see, e.g., [23] and

the references herein). Most pitch estimators operate on single

channel data, with a few exceptions, including a method based

on a non-parametric multi-microphone periodicity function

(MPF)[24]. Another is the multi-channel maximum likelihood

(MC ML) pitch estimator presented in [25], which allows for

different conditions in the channels, thereby increasing the

performance. Previously, spatial diversity has been exploited,

e.g. in [8], where joint estimation of the direction-of-arrival

(DOA) and pitch is considered.

To the authors’ knowledge no method has previously

been proposed, which exploits the panning parameters of

the sources in a stereophonic mixture when estimating the

fundamental frequencies of multiple concurrent sources. A

stereophonic mixture is typically created in a recording studio

by mixing several stereophonic signals, which may contain

multiple fundamental frequencies, e.g., when a chord is played

on an instrument. Each signal might have different mixing

parameters, such as panning parameters and equalization.

In this paper, we assume that mixtures are composed of

signals that are spatially enhanced by amplitude and/or delay

panning. Amplitude panning is a frequently used virtual source

positioning technique, where different gains are applied to the

individual channels of a signal. The perception of direction

is dependent on these gain factors [26]. Furthermore, a delay

can be applied to one of the channels of a source to enhance

its spatial quality and to add depth [27]. We refer to this

effect as delay panning. If a signal is delayed by more than

1 ms in a stereo setup, the perceived direction of the source

is determined mostly by the signal which arrives first [28].

According to [27], the spatial quality of a signal is enhanced

by using delays in the 12 to 40 ms range. The effect is called

the Haas effect [29]. The idea of separating sources from a

multi-channel mixture is used within the source separation

[30] and array processing [23] research communities but

it has, to the knowledge of the authors, not been applied

within the area of pitch estimation and its application in, for

example, music transcription. Exploiting knowledge regarding

the above-mentioned panning parameters should result in

more accurate estimates, and increase the performance in

complicated scenarios, where multiple sources are active at

once. Several sources might share panning parameters, and

estimating the fundamental frequencies of such submixtures

becomes difficult, especially when the relationship between

the fundamental frequencies of multiple sources results in

harmonic overlap. For such signals, two sources might be

modelled as a single source, using a model more complex than

the model of each of the individual sources. A solution might

be to include prior knowledge about the amplitude vectors,

and to map the amplitude estimates to realistic amplitudes

in a codebook, e.g., using vector quantization [31]. Vector

quantization has previously been applied in parameter esti-

mation of music and speech signals. Some notable references

include source separation [32], and speech enhancement [33].

Harmonic amplitude information has been used previously

in fields such as instrument recognition [34], where the aim

is to provide instrument labels for frames with concurrent

instruments playing, and automatic music transcription [19],

[35], where the aim is to output the discrete pitches being

played, along with onset times and note durations. In some

cases, however, discrete pitch estimates are not sufficient, e.g.,

if we wish to estimate the pitch of an instrument played with

vibrato, which is a slight variation in pitch throughout a note.

Discrete pitch estimates are also not useful if the goal is to

use a system for instrument tuning purposes.

In this paper, we propose a parametric method for multi-

pitch estimation of stereophonic mixtures of sources consisting

of, possibly multiple, harmonic signals, where the harmonics

of the signals might be related in a simple way, e.g., when

the signals share energy at their harmonics. As opposed to

the single-channel methods described above, mixtures are here

assumed to contain several harmonic signals with amplitude

and delay panning applied, such as in studio recordings. The

proposed method is based on a multi-channel signal model,

where the panning parameters are taken into account. It should

be noted that in the method proposed here, the panning

parameters are assumed known, as the goal is to investi-

gate how such knowledge can be exploited when estimating

multiple fundamental frequencies. The panning parameters

can be estimated, e.g., by employing a method such as the

one presented in [36], which we use herein. Furthermore,

the term delay panning that we use here, covers delays

added to the signals in a more general sense, i.e., the delays

might not be applied on purpose, but could for instance

arise, when recording a band or an orchestra using multiple

microphones. The fundamental frequencies and model orders

of the sources are estimated iteratively. The least squares (LS)

amplitude estimates [37] are mapped to entries in a codebook

trained using amplitude vectors of monophonic signals, and

the fundamental frequency and model order of each source

are re-estimated using the mapped amplitudes. In this way, the

fundamental frequencies of harmonic sources with overlapping

harmonics can be resolved. This paper extends our previous

work, presented in [38], where a method for stereophonic

multi-pitch estimation is presented. The paper is related to the

work presented in [39], where a codebook-based approach for

multi-pitch estimation of single-channel sources was proposed.

The work is based on a stereophonic signal model, introduced

in [40], in which a pitch estimator, that takes the amplitude and

delay panning parameters into account when estimating the

fundamental frequencies of stereophonic mixtures of single-

pitch signals, was proposed. An application of the proposed

method for source separation and re-panning is presented in

[41]. The extension to the previously mentioned work includes
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the addition of a refinement step by means of an EM algorithm,

and a scheme for detecting the number of sources present in

the observed signal. Furthmore, the evaluation of the proposed

method is extended. It should be stressed that we are here

estimating continuous pitch of the signals considered, resulting

in a full parameterization of the signals in the mixture. In this

work, we assume that a music mixture has been artificially

generated, e.g., in a recording studio, by applying amplitude

and delay panning to the sources, and we consider estimating

the panning parameters a separate problem. A reason for doing

so is to allow processing of longer segments of the mixtures to

exploit the stationary nature of the panning parameters, which

is also shown in [36]. The main objective of this paper is

to investigate how exploiting knowledge about the panning

parameters influences the performance of the proposed multi-

pitch estimator.

The rest of this paper is organized as follows. In Section

II, the multi-channel signal model is described, along with the

mixing assumptions (artificial studio recordings). In Section

III, the proposed multi-channel multi-pitch estimator is pre-

sented, along with details on the harmonic amplitude codebook

approach, and the detection framework. The experimental

validation of the proposed method is presented in Section IV.

Finally, Section V concludes the work presented in this paper.

II. SIGNAL MODEL

Consider a complex-valued K-channel mixture at time n.

The data in the kth channel is represented by a snapshot xk ∈
C

N , i.e.,

xk = [xk(0) xk(1) · · · xk(N − 1)]T ,

for channel k = 1, . . . ,K. It should be noted here that a

complex signal model is used because it may lead to simpler

expressions, and a lower computational complexity. It should

also be noted that although the signal model is complex, it can

be used with real signals by applying the Hilbert transform. We

assume that each snapshot is generated by M sources spatially

rendered using amplitude and delay panning. An example of

an amplitude panning law, which could used to calculate the

gains applied to each channel of a stereophonic mixture is [42]

gk,m =

{
cos θm, for k = 1.

sin θm, for k = 2.
(1)

where k ∈ {1, 2} is the channel index, and θm is the angle

between the pan direction and the left loud speaker (k = 1)

for the mth source. The aperture of the loud speakers is

here assumed to be 90° [42], with equal gains applied to the

channels when θm = 45°, while only one of the channels will

be active when θm = 0° or θm = 90°. As mentioned in Section

I, delays can also be used to enhance the spatial perception

in several ways [27], [28], by applying a delay of τk,m (in

seconds) to one of the channels of a source. We call this

effect delay panning, even though the delay might also result

from other effects being applied to a signal, or from recording

instruments in a live setting. The use of delays as a panning

effect is less common than amplitude panning. Furthermore, it

should be noted that sources might share panning parameters,

e.g., when chords are played on an instrument, or when a

submixture is created with a group of instruments playing

together. In light of this, we define a source as a single

harmonic component. A submixture is defined as one or more

sources that share panning parameters, and a mixture consists

of one or more submixtures. The signal in channel k of the

mixture is modelled as a linear superposition of M harmonic

sources with amplitude and delay panning applied as described

above, i.e.,

xk(n) =

M∑

m=1

gk,msm(n− fsτk,m) + ek(n), (2)

where gk,m and τk,m are the panning parameters of the kth

channel of the mth source, fs is the sampling frequency, and

ek(n) contains a noise component. The mth source sm is

modelled as a sum of Lm harmonic components, i.e,

sm(n) =

Lm∑

l=1

am,le
jω0,mln, (3)

where ω0,m is the fundamental frequency of the mth source,

Lm is the model order, and am,l = Am,le
jφm,l is the

complex amplitude, where Am,l is the real amplitude of the lth
harmonic of the mth source, and φm,l its phase. It should be

noted that following this definition of a source, a recording of a

single instrument can contain multiple sources, such as a chord

played on a guitar, where the signal originating from each

string is a source according to our definition. The signal model

in (3) is harmonic, i.e., with integer harmonic relationship.

Some signals, e.g., recordings of string instruments (guitar,

violin, piano, etc.), exhibit inharmonicity, and the signal model

might not hold exactly. If an inharmonic signal is modelled

using a harmonic model, the energy measured at the harmonic

frequencies may be slightly less than the energy exactly

at the harmonics. For small inharmonicity coefficients, the

difference may be small. However, since the instrumentation

in an observed mixture is often unknown a priori, it may

be reasonable to choose the harmonic signal model over the

inharmonic model. See, e.g., [11], [43] for a more thorough

discussion of how to incorporate inharmonicity in the signal

model. Furthermore, while the focus in this paper is on

stereophonic music mixtures, it should be noted that the model

used for gk,m can be modified to allow arbitrary relationships

between multiple source channels. In terms of effects added

to the sources before and/or after mixing, we do not consider

this here. For an effect such as mild equalization, we do

not expect the performance to suffer in general. However,

nonlinear effects such as distortion and dynamic range com-

pression may introduce frequency components not present in

the original signals, and this could have a negative impact

on the performance, since the method proposed here is based

on the harmonic signal model. Furthermore, if reverberation

is applied to one or more of the signals in the stereophonic

mixture, then the resulting smearing of the spectrogram may

in some cases have a negative impact on performance. We note

that it may be possible to remove some of the audio effects,

see, e.g., [44] regarding the topic of dereverberation. In [45]

a method is presented to revert the effect of dynamic range
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compression. Since we here focus on modelling the periodic

components of the observed signal, this implies that the noise

component may contain non-periodicities not accounted for by

the signal model. Still, the noise component ek(n) is assumed

to be white and complex Gaussian, because specifying a model

which is suitable in general is difficult, and because it is

the distribution that maximizes the entropy [46]. Furthermore,

the signal is assumed to be stationary during the interval

n = 0, . . . , N − 1. The signal model can be written in vector

form as

xk =

M∑

m=1

ZmGk,mam + ek, (4)

where Zm is a Vandermonde matrix with the harmonic com-

ponents of the source with fundamental frequency ω0,m in the

columns, i.e.,

Zm =




1 · · · 1
ejω0,m · · · ejω0,mLm

...
. . .

...

ejω0,m(N−1) · · · ejω0,mLm(N−1)


 ,

and Gk,m is a diagonal matrix containing the panning param-

eters in (1) and τk,m for channel k of source m, i.e.,

Gk,m =



gk,me

−jω0,mfsτk,m · · · 0
...

. . .
...

0 · · · gk,me
−jLmω0,mfsτk,m


 .

It can be seen that when only amplitude panning is applied

to a submixture, τk,m = 0 ∀ {k,m}, and when only delay

panning is used, gk,m = 1 ∀ {k,m}. Also, we assume that

the panning parameters are constant throughout a segment of

the observed mixture. The vector of complex amplitudes is

given by

am = [am,1 · · · am,Lm
]T , (5)

and the noise vector for channel k is

ek = [ek(0) ek(1) · · · ek(N − 1)]T . (6)

We now derive the log-likelihood of the kth channel of an

observed signal parametrized by ψk = [ψk,1 · · · ψk,M ]T ,

where ψk,m = [ω0,m gk,m τk,m aTm]T , for m = 1, . . . ,M .

We assume that the deterministic part of the signal is sta-

tionary, and that the noise is independent and identically

distributed over n and k. Furthermore, we assume that the

noise is white Gaussian with possibly different variance in

each channel, σ2
k. The likelihood of the kth channel of the

observed signal, is defined as

p (xk;ψk) =
1

(πσ2
k)

N
e
− 1

σ2
k

‖ek‖
2

2

, (7)

which across channels becomes

p ({xk}; {ψk}) =
K∏

k=1

1

(πσ2
k)

N
e
− 1

σ2
k

‖ek‖
2

2

. (8)

The log-likelihood of a single channel of the observed signal

is

ln p (xk;ψk) = −N lnπ −N lnσ2
k −
‖ek‖

2
2

σ2
k

(9)

while the log-likelihood for all channels of the observed signal

is

ln p ({xk}; {ψk})=−KN lnπ−N
K∑

k=1

lnσ2
k−

K∑

k=1

‖ek‖
2
2

σ2
k

. (10)

The fundamental frequencies, the complex amplitudes, and the

noise variance for each channel are estimated by maximizing

(10). Although the focus in this paper is on analysis of

stereophonic mixtures, it should be noted that the signal model

in (2) and (4), and the likelihoods above are applicable to

scenarios with arbitrary numbers of channels (the panning law

must be chosen accordingly).

III. PROPOSED METHOD

A. Overview

The purpose of the proposed method is to estimate the

fundamental frequencies of multiple sources that have been

combined into a stereophonic mixture, by altering their spatial

qualities, i.e., applying gains and delays to the sources. The

stereophonic signal model described in the previous section

allows taking into account the panning parameters used when

creating the mixture. The panning parameters are estimating

using a recently proposed method [36]. In Section III-B, an

expectation-maximization (EM) algorithm for estimating mul-

tiple fundamental frequencies in a segment of a stereophonic

mixture is presented. In Section III-C some interpretation of

the method along with a fast way of evaluating the cost

function is presented. Section III-D presents the method used

to initialize the EM algorithm, which is based on harmonic

matching pursuit (HMP). In music mixtures, the fundamental

frequencies of the sources are often related in a way such that

energy will be shared among harmonics of multiple sources.

This typically results in erroneous fundamental frequency

estimates, since it may happen that multiple sources are

modelled by a more complex model (with a lower fundamental

frequency). In Section III-E the proposed method for dealing

with this issue is presented. The method is based on a

codebook of amplitude vectors trained using recordings of

single notes played using a variety of instruments. In Section

III-F a detection algorithm is presented for estimating the

number of harmonic sources in a stereophonic mixture.

B. Stereophonic Multi-Pitch Estimation

Based on the signal model presented in the previous section,

we derive the joint multi-channel multi-pitch and model order

estimator. We wish to estimate the fundamental frequency

ω0,m and the vector of amplitudes am for each source in

the mixture, and the noise variance σ2
k in each channel, by

maximizing the log-likelihood in (10). Since the noise variance

is assumed independent across channels, it can be estimated

from each channel by differentiating (9) w.r.t. σ2
k and equating

with zero, i.e.,

σ̂2
k =
‖ek‖

2
2

N
=

1

N

∥∥∥∥∥xk −
M∑

m=1

ZmGk,mam

∥∥∥∥∥

2

2

, (11)
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which, in inserted into (10), results in

ln p ({xk}; {ψk}) = −N lnπ −N

K∑

k=1

ln σ̂2
k −KN, (12)

which can be minimized w.r.t. the parameters that we wish to

estimate. However, the parameters of all the sources figure in

(11), and estimating those at once is a difficult problem, since

it is multidimensional, and highly nonlinear. A possible solu-

tion is to use an iterative procedure, such as the expectation

maximization (EM) algorithm, to decompose the signal into

its components, and estimate their parameters [11], [47]. For

each iteration of the method, the log likelihood of the observed

data x is increased. As shown in (4), the observed signal is

modelled as a sum of M sources, where the kth channel of

each inidividual source m is modelled as

xk,m = ZmGk,mam + ek,m, (13)

where the noise term ek is decomposed into M sources, i.e.,

ek,m = βmek, (14)

where βm ≥ 0 is chosen such that
∑M

m=1 βm = 1. Here,

βm is chosen such that the entire error term is assigned to

a single component in each iteration, i.e., βp=m = 1 and

βp 6=m = 0, where p = mod (i − 1,M) + 1, with i being

the EM iteration index [48], [49]. Assuming white Gaussian

noise (see [11], [47]) in the E-step, the kth channel of the mth

source in iteration i is modelled according to (13) based on the

fundamental frequency estimate from the previous iteration,

i.e.,

x̂
(i)
k,m = Z(i)

m Gk,mâ(i)m +βm

(
xk−

M∑

m=1

Z(i)
m Gk,mâ(i)m

)
. (15)

In the M-step, the fundamental frequency of the mth source

is estimated using the nonlinear least squares (NLS) method,

based on the estimate of each source from the previous

iteration, i.e.,

ω̂(i+1)
m = argmin

ωm

K∑

k=1

ln

∥∥∥x̂(i)
k,m − ZmGk,mâ(i+1)

m

∥∥∥
2

2
, (16)

where the complex amplitude vector can be found, given

ω̂
(i+1)
m as [37]

â(i+1)
m =

[
K∑

k=1

GH
k,mZH

mZmGk,m

σ̂
2(i+1)
k

]−1 K∑

k=1

GH
k,mZH

mx̂
(i)
k,m

σ̂
2(i+1)
k

. (17)

The estimate of the variance σ2
k in iteration i+ 1 is

σ̂
2(i+1)
k =

1

N

∥∥∥x̂(i)
k,m − ZmGk,mâ(i+1)

m

∥∥∥
2

2
. (18)

Since the estimates of the amplitude vector and the noise

variance depend on each other, we estimate the parameters

in an iterative manner. If the variance of the noise is the same

for both channels, the expression for the calculation of the

amplitude vector becomes simpler, and it is not necessary to

iterate between (17) and (18). The E- and M-steps are repeated

until a convergence criterion is met, e.g., that the change in

the cost function (11) is small, i.e., J (i−1) − J (i) < ǫ (we

use ǫ = 10−6 in the experiments), or a maximum number

of iterations have been reached (we use IEM = 10 as upper

limit on the iteration index). The method is guaranteed to

converge to a local minimum, and increases the likelihood

of the observed data at each step.

C. Interpretation and Fast Implementation

An approximation of the LS estimate of the amplitude

vector can be obtained by noticing that the colums of Zm

are asymptotically orthogonal, i.e., limN→∞ ZH
mZm = NI

[11], and Ǧk,m = GH
k,mGk,m = diag(gk,m), where gk,m =

[gk,m · · · gk,m] ∈ R
Lm . The asymptotic LS amplitude esti-

mate is

ǎ(i+1)
m =

[
K∑

k=1

NǦk,m

σ̌
2(i+1)
k

]−1 K∑

k=1

GH
k,mZH

mx̂
(i)
k,m

σ̌
2(i+1)
k

. (19)

Furthermore, we can write the estimate of the noise variance

as

σ̌
2(i+1)
k =

x̂
(i)H
k,m P⊥

Zm
x̂
(i)
k,m

N
, (20)

where P⊥
Zm

= I−PZm
, and,

PZm
= ZmGk,m

[
K∑

k=1

NǦk,m

σ̌
2(i+1)
k

]−1 K∑

k=1

GH
k,mZH

m

σ̌
2(i+1)
k

(21)

is the orthogonal projection matrix which projects the observed

signal onto the columns of ZmGk,m. The method resembles

beamforming, and the panning matrix Gk,m can be interpreted

as a steering matrix. We also notice that ZH
mx̂

(i)
k,m is the Fourier

transform of x̂
(i)
k,m evaluated at the frequencies of the columns

of ZH
m, and can be calculated efficiently using a fast Fourier

transform (FFT). The approximate estimator can be stated as

ω̂
(i+1)
0,m = argmin

ω0,m

K∑

k=1

ln

∥∥∥x̂(i)
k,m − ZmGk,mǎ(i+1)

m

∥∥∥
2

2
. (22)

The asymptotic expression for estimating the amplitudes can

be used as long as the fundamental frequencies for which it

is evaluated are not very low compared to the segment length

[11].

D. Initialization of the EM Algorithm

We now describe how the EM algorithm in Section III-B is

initialized. Generally, EM algorithm initialization is not sim-

ple, and may result in getting stuck in a wrong local minimum.

A possible approach is to use the harmonic matching pursuit

(HMP) [11], [14], which is based on a residual for channel k
in iteration i at time n, defined as

r
(i)
k (n) = r

(i−1)
k (n)−

Li∑

l=1

gk,iai,le
jω0,il(n−fsτk,i). (23)

The model parameters are estimated iteratively for each mod-

elled harmonic source i, until a stopping criterion is met. An

option is to use a detection scheme and extract sources while

the residual contains harmonic components. The method is

initialized using the observed signal, i.e., r
(0)
k (n) = xk(n).
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As previously mentioned, the fundamental frequencies of the

M sources are estimated jointly with the model order. The

maximum a posteriori (MAP) model selection criterion [11],

[50] is used as a model selection rule, i.e.,

M̂i = argmin
Mi

K∑

k=1

−ln p
(
xk; ψ̂i,Mi

)
+

1

2
ln |Ĥi|,

where M̂i is the model of the ith source, and | · | denotes the

determinant of a matrix. The determinant of the Hessian, Ĥi,

can be approximated using the Fisher information matrix, and

a normalization matrix is introduced (see [50]) i.e.,

K =




(N3+K3−N2K2)−
1
2 0 0 0

0 N−

1
2 0 0

0 0 (K3N)−
1
2 0

0 0 0 N−

1
2 I2L


 ,

where I2L is a 2L× 2L identity matrix, such that

ln |Ĥi| = ln |K−2|+ ln |KĤiK|, (24)

where the last term, which is of order O(1), is ignored, and

the first term is used as a penalty term. We can now state the

joint pitch and model order estimator used to compute initial

estimates for sources i = 1, . . . , I , i.e.,

{
ω̂0,i, L̂i

}
= argmin

ai,{ω0,i,Li}

ln |K−2|

2
+N

K∑

k=1

ln
∥∥βk,i

∥∥2
2
, (25)

where βk,i = r
(i−1)
k −ZiGk,iai, and r

(i)
k = [rik(0) r

i
k(1) · · ·

rik(N−1)]
T . It should be noted that the cost function is multi-

modal, and we therefore perform the minimization with respect

to ω0,i using a grid search (grid size selection is discussed in

[51]). The LS estimate of the amplitude vector ai for each

candidate ω0,i are [37]

âi=

[
K∑

k=1

GH
k,iZ

H
i ZiGk,i

σ̂2
k

]−1 K∑

k=1

GH
k,iZ

H
i r

(i−1)
k

σ̂2
k

, (26)

and the estimate of noise variance in channel k is

σ̂2
k =

1

N

∥∥∥r(i−1)
k − ZiGk,iâi

∥∥∥
2

2
. (27)

The fundamental frequencies and amplitudes of the M sources

are then obtained by computing the residual (23) and estimat-

ing the fundamental frequency using (25) and the amplitudes

using (26).

E. Harmonic Amplitude Codebooks

Taking the stereophonic mixing parameters into account

when estimating fundamental frequencies simplifies the prob-

lem of estimating multiple fundamental frequencies, as de-

scribed in the previous sections. However, if each submixture

contains multiple sources, with distinct fundamental frequen-

cies, estimating those is still a difficult task, especially if the

fundamental frequencies and/or their harmonics are simply

related, e.g., when harmonics are shared among sources.

Using an iterative approach for estimating the fundamental

frequencies may result in modelling several of the sources with

one set of parameters, and the resulting fundamental frequency
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Fig. 1. Top: Magnitude spectrum of mix containig two sources with f0,1 =

260 Hz, f0,2 = 390 Hz (synthetic signals). Bottom: Value of cost function
J (NLS: nonlinear least squares, Proposed: amplitude codebook used in the
computation of the cost function) as a function of the candidate fundamental
frequency in Hz.

estimate is likely to be wrong (but related to the fundamental

frequencies of the sources somehow). If the amplitude vector

is estimated using least squares, the amplitude vector may

exhibit a non-smooth amplitude envelope. To overcome this

issue, we propose imposing constraints on the magnitude of

the amplitude of the harmonics of each source, and to impose

a form of spectral smoothness onto the sources. Specifically,

we propose to train a codebook of harmonic magnitude ampli-

tude vectors using recordings of individual instruments. The

codebook is generated by jointly estimating the fundamental

frequency and the model order for each frame of a set of

recordings of monophonic single-source signals, and saving

the corresponding complex amplitude vector. The codewords

are generated by clustering vectors containing the magnitude

of the entries in the complex amplitude vectors using K-means

[52]. To illustrate the effectiveness of applying the principle of

using a codebook of amplitude vectors when estimating multi-

ple fundamental frequencies, consider an example in which a

mixture consisting of two synthetic sources, with fundamental

frequencies f0,1 = 260 Hz and f0,2 = 390 Hz, and model

orders L1 = 10 and L2 = 8, respectively, is generated.

The amplitudes of the harmonics decay as a function of the

harmonic number, and the phases are randomized between 0

and 2π. The amplitude codebook in this experiment contains

the true magnitude amplitude vectors. The top plot in Fig.

1 shows the magnitude spectrum of a 30 ms frame of the

mixture, where the harmonics of the two signals are apparent.

The bottom plot shows a comparison of cost functions where

the amplitudes are estimated using least squares (NLS) and

using a codebook of amplitude vectors (proposed method),

respectively.

In this example, the third harmonic of the first source and

the second harmonic of the second source have the same

frequency. This is an ill-posed problem, since we do not know

how the energy is distributed across the harmonics of the

sources. The amplitude vector estimated using least squares
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will not fit the true signals very well. As mentioned, the

magnitude values of the harmonic amplitudes for each source

may be non-smooth across the harmonics, because several

sources might be modelled by a more complex model, i.e.,

a single source where some of the harmonic components are

zero. For the example above, a signal model with fundamental

frequency 130 Hz would fit both sources, but the energy at

the fundamental frequency, as well as the fifth, seventh and

tenth harmonics, will be close to zero. In other words, the

amplitude vector will be non-smooth across freqeuncy. It is

also mentioned in [37] that estimating source parameters for

one source at a time, results in poor amplitude estimates, if

the frequncies of the components are close to each other.

The dimensions of the amplitude vectors vary with the

model order and the fundamental frequency, which may vary

throughout a signal. This means that we should in principle

have a separate codebook for each possible number of har-

monics. Since this would require a huge amount of training

data, the vectors are converted to have the same dimension.

A non-square transform (NST) is applied to the amplitude

vectors, such that they contain the same number of entries

[53]. The maximum number of harmonics, which is found

as Lmax =
⌊

2π
w0,min

⌋
, where w0,min is the lowest candidate

fundamental frequency (in radians), is used to determine the

number of rows of the NST matrix. Here, zeropadding is used,

to obtain vectors of equal length, i.e., a variable-dimension

amplitude vector |â| ∈ R
L is transformed into a vector

ȧ ∈ R
Lmax of fixed dimension via the operation

ȧ = TLâ, (28)

where TL is a NST matrix of dimension Lmax × L, and is

given by

[TL]i,j =

{
1, for i = j.

0, otherwise.
(29)

The codebook C consists of C entries, {äc}
C
c=1, which are

found by performing K-means clustering on the set of vectors

{ȧ}. The codebook entries are normalized to have unit norm,

i.e., ‖äc‖
2 = 1. When computing refined pitch and model

order estimates, the cth entry in the codebook is converted to

fit a dimension equal to the candidate model order L, i.e.,

ac = TT
Läc. (30)

The refined magnitude amplitude vector is

ãm = argmin
γm∈R+,ac∈C

‖âm − γmac‖
2
2 , (31)

where γm is a scaling factor, to limit the size of the codebook

(this is also known as gain-shape vector quantization) [31].

The resulting magnitude amplitudes in ãm in (31) are com-

bined with the phases of the initial amplitude estimates âm to

result in the refined estimate of the complex amplitude vector

of the mth source, i.e.,

åm = [ã1,me
j∠â1,m · · · ãLm,me

j∠âLm,m ]T . (32)

The resulting estimate is substituted in (25), to obtain refined

estimates of the fundamental frequency and model order of

source m, i.e.,

{
ω̂0,m, L̂m

}
= argmin
am,{ω0,m,Lm}

ln |K−2|

2
+N

K∑

k=1

ln

∥∥∥β̊k,m

∥∥∥
2

2
, (33)

where

β̊k,m = r
(m−1)
k − ZmG(k,m)̊am. (34)

Using the refined estimate of the amplitude vector in (32), the

magnitude of the amplitude of each harmonic component is

mapped to an entry in the codebook, which should contain

smooth amplitude vectors as its entries. It should be noted

that ideally we would like to have knowledge about the

amplitude vectors of each source in each segment of the

mixture, however, this is not possible without knowledge of

the unmixed sources, and this is part of the motivation to

use the amplitude codebook. However, if an amplitude vector

formed using the codebook does not capture the structure of

the amplitude vector corresponding to the unmixed source,

errors may occur due to model mismatch, leading to erroneous

fundamental frequency estimates.

F. Harmonic Component Detection

In the preliminary work presented in [38], [39], it was

assumed that the number of active sources M in a frame was

known a priori. However, this is often not the case, e.g., in

mixtures of recordings of several musicians playing together.

The musicians might play together, but all the sources might

not be active at once. To overcome this issue, we propose to

incorporate a detection scheme in the proposed multi-pitch

estimation algorithm. It should be noted that we are here

detecting harmonic sources, i.e., we consider, e.g., percussive

instruments to be part of the noise component of the mixture.

For simplicity, the method we derive here is for single-channel

detection, however, it is straightforward to extend it, e.g.,

using the stereophonic signal model described in Section

II. Furthermore, it should be stressed that a chord played

on an instrument consists of multiple harmonic components,

which we consider as separate sources. In the initial step, it

is assumed that the mixture consists of Mmax sources, with

parameters estimated using the method described in Section

III. We wish to determine which of the sources, parametrized

by the estimates, are present in the observed signal. First, the

fundamental frequency estimates ω̂0 = [ω̂0,m . . . ω̂0,Mmax
] are

sorted according to the likelihood, i.e.,

J(ω̂0,m) = ‖x− Zmâm‖
2
2 , (35)

where Zm is formed using the parameter estimates ω̂0, âm =(
ZH

mZm

)−1
ZH

mx. Furthermore, we define an ordered index

m̄ = {1, . . . , M̄}, such that J1 ≥ · · · ≥ JM̄ , ω̄ = [ω1 · · ·ωM̄ ],
and L̄ = [L1 · · ·LM̄ ] are vectors of fundamental frequency and

model order estimates, respectively, sorted according to the

values of (35), and evaluated at the fundamental frequencies

ω̂0. Based on the sorted parameter estimates, we model each

signal iteratively, i.e.,

ŝm̄ = Zm̄

[
ZH

m̄Zm̄

]−1
ZH

m̄r(m̄), (36)
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where Zm̄ is formed using the corresponding fundamental

frequency in ω̄, and r(m̄) is a residual used when estimating

the complex amplitude vector of source m̄, given by

r(m̄) = x−
m̄−1∑

i=1

ŝi. (37)

For each of the estimated sources, we wish to determine

whether it is present in the mixture or not. The method is

based on the generalized likelihood ratio test (GLRT) [54],

which decides between the hypoheses

H0 : r(m̄) = e (38)

H1 : r(m̄) = Zm̄âm̄ + e. (39)

For each source, H1 (the residual contains a harmonic source)

is decided if

LG(r
(m̄)) =

p
(
r(m̄); θ̂1,m̄, σ̂

2
1,m̄

)

p
(
r(m̄); θ̂0,m̄, σ̂2

0,m̄

) > γ, (40)

where θ̂q,m̄ is the maximum likelihood estimate of θq,m̄ under

Hq , and γ is a threshold which determines whether H0 or H1

is chosen, and (40) can be rewritten as

T (r(m̄)) =
N − Lm̄

Lm̄

(
L
2/N
G (r(m̄))− 1

)
(41)

=
N − Lm̄

Lm̄

r(m̄)HPZm̄
r(m̄)

r(m̄)HP⊥
Zm̄

r(m̄)
(42)

=
N − Lm̄

Lm̄

‖PZm̄
r(m̄)‖22

‖P⊥
Zm̄

r(m̄)‖22
> γ′, (43)

where the ranks of the residual and signal subspaces for source

m̄ are N −Lm̄ and Lm̄, respectively, where N is the segment

length, and Lm̄ the model order of the source. Furthermore,

P⊥
Zm̄

= I−PZm̄
and

PZm̄
= Zm̄

[
ZH

m̄Zm̄

]−1
ZH

m̄ (44)

is the orthogonal projection matrix that projects the observed

signal vector onto the columns of Z, which is a Vandermonde

matrix formed using the estimate of the fundamental frequency

and the model order for the corresponding source. The re-

sulting vector of fundamental frequency estimates is denoted

ω0,m̄. The threshold γ′ is found by choosing a desired false

alarm rate Pfa [54], and finding the value which exceeds 1-Pfa

samples from an F-distribution with Lm̄ numerator degrees of

freedom and N − Lm̄ denominator degrees of freedom (see

also [54, App. 9A]). A summary of the proposed method is

presented in Algorithm 1.

IV. EXPERIMENTS

In this section, the performance of the proposed method is

evaluated experimentally using data generated by mixing sev-

eral single-instrument signals. The proposed method is evalu-

ated in several scenarios, to validate the different parts of the

method, i.e., single-channel mixtures of varying (but known)

polyphony, stereophonic mixtures with varying panning pa-

rameters (known polyphony), and stereophonic mixtures with

Algorithm 1 Summary of the proposed multi-pitch estimator

Require: {xk}, {Gk,m}, and C.

1: for m = 1, . . . ,M do

2: Form initial pitch and model order estimates

{ω̃
(1)
0,m, L̃

(1)
m } by minimizing (33).

3: end for

4: for m = 1, . . . ,M do

5: while J (i−1) − J (i) > ǫ and i < IEM do

6: Refine pitch estimates via EM algorithm, cf. (15) and

(16), and map amplitudes to an entry in a codebook,

cf. (31) and (32), resulting in {ω̂
(i)
0,m}.

7: i← i+ 1
8: end while

9: end for

10: for m = 1, . . . ,M do {optional}
11: Perform source detection, cf. (43), resulting in {ω̂0,m̄}.
12: end for

13: return {ω̂
(i)
0,m} or {ω̂0,m̄}.

unknown polyphony. Two datasets were used to generate the

mixtures used in the experiments, i.e., the IOWA database of

anechoic recordings of individual instruments playing single

notes1, and the Bach10 dataset [55], which consists of mul-

titrack recordings of ten four-part chorales composed by J.

S. Bach. From the IOWA database, signals with a combined

duration of 262 seconds were used to generate the mixtures.

From the Bach10 database, the duration of the signals used to

generate the mixtures is 1338 seconds. The dataset contains the

recordings of individual instruments. In the experiments where

stereophonic IOWA data is used, the panning parameters are

assumed known, however, for the stereophonic Bach10 mix-

tures (i.e., the largest amount of data), the panning parameters

of the sources are estimated using the method presented in

[36], where the panning parameter distribution is modelled

using a Gaussian mixture model, and the generalized variances

of the Gaussian components are used to select the number of

panning parameters. In all experiments, the audio signals were

downsampled to fs = 8000 Hz before processing. This was

done to reduce the computational complexity. It should be

noted that the proposed method would still work with other

sample rates, and that an increase in performance might be

observed with higher sample rates. The performance of the

proposed method (denoted EM-CB) is compared to the perfor-

mance of a parametric method for single-channel data, which

does not make use of the proposed codebook-based approach

(EM-LS), a state-of-the-art transcription method, which is

based on a 5-dimensional dictionary of spectral templates rep-

resenting the evolution of a note (BW2015) [17]2 (the standard

settings were used), and the MIRtoolbox [56] implementation

of the enhanced summary autocorrelation function (ESACF)

[13], which is a non-parametric method for multipitch esti-

mation. Using the MIRtoolbox, the mirpitch() function

based on the ’Tolonen’ setting was used, however, with

1Available at http://theremin.music.uiowa.edu.
2The source code is available at https://code.soundsoftware.ac.uk/projects/

amt plca 5d.
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’NoFilterbank’ instead of ’2Channels’ (f0 range

similar to the proposed method).

It should be noted that for the experiments where stereo-

phonic mixtures were used, the proposed method is imple-

mented using the asymptotic expression for the calculation of

the amplitude estimates, presented in Section III-C. However,

in the evaluation of the single-channel mixtures, the exact

expression in Section III is used. The reason for this is that

the proposed method is computationally quite intensive, par-

ticularly in the stereophonic configuration. It should be noted

that if the exact formulation in Section III-B was used, the

performance would improve. With respect to computational

complexity, algorithms exist for reducing the computation time

(see, e.g., [51]). In all of the experiments, ground truth data

is obtained for the individual harmonic sources (instrument

recordings) using the joint approximate nonlinear least squares

(ANLS) fundamental frequency and model order estimator

from the Multi-Pitch Estimation Toolbox [11]. The perfor-

mance of each of the methods is reported using metrics com-

monly used when evaluating multiple fundamental frequency

estimation methods [57], i.e., accuracy, precision, recall and

F-score, defined for each frame t as

a(t) =
TP

FP + FN + TP
=
|{ω̄0} ∩ {ω̂0}|

|{ω̄0} ∪ {ω̂0}|
, (45)

p(t) =
TP

TP + FP
=
|{ω̄0} ∩ {ω̂0}|

|{ω̂0}|
, (46)

r(t) =
TP

TP + FN
=
|{ω̄0} ∩ {ω̂0}|

|{ω̄0}|
, (47)

F (t) =
2 · p(t) · r(t)

p(t) + r(t)
, (48)

respectively, along with a measure of the total error rate

Etotal(t) =
max (|{ω̄0}|, |{ω̂0}|)− |{ω̄0} ∩ {ω̂0}|

|{ω̄0}|
, (49)

where | · | denotes the cardinality of a set, and {ω̄0} and

{ω̂0} are the sets of ground truth and estimated fundamental

frequencies for frame t, respectively. An error is counted when

an estimate deviates from the ground truth by more than half

a semitone (3% deviation from the ground truth fundamental

frequency). In the following subsections, we describe how the

harmonic magnitude codebooks are trained, the experimental

setup, present the evaluation data, and discuss the results. The

parameters used in the experiments are summarized in Table

I.

A. Codebook Generation

As described in Section III-E, codebooks of harmonic

magnitude amplitude vectors are used to impose spectral

smoothness on the amplitude vectors of the source models.

The codebooks used in the experiments are trained using

anechoic single-note recordings of various instruments from

the IOWA database. The notes played are in the range C4-B4

(262-494 Hz), with mezzo-forte dynamics. Table II contains

a description of the recordings used to train the codebooks.

The recordings are processed as follows. The signals are

downsampled to fs = 8 kHz to decrease computation time,

TABLE I
VALUES OF PARAMETERS USED IN THE EXPERIMENTS.

Parameter Description Value

fs Sampling frequency 8000 Hz
K No. of channels 2
N Segment length 30 ms
H Hop size 15 ms
f0,min Min. pitch candidate 50 Hz
f0,max Min. pitch candidate 1000 Hz
Lmax Max. no. of harmonics 20
C No. of codebook entries 20
Mmax Max. no. of sources 6
IEM Max. no. of EM iterations 10

ǫ EM stopping criterion 10
−6

TABLE II
DATA FROM THE IOWA DATABASE OF INSTRUMENT RECORDINGS USED

TO GENERATE THE CODEBOOKS OF HARMONIC MAGNITUDE AMPLITUDE

VECTORS (V: PLAYED WITH VIBRATO).

Instrument Instr. type Duration (s)

Alto sax Woodwind 61.3
Alto sax (v) Woodwind 66.8
Bassoon Woodwind 29.3
Bb Clarinet Woodwind 60.8
Eb Clarinet Woodwind 32.7
French Horn Brass 32.9
Oboe Woodwind 40.6
Soprano sax Woodwind 46.9
Soprano sax (v) Woodwind 52.3
Tenor trombone Brass 53.5
Trumpet Brass 103.1
Trumpet (v) Brass 109.0
Viola String 52.7

after which they are normalized, and processed in segments of

length N = 240 samples (30 ms) with a hop size of H = 120
samples. A codebook is generated by processing individual

(monophonic) anechoic recordings of instruments from the

IOWA database. Each recording contains single notes played

on a variety of instruments. The settings used when estimating

the parameters of the signals are similar to those described in

Section IV.

The fundamental frequency and the model order are esti-

mated jointly, using a grid of fundamental frequency candi-

dates with 1 Hz spacing, from f0,min = 100 Hz to f0,max =
fs/2 = 4000 Hz, in each frame of each signal. The parameters

are estimated using the joint ANLS fundamental frequency

and model order estimator from the Multi-Pitch Estimation

Toolbox [11]. For each frame, the complex amplitude vector is

estimated using a least squares approach [11], and each vector

is scaled to have unit norm before performing vector quantiza-

tion. Since each recording contains a succession of notes, with

silence in between, only frames with power exceeding a pre-

determined threshold (-20 dB) are processed. As mentioned in

Section III-E, the number of harmonics for a source typically

varies throughout the duration of a signal. To avoid having

to create a codebook for each number of harmonics (which

may be impractical with a small amount of training data),

the amplitude vectors are converted to a fixed dimension
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using the zero-padding NST. The transformed vectors are

clustered using K-means [52], and the resulting clusters are

the codewords that make up the codebook. The number of

entries in the codebook in these experiments has been chosen

experimentally to be 20. We remark that the purpose of the

experiments presented here is not to compare the performance

resulting from codebooks generated differently, instead, we

wish to investigate the performance of the proposed method

for codebooks generated using the data in Table II.

B. IOWA Dataset Experiments

We now present the results of the evaluation of the pro-

posed method using recordings from the IOWA database.

The amplitude codebook is generated as described in Section

IV-A, i.e., it consists of 20 amplitude vectors. It should be

noted that the instrument recordings used to generate the

test mixtures were excluded when training the codebook for

the experiments presented in this section. The test signals

were generated by mixing four single-channel signals each

containing a single note, i.e., two recordings of a French horn

and two recordings of a Bb trumpet (played with vibrato),

respectively. Both instruments are played with mezzo-forte

dynamics. The chords generated by mixing the individual

signals are formed as follows. For root notes varying from C4

(262 Hz) to B4 (494 Hz), seven chords commonly occurring in

Western music are formed, resulting in 84 chords in total, with

fundamental frequencies ranging from C4 (262 Hz) to Bb5

(932 Hz). The chord types are listed using integer notation in

Table III, where the notes in each chord are listed in semitone

steps from the root note, i.e., a C major (7th) chord consists

of the notes C (0), E (4), G (7), and B (11). The chords

are generated such that none of the fundamental frequencies

are integer multiples of the other fundamental frequencies,

however, harmonic overlap occurs in all of the chords. In the

first set of experiments, the objective is to evaluate the per-

formance of the proposed method for single-channel mixtures

containing chords generated using the IOWA data as described

above, and the purpose is to evaluate the codebook approach

for multi-pitch estimation. The observed mixtures have been

downsampled to fs = 8 kHz (to decrease the computation

time), and are processed in segments of length N = 240
samples, with a hop size of H = 120 samples. Furthermore,

the individual signals were normalized before creating the

mixtures. The candidate fundamental frequency grid ranges

from 100 Hz to 1000 Hz with 1 Hz spacing, and the maximum

number of harmonics is set to Lmax = 20. The polyphony of

the generated signals is four for all the chords, and this is

assumed known in the experiments presented here, along with

the panning parameters of the sources. The performance of

the proposed method for the chord types mentioned above

is shown in Table III, along with the performance of an

EM algorithm, where LS amplitude estimates are used when

calculating the residual in each iteration (EM-LS) [11], the

transcription method presented in [17] (BW2015), and the

MIRtoolbox [56] implementation of the ESACF method [13].

It can be seen from the results that the performance of the

proposed method clearly outperforms the other methods on

TABLE III
ERROR RATES FOR SINGLE-CHANNEL IOWA CHORDS. FOR EACH CHORD

TYPE, 12 CHORDS (ROOT NOTES C4-B4) WERE GENERATED, AND THE

MEAN ERROR IS SHOWN FOR EACH CHORD TYPE (H: FRENCH HORN, T:
TRUMPET PLAYED WITH VIBRATO).

Chord type Notes (h-h-t-t) Proposed EM-LS BW2015 ESACF

Maj 7 0-4-7-11 0.0133 0.7694 0.4945 0.4908
Min 7 0-3-7-10 0.0335 0.8340 0.4631 0.4873
Dom 7 0-4-7-10 0.0111 0.8272 0.4806 0.4729
Hdim 7 0-3-6-10 0.0694 0.7788 0.4281 0.5438
Dim 7 0-3-6-9 0.0471 0.8002 0.4712 0.6330
Min/Maj 7 0-3-7-11 0.0244 0.8386 0.3834 0.7012
Aug 7 0-4-8-11 0.0765 0.8572 0.2910 0.7686

Mean 0.0393 0.8150 0.4303 0.5854

average. The mean error rates of the BW2015 and ESACF

methods are approximately 43% and 59%, respectively, while

for the proposed method the mean error rate is approximately

4%. The poor performance of the EM-LS method is expected,

since the method suffers from issues that arise when sources

share energy at their harmonics, cf. Section III-E. We can also

deduce from the results that the signal model is a good fit

for mixtures that contain French horn and trumpet signals. It

should be noted that many of the erroneous estimates gen-

erated using the BW2015 method appear for trumpet signals

which are played with vibrato. However, since vibrato occurs

quite commonly, we believe that a multi-pitch estimator should

be able to deal with this phenomenon.

Fig. 2 shows a spectrogram of a mixture of IOWA data

from the experiment with amplitude and delay panning. The

corresponding estimates of the fundamental frequencies in

each frame of the signal are shown in the bottom part of the

figure. The panning parameters were chosen such that the two

submixtures, containing both horn signals and both trumpet

signals, respectively, were θhorn = 30° and θtrumpet = 60°, i.e.,

the separation angle between the submixtures is 30 degrees.

The delays added to one of the channels of the submixtures

were both of length 1 sample. The estimates have been

sampled to make the figure easier to read. Looking at the

spectrogram of the mixture, it is clear that the estimation of

the fundamental frequencies is a difficult problem to solve

without exploiting knowledge about the spatial information,

due to harmonic overlap.

C. Bach10 Dataset Experiments

We proceed to present the experimental evaluation of the

proposed method using mixtures generated using data from

the Bach10 dataset, which contains the individual recordings

of the parts played on a violin, clarinet, saxophone and

bassoon, respectively. The amplitude codebook used in these

experiments is generated as described in Section IV-A, i.e.,

it consists of 20 amplitude vectors, and is trained using the

data in Table II. It should be noted that the mixtures generated

using Bach10 data are more complex than those created using

IOWA data. The recordings in the Bach10 dataset contain

greater dynamic variation, since the sources are recorded with

musicians playing together. Even though the instruments were
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Fig. 2. Spectrogram (top) and pitch estimates (bottom) of a multi-pitch
mixture of two instruments, trumpet and horn, playing the notes C4 (262
Hz), E4 (330 Hz), G4 (392 Hz) and B4 (494 Hz), respectively. Amplitude
and delay panning have been applied to the two submixtures containing both
horn signals and both trumpet signals, respectively.

recorded separately, each of the musicians listened to the

recordings of the other instruments while recording their own

performance. In practice, this variation in energy results in

varying signal-to-interference ratios (SIRs) for the sources.

In the first set of Bach10 experiments, the performance of

the proposed method is evaluated for monophonic signals of

varying, but known, polyphony, ranging from one to four. The

tracks of each piece are combined uniquely with each other,

resulting in 15 mixtures for each of the 10 pieces, resulting

in a total of 150 different mixture of varying polyphony. The

signals were downsampled to fs = 8 kHz, and processed in

segments of length N = 240 samples, with a hop size of

H = 120 samples. The candidate fundamental frequency grid

in the Bach10 experiments ranges from 50 Hz to 1000 Hz with

a spacing of 1 Hz, and the maximum number of harmonics

was set to Lmax = 20. For each frame of each mixture,

the fundamental frequency (polyphony one) or frequencies

(mixtures with polyphony greater than one) are estimated

using the proposed method, an EM algorithm, where LS

amplitude estimates are used when calculating the residual

in each iteration (EM-LS), the transcription method presented

in [17] (BW2015), and the MIRtoolbox [56] implementation

of the ESACF method [13]. As with the experiments on the

IOWA dataset, ground truth data was generated by jointly

estimating the fundamental frequency and model order for

each frame of each of the recordings of individual instruments

using the joint ANLS fundamental frequency and model order

estimator from the Multi-Pitch Estimation Toolbox [11]. Table

IV shows the mean total error rates for the different mixtures

generated by combining the tracks of the pieces in the Bach10

database, as described above.

The mean error rates for all 150 mixtures are approximately

22% for the proposed method, 25% for the BW2015 method,

35% for the ESACF method, and 35% for the EM-LS method.

When looking at the results, the proposed method generally

TABLE IV
MEAN TOTAL ERROR RATES FOR SINGLE-CHANNEL MIXTURES OF

VARYING POLYPHONY GENERATED FOR ALL PIECES IN THE BACH10
DATABASE (B: BASSOON, CA CLARINET, S: SAXOPHONE, V: VIOLIN).

Source(s) Proposed (EM) EM-LS BW2015 ESACF

b 0.1548 0.0000 0.5279 0.2992
c 0.0399 0.0000 0.0564 0.0599
s 0.0313 0.0000 0.0713 0.0559
v 0.0275 0.0000 0.1272 0.0606
c,b 0.2888 0.5558 0.3078 0.4099
s,b 0.2282 0.3668 0.3619 0.4243
s,c 0.1949 0.2206 0.4294 0.4463
v,b 0.2620 0.4770 0.0954 0.2478
v,c 0.1554 0.3211 0.1324 0.3537
v,s 0.1045 0.1966 0.2053 0.2289
s,c,b 0.3970 0.7916 0.2715 0.5075
v,c,b 0.3151 0.6976 0.3023 0.5462
v,s,b 0.2883 0.6357 0.3499 0.4959
v,s,c 0.3435 0.7140 0.1779 0.4714
v,s,c,b 0.4099 0.7750 0.2697 0.6112

Mean 0.2161 0.3834 0.2458 0.3479

performs better than the other methods, except for some

mixtures, where the error rate for the BW2015 method is

lower. However, for other mixtures, the performance of the

BW2015 algorithm is not very good, in particular when one

of the instruments is played with vibrato. The performance

of the EM-LS method is comparable to the performance of

the proposed method for the single-instrument signals. This is

expected since the main point of using the codebook of mag-

nitude amplitude vectors is to increase performance for signals

containing multiple sources, as described in Section III-E. For

the mixtures containing multiple sources, the performance of

the EM-LS method resembles the results in Section III. The

performance of the proposed method for different numbers

of concurrent sources indicates that it can be used for signals

containing both single and multiple sources. It should be noted

that in some parts of the mixtures used in these experiments,

the fundamental frequencies of the sources are approximately

related by integer numbers, i.e., the instruments play in uni-

son, which makes the problem particularly difficult in these

segments. In order to anticipate when poor performance is to

be expected, the ratios between the ground truth fundamental

frequencies for the sources should be considered. The ground

truth data for a segment of one of the pieces is shown in Fig.

3.

In the next set of experiments, the performance of the

proposed method is evaluated using mixtures generated by

applying amplitude and delay panning to the four sources of

each of the Bach10 pieces, resulting in 30 different mixtures.

For each of the mixtures, four settings are used, i.e., three

different sets of panning parameters, and a setting where the

panning parameters are ignored when estimating the funda-

mental frequencies. We define θ̄ =
∑M

m=1 |θm−θ0| as the sum

of the absolute values of the difference between the panning

direction θm of each source and the neutral panning position

θ0 = 45° (center). A delay of one sample was applied to the

channel of each mixture component with the smallest gain

applied. The polyphony of each mixture was assumed known



2329-9290 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TASLP.2018.2878384, IEEE/ACM

Transactions on Audio, Speech, and Language Processing

IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. XX, NO. X, X 201X 12

600 650 700 750 800 850 900

Frame no.

0

100

200

300

400

500

600

700

800

F
u
n
d
am

en
ta

l 
F

re
q
u
en

cy
 (

H
z)

Bassoon Clarinet Saxophone Violin

Fig. 3. Ground truth fundamental frequency estimates of a segment of the
Bach chorale ”Für Deinen Thron” (piece no. 8).

TABLE V
ERROR RATES FOR STEREO BACH10 MIXTURES WITH AMPLITUDE AND

DELAY PANNING APPLIED TO THE SOURCES (IN THE LAST COLUMN, THE

PANNING PARAMETERS ARE IGNORED).

Piece no. θ̄ = 50° θ̄ = 60° θ̄ = 70° Disregard

1 0.2789 0.2424 0.2202 0.3476
2 0.3543 0.3277 0.3113 0.4151
3 0.3193 0.2928 0.2624 0.4166
4 0.3288 0.3076 0.2822 0.4194
5 0.3805 0.3434 0.3175 0.4651
6 0.3837 0.3602 0.3298 0.4559
7 0.3056 0.2988 0.2671 0.4023
8 0.3130 0.3091 0.2781 0.3779
9 0.3722 0.3200 0.3090 0.4906
10 0.3239 0.3076 0.2826 0.3999

Mean 0.3360 0.3110 0.2860 0.4190

in these experiments, however, the panning parameters were

estimated using the method presented in [36]. The results of

the experiments are shown in Table V.

For the mixtures with θ̄ = 50 (θ1 = 35°, θ2 = 35°,

θ3 = 60°, θ4 = 55°), the estimated panning parameters for

nine out of the ten mixtures are equal to the parameters used

to generate the mixtures when rounded to integer values. For

the mixture with wrongly estimated panning parameters, two

panning parameters are found, and they are estimated to be

between the ones used to generate the mixture. The mean

error rate for the mixtures generated with these panning pa-

rameters is approximately 34%. For the mixtures with θ̄ = 60
(θ1 = θ2 = 30°, θ3 = θ4 = 60°), the panning parameters

estimated for all ten pieces are equal to the panning parameters

used to generate the mixtures when rounded to the nearest

integer degree and delay in samples. For one of the pieces, an

extra panning parameter is found, which, however is close to

the true ones. The mean error rate for the mixtures with these

panning parameters is approximately 31%. For the mixtures

with θ̄ = 70 (θ1 = 30°, θ2 = 25°, θ3 = 60°, θ4 = 65°),

Fig. 4. Spectrogram (top) and pitch estimates (bottom) of a multi-pitch
mixture of four sources from the Bach10 database with amplitude and delay
panning applied to the submixtures.

the estimated panning parameters for eight of the mixtures

are equal to the parameters used to generate the mixtures,

when they are rounded to integer values. For the two mixtures

with wrongly estimated panning parameters, two panning

parameters are estimated, and they lie between the parameters

used to generate the mixtures. For the mixtures with these

panning parameters, the mean error rate is approximately 29%.

To evaluate the performance of the proposed method when the

panning parameters are wrongly estimated, an experiment was

conducted where mixtures were generated with amplitude and

delay panning, with source panning parameters θ1 = θ2 = 30°,

θ3 = θ4 = 60°, respectively (the mixtures are the same as in

the third column of the table), however, in the fundamental

frequency estimation step, the panning parameters are ignored

(the sources are wrongly assumed to be panned to the center),

i.e., they are θ1 = θ2 = θ3 = θ4 = 45°. The results show a

consistent increase in the performance of the proposed method

for all the mixtures, when the panning angles between the

sources increase, and the panning parameters are estimated

using the method proposed in [36]. Although the error rates in-

crease when the panning parameters are ignored, the proposed

method still works, and the error rate is approximately 42%.

This result confirms that it is useful to take the panning param-

eters into account when estimating fundamental frequencies in

stereophonic mixtures. Fig. 4 shows the spectrogram of one of

the mixtures, along with the fundamental frequency estimates.

The panning parameters used to generate the mixture were

θ1 = θ2 = 30°, θ1 = θ2 = 60°. The data points have been

sampled, to make the figure easier to read.

To evaluate the proposed detection algorithm in Section

III-F, experiments have been conducted using single-channel

mixtures generated using both IOWA and Bach10 data. In

these experiments, the maximum number of sources is set to

six, and the probability of false alarm is set to Pfa = 0.05.

The IOWA mixtures considered are similar to the ones in the

experiment on monophonic IOWA mixtures, i.e., consisting of
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TABLE VI
PERFORMANCE OF THE PROPOSED METHOD FOR IOWA MIXTURES USING

THE PROPOSED DETECTION ALGORITHM.

Chord type Accuracy Precision Recall F-measure Etotal

Maj 7 0.8623 0.8713 0.9885 0.9248 0.0350
Min 7 0.8583 0.8771 0.9776 0.9229 0.0438
Dom 7 0.8450 0.8563 0.9856 0.9148 0.0263
Hdim 7 0.8103 0.8629 0.9211 0.8894 0.1216
Dim 7 0.8321 0.8769 0.9350 0.9032 0.0940
Min/Maj 7 0.8398 0.8753 0.9546 0.9120 0.0765
Aug 7 0.8290 0.8775 0.9386 0.9044 0.1070

Mean 0.8395 0.8710 0.9573 0.9102 0.0720

TABLE VII
PERFORMANCE OF THE PROPOSED METHOD FOR BACH10 MIXTURES

USING THE PROPOSED DETECTION ALGORITHM.

Piece Accuracy Precision Recall F-measure Etotal

1 0.5130 0.7022 0.6556 0.6781 0.5110
2 0.4514 0.6737 0.5777 0.6220 0.6041
3 0.4685 0.6697 0.6093 0.6380 0.5764
4 0.4090 0.6554 0.5210 0.5806 0.6354
5 0.4250 0.6759 0.5337 0.5965 0.6197
6 0.4222 0.6667 0.5352 0.5938 0.6149
7 0.5043 0.6901 0.6519 0.6705 0.6087
8 0.4596 0.7022 0.5709 0.6298 0.6075
9 0.4134 0.6344 0.5427 0.5850 0.6304
10 0.4295 0.6556 0.5546 0.6009 0.5739

Mean 0.4496 0.6726 0.5753 0.6195 0.5982

84 four-note chords. The Bach10 mixtures are generated by

mixing all four tracks of each of the 10 pieces. The panning

parameters for the two sets of data are the same, i.e., for one of

the submixtures, the parameters are θ1 = 30° and τ1 = [0 1]T ,

while for the other submixture, the parameters are θ2 = 60°

and τ2 = [1 0]T , respectively. For the IOWA mixtures, the

panning parameters are assumed known, while the panning

parameters for the Bach10 mixtures are estimated using the

method presented in [36].

Table VII shows the total error rates for the mixtures. The

mean error rate for the IOWA mixtures is approximately 7%,

which resembles the performance of the proposed method

when processing monophonic mixtures with assumed known

polyphony (see Table III). For the Bach10 mixtures, the

performance of the proposed method has deteriorated when

compared to the performance for the monophonic mixtures

with assumed known polyphony (see the bottom row in Table

IV). A possible reason for the decrease in the performance of

the proposed method for the Bach10 mixtures is that in many

of the frames of the mixture, the fundamental frequencies of

the sources are related such that they are difficult to estimate

(see Fig. 3). Furthermore, as previously mentioned, the signal

power of the mixture components exhibit greater variation

than for the IOWA mixtures. This means that for some of the

components, the signal-to-interference ratio (SIR) will be quite

low, which in turn means that we can expect the performance

to worsen.

V. CONCLUSION

In this paper, the problem of estimating multiple fundamen-

tal frequencies in stereophonic music mixtures is considered.

Often, fundamental frequency estimation methods struggle

when the components of an observed mixture are related to

each other, e.g., when the harmonics of the sources coincide.

To address this problem, the proposed method is based on

a multi-channel harmonic signal model, in which the pan-

ning parameters of the sources in a mixture are taken into

account. Furthermore, to estimate the fundamental frequen-

cies in mixtures of sources with harmonic overlap, a code-

book of amplitude vectors is trained using single-instrument

recordings and used when estimating the amplitudes of the

mixture components. In the experimental validation of the

proposed method, the data was generated using signals from

two datasets, i.e., the IOWA database of music instrument

recordings, and the Bach10 database of multitrack recordings

of J. S. Bach pieces. Experiments were conducted to evaluate

the performance of the proposed method, which is compared

to the performance of an expectation-maximization algorithm

where the amplitudes of the sources are estimated using

least squares (EM-LS), a multi-pitch estimator based on the

enhanced summary autocorrelation function (ESACF), and

a transcription method which is trained on note templates

(BW2015). Different mixture configurations were used in

the experiments. Monophonic mixtures of varying polyphony

were used to validate the codebook approach for multiple

fundamental frequency estimation for a varying number of

source components. The results show that proposed method

outperforms the methods to which it is compared for all

the IOWA mixtures, and most of the Bach10 mixtures. To

evaluate the proposed method when processing stereophonic

mixtures, amplitude and delay panning was applied to source

signals from the Bach10 database before mixing them. The

proposed method was evaluated for both unknown panning

parameters (estimated using a recently proposed method for

panning parameter estimation), and erroneously estimated pan-

ning parameters. The results show an increase in performance,

when the mixture components are separated via panning.

When ignoring the panning parameters, the results show that

the proposed method still works. The proposed method is

also evaluated for monophonic mixtures with an unknown

number of sources, where the proposed detection scheme (see

Section III-F) is used to estimate the polyphony. For the

IOWA mixtures used in this part of the evaluation, the results

are similar to those for monophonic mixtures with known

polyphony, while for the Bach10 mixtures the performance has

decreased. A possible reason for the decrease in the perfor-

mance is that the components of the Bach10 mixtures exhibit

greater variation in signal power than the components of the

IOWA mixtures. Overall, the results indicate that the proposed

method outperforms the transcription methods and multipitch

estimators to which they are compared. The extension of

the harmonic signal model to multiple channels, and the

restriction on the amplitudes of the harmonic components of

each source via a codebook of amplitude vectors is relatively

straightforward, which is one of the principal advantages of
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this type of method. For non-parametric methods, such modifi-

cations may be more difficult. Future work includes extending

the signal model to allow, e.g., inharmonicity, investigating

different ways of imposing smoothness on the amplitudes of

the harmonic components (e.g., different ways of training the

amplitude codebooks), and testing the proposed methods in

some of the applications mentioned in Section I.
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