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Abstract We develop new results about a sieve methodology for estimation of min-
imal state spaces and probability laws in the class of stationary categorical processes.
We first consider finite categorical spaces. By using a sieve approximation with vari-
able length Markov chains of increasing order, we carry out asymptotically correct
estimates by an adapted version of the Context Algorithm (see Rissanen (1983)). It
thereby yields a nice graphical tree representation for the potentially infinite dimen-
sional minimal state space of the data generating process. This procedure is also
consistent for increasing size countable categorical spaces. Finally, we show similar
results for real-valued general stationary processes by using a quantization procedure
based on the distribution function.
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Key words and phrases. Context Algorithm, sieve approximation, time series, state space estimation, tree
model representation, strong mixing sequence.

1 Introduction

The assumption that a sequence of data belongs to a certain type of models, helps to better
understand the features of the analyzed realizations and allows in particular to predict
possible developments of the underlying process. On the other hand, a fixed model almost
never corresponds to reality. The method of sieves (Grenander (1981)) combines the
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advantages of a model but allows model-misspecification for any finite sample size. It only
requires that in the limit, as sample size tends to infinity, some basic assumptions such as
stationarity hold.
For the estimation of general stationary processes, we propose the method of sieves with
variable length Markov chains of increasing order. These models are still Markovian of
potentially high order, but with a sparse memory having some states lumped together.
In favourable cases, for example when the process has a memory which tends to certain
”directions”, this yields a drastic reduction in the number of parameters to be estimated
without restricting necessarily to short memories.
The advantage of the presented method in comparison to the use of full Markov chains is
higher efficiency for estimation. For a full Markov chain of order d taking values in a finite
categorical space X , the number of free parameters is |X |d (|X | − 1) (|X | = cardinality
of X ), which is already very big for moderate values of d. Estimation is therefore very
poor in many practical applications with only moderate values of d. Since the dimension
of the models in the class of full Markov chains grows exponentially in the order d, their
structure is not so flexible as in the case of variable length Markov chains. Consequently,
as described in Remark 7, variable length Markov chain approximation is often naturally
linked to an increasing order d = dn which is polynomial in the sample size n, whereas
full Markov chains typically use an approximation of order dn = O(log(n)). The idea of
sieve approximation is better understood thanks to a nice graphical representation. This
uses trees, which grow downwards and whose branches stand for the relevant history of
the underlying process (see Subsection 2.2).
For general stationary processes taking values in a finite categorical space, the probability
distribution and the minimal state space, i.e. the relevant memory for future outcomes,
are approximated by that of variable length Markov chains of increasing order. For the
latter the estimation is performed by using an adapted version of the Context Algorithm
(see Rissanen (1983),Weinberger, Rissanen and Feder (1995) and Bühlmann and Wyner
(1999)), whose main operations are local decision between two possible states.
If the minimal state space has finite length (the underlying process is thus a variable
length Markov chain), then the Context Algorithm consistently finds the right model (see
also Weinberger, Rissanen and Feder (1995) and Bühlmann and Wyner (1999)). The
most important new result in our article is given for the estimate of the memory of a
process, whose order is infinite; in this case, the Context Algorithm selects automatically
variable length Markov chains whose orders grow to infinity for increasing sample size.
This new development guarantees broader perspectives: the adaptation of models to data
is now possible without necessarily assuming finite minimal state spaces. Similar results
are shown to hold also for increasing size categorical spaces. The operation of the Context
Algorithm can hence be also interpreted as a model selection in the class of variable length
Markov chains. Attacking this problem with conventional criteria, such as AIC or BIC, is
computationally infeasible.
For real-valued general stationary processes, we present a quantization procedure based on
the distribution function, which partitions R into a countable union of disjoint intervals.
Since for the quantization becoming finer, the quantized process takes value in a categorical
space with increasing alphabet, we can apply the above proceedings to achieve consistent
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estimates.
Our results have potential impact to a variety of applications: to mention a few, modelling
of categorical time-series (for example DNA sequences, see Bühlmann and Wyner (1999),
Braun and Müller (1998), quantization of nonlinear stationary real-valued time-series (see
Section 4.2) and sieve-bootstrapping stationary categorical time-series.
In the first section we define the variable length Markov chains on a finite categorical
space and give a tree representation of their minimal state space, which will be useful
in the second section, when describing a version of the Context Algorithm proposed by
Bühlmann and Wyner (1999). Theoretical results about consistent estimation of the
minimal state space and the probability distribution of general stationary processes are
given in the third section, whether for countable or uncountable spaces, the latter treated
with a quantization procedure. A small simulation experiment is also given there. The
last section contains all the proofs.

2 Variable Length Markov Chains

2.1 Definition

Let X be a finite categorical space and (Xt)t∈Z an X -valued stationary Markov chain of
finite order p. We denote by P the probability distribution of (Xt)t∈Z on XZ and use the
notation

P (xba) := PP [Xb
a = xba] ,

P (xb|xb−1
a ) := PP [Xb = xb|Xb−1

a = xb−1
a ] , for xba ∈ X b−a+1 ,

where in general for a, b ∈ Z ∪ {−∞,∞}, a < b, xba := xb, xb−1, ..., xa. Thus, (Xt)t∈Z is
specified by

P (x1|x0
−p+1) , for x1 ∈ X and x0

−p+1 ∈ X p.

Without loss of generality we concentrate on the random variable X1, since by stationarity,
the transition probabilities are time-homogeneous. The random variable X1 might not
necessarily be influenced by its full history x0

−p+1. Therefore, it is important to distinguish
between relevant and irrelevant states in the infinite past and then lump irrelevant states
together yielding a possibly parsimonious Markov chain. Formalizing this idea leads to
the concept of variable length Markov chains.

Definition 1 Let X be a finite categorical space and (Xt)t∈Z an X -valued stationary
process.

(i) The projection function

c : X∞ −→
∞⋃
i=0
X i (X 0 = ∅) , x0

−∞ 7−→ c(x0
−∞) = x0

−`+1 ,
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where

` = `(x0
−∞) := min{p : P (x1|x0

−∞) = P (x1|x0
−p+1) , ∀x1 ∈ X} ,

is called the context function of the process (Xt)t∈Z.

(ii) The elements of the set {c(x0
−∞) : x0

−∞ ∈ X∞} are called contexts of the process
(Xt)t∈Z.

The name context derives from the fact, that now the random variable X1 does no more
depend on the full history x0

−p+1, as in the case of a Markov chain of order p, but only on
some pieces of variable length `(·) from the infinite past x0

−∞.
From Definition 1 we see that the context length `(·) and the context function c(·) are
equivalent, because c(·) is a projection function and `(x0

−∞) =
∣∣c(x0

−∞)
∣∣, ∀x0

−∞ ∈ X∞.

Definition 2 Let X be a finite categorical space and (Xt)t∈Z an X -valued stationary
process with context function c(·). The smallest integer d, such that∣∣c(x0

−∞)
∣∣ = `(x0

−∞) ≤ d , ∀x0
−∞ ∈ X∞,

is called the order of the context function. If d < ∞, then (Xt)t∈Z is called stationary
variable length Markov chain (VLMC) of order d.

Obviously, a VLMC of order d can be embedded in a Markov chain of order d, however
with a memory of variable length `(·) ≤ d. The case `(·) ≡ 0 coincides with an inde-
pendent, stationary process. If c(x0

−∞) = x0
−d+1, ∀x0

−∞ ∈ X∞, then (Xt)t∈Z is a full
Markov chain of order d. Since there is a large variety of context functions of order d with
different structures (particularly of sparse type), VLMC’s of order d build a more flexible
class of processes than full Markov chains of order d, and they better face the curse of
dimensionality.

2.2 Tree Representation

Let (Xt)t∈Z be a stationary VLMC of order d with context function c(·) and probability
distribution P on XZ. Because of stationarity, P is completely specified by its transitions
probabilities: P (x1|c(x0

−∞)) , x1
−∞ ∈ X∞, which themselves are functions of the values

of the context function c(·). The latter are thus the minimal state space of the process
(Xt)t∈Z.
For better insight of a VLMC, it is convenient to adopt a tree representation for c(·). This
will also be useful later, when fitting a VLMC to general stationary processes.
A tree is a directed graph composed by nodes and edges. We consider for our purposes
trees, which grow downwards. The root, i.e. the node on top, is connected to any other
node by means of exactly one branch (or path). From every internal node there originate
at most |X | edges. The branches connecting the root with the final nodes represent the
values of the context function c(·). The following example should clarify our objective to
use a tree representation for the context function.
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Example 1 Let X = {0, 1, 2} and (Xt)t∈Z be an X -valued VLMC of order 2 with context
function c(·) given by

c(x0
−∞) =



00, if x0
−1 = 00 , x2

−∞ arbitrary
01, if x0

−1 = 01 , x2
−∞ arbitrary

02, if x0
−1 = 02 , x2

−∞ arbitrary
1, if x0 = 1 , x1

−∞ arbitrary
2, if x0 = 2, x−1 ∈ {1, 2} , x2

−∞ arbitrary
20, if x0

−1 = 20 , x2
−∞ arbitrary.

The minimal state space is represented by the tree in Figure 1. For instance, the branch
most on the left stands for the context c(x0

−∞) = 00.

0

-1

0 1 2

0 1 2 0

Figure 1: Minimal state space for Example 1.

To represent a VLMC we do not necessarily need a full tree, i.e. a tree with exactly |X |
edges growing down from every internal node (this would correspond to a full Markov
chain), but in many cases it suffices to use a sparse tree (which is one of the important
advantages of the concept of a VLMC). It is also important to note, that there are two
different types of nodes in the tree representation of a VLMC, indicated with black and
white (see Example 1), which give rise to the next definition.

Definition 3 Let X be a finite categorical space and (Xt)t∈Z an X -valued stationary
variable length Markov chain of order d with context function c(·).

(i) The tree representation of

τ := {w : w = c(x0
−∞), x0

−∞ ∈ X∞}

is called the (|X |-ary) context tree of the process (Xt)t∈Z.

(ii) The tree representation of

τ t := {w : w ∈ τ and wu /∈ τ, ∀u ∈ X}

is called the terminal (|X |-ary) context tree of the process (Xt)t∈Z.
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Example 1 (Continued) The context tree of the process (Xt)t∈Z is given by

τ = {00, 01, 02, 1, 2, 20} ,

which are all nodes of the tree in Figure 1, and the terminal context tree by

τ t = {00, 01, 02, 1, 20} ,

which consists of all the black nodes in Figure 1 only.

The context tree τ is the minimal state space of a VLMC with context function c(·). It
is clear from Definition 3, that we can reconstruct the context function c(·) from either
the context tree τ or the terminal context tree τ t, and vice versa. The notion of terminal
context tree will be useful in Section 3, when formulating an algorithm to estimate the
context tree.

3 The Context Algorithm

Let X be a finite categorical space and (Xt)t∈Z a stationary process taking values in X .
Given realizations X1, ..., Xn, the aim is to find a good estimate of both the underlying
context function c(·), which can be of infinite order, and the probability distribution P of
(Xt)t∈Z. An adapted version of the Context Algorithm (see Bühlmann and Wyner (1999),
Rissanen (1983)) can be used for addressing this problem.
Let nw := n− |w|+ 1. We denote by

N (w) =
nw∑
t=1

1{Xt+|w|−1
t =w} , w ∈

∞⋃
i=1
X i (1)

the number of occurrences of the string w in the data sequence Xn
1 . Let

P̂ (w) =
N (w)
n

, P̂ (u|w) =
N (uw)
N (w)

, w, u ∈
∞⋃
i=1
X i. (2)

Asymptotically P̂ (w) possess the same features as the more correct N (w)/(n− |w| + 1),
since nw is of the same order as n. We have opted for P̂ (w) for simplicity in the definition
of P̂ (u|w).
The operation of the Context Algorithm takes place in three steps. Starting from a
predetermined initial terminal context tree for the data X1, ..., Xn, we prune its branches,
until the past history, represented by the latter, becomes relevant. The condition for
pruning (see 3) is based on the Kullback-Leibler distance, which is defined by

D(P,Q) :=
∑
x∈X

P (x) log
(P (x)
Q(x)

)
,

6



where P,Q are probability measures on the categorical space X .

The Context Algorithm

Step 1

Fit to the data X1, ..., Xn the terminal context tree τ t(0), whose (terminal)
nodes have been observed at least twice in Xn

1 .

Step 2

Let wu = x0
−`+1, with u = x−`+1 and w = x0

−`+2, be a terminal node of
τ t(0) (if ` = 1, the pruned version is the empty branch, i.e. the root node).
Prune wu = x0

−`+1 to w = x0
−`+2, if

∆wu := D(P̂ (·|wu), P̂(·|w))N (wu) < Kn (3)

where

Kn ∼ C log(n) , C > 2 |X |+ 3. (4)

Construct in this way the terminal context tree τ t(1).

Step 3

Repeat Step 2 with τ t(i) instead of τ t(i−1) (i = 1, ...) until no more pruning
is possible. Denote the final obtained terminal context tree by τ̂ t and the
corresponding context function by ĉ(·).

The underlying context function c(·) is hence estimated by means of ĉ(·), while the estimate
of the transition probability P (x1|c(x0

−∞)) is given by P̂ (x1|ĉ(x0
−∞)).

Remark 1 The initial terminal context tree τ t(0) in Step 1 is constructed on the basis of
at least two occurrences of every terminal node in the data sequence. This is reasonable
in practice. Asymptotic properties of the algorithm remain unchanged, when replacing
the number two by any other finite number. The order of testing the terminal nodes of
the terminal context tree τ t(i) in Step 2 is irrelevant.

Remark 2 The Context Algorithm prunes branches wu to w, for which the estimated
transition probabilities P̂ (·|wu) are close (in Kullback-Leibler sense) to P̂ (·|w). It is also
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possible to interpret the Context Algorithm as multiple likelihood ratio test, with an
acceptance region [0, log(n)] for the pruned tree (see Bühlmann and Wyner (1999), Remark
3.1).

Remark 3 The L1-distance ||P −Q||1 between P and Q is defined by

||P −Q||1 :=
∑
x∈X
|P (x)−Q(x)| ,

and it is well-known that (see Cover and Thomas (1991))

D(P,Q) ≥ 1
2
||P −Q||21.

One can show that consistency of the Context Algorithm is still valid when replacing
the Kullback-Leibler distance by the squared L1-distance; note, that the constant in the
cut-off value Kn has then to satisfy C > 4 |X |+ 6.

Remark 4 The cut-off value Kn ∼ C log(n), C > 2 |X |+3 for the pruning decision in Step
2 is specified by asymptotic considerations (see the proof of Theorem 1). The condition
on C comes from Lemma 4. An estimation of C has been given in Bühlmann (1998b).
The cut-off value can be interpreted as a stepwise (1 − α)-quantile with α = αn −→ 0
(n→∞). The necessity for αn converging to zero is explained in Rissanen (1989).

Remark 5 This adapted version of the Context Algorithm makes no a-priori restriction
on the length of the contexts of the process, such as `(·) = |c(·)| ≤ log(n)/ log(|X |)
employed in Weinberger, Rissanen and Feder (1995), which can be a severe restriction in
practical applications. However we will see in the next section, that to prove consistency
for the estimate of the context function, we assume some milder condition for |c(·)| (see
assumption (A3)).

4 Consistency

4.1 Processes with Values in a Finite Categorical Space

Let X be a finite categorical space and (Xt)t∈Z a general stationary X -valued process
with probability distribution P (defined on XZ). For such processes the order of the
context function c(·) may be infinite, since we do not assume the process (Xt)t∈Z to be
a VLMC and hence to have finite order. To prove consistency for the estimate of the
context function c(·) (given by the Context Algorithm) we approximate c(·) by a sequence
of context functions (cn(·))n∈N, corresponding to VLMC’s of increasing order and then
show, that the event {ĉn(·) = cn(·)} has asymptotically probability 1. This implies that
we approximate in a reasonable sense general stationary processes by VLMC’s.
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Definition 4 The truncated context function cn(·), n ∈ N, is defined by

cn(x0
−∞) :=


x0
−dn+1 , if

∣∣c(x0
−∞)

∣∣ ≥ dn , (dn)n∈N an increasing sequence,

c(x0
−∞) , otherwise.

Therefore, the branches of the context tree τ (corresponding to c(·)), which are too long,
particularly longer than dn, are cut off. This allows us to define a finite context tree τn,
n ∈ N, by means of the context function cn(·). With the Context Algorithm we then
estimate the truncated context function cn(·) by ĉn(·) (resp. the context tree τn(·) by
τ̂n(·)) and consequently the probability distribution P by P̂ĉn , being an estimated VLMC
with context function ĉn(·).

We make the following assumptions:

(A1) (Xt)t∈Z ∼ P is geometrically α-mixing with α-mixing coefficients (α(i))i∈N satisfying

α(i) ≤ Cανi , for some constants Cα > 0 and ν ∈ (0, 1).

(A2) For some γ ∈ (0, 1), some σ ∈ (0, 1) and some θ > 0, for all n sufficiently large,

Γn := min
w∈τ tn

P (w) ≥ 1
nγ

,

Υn := min
wu∈τ tn,u∈X

‖P (·|wu)− P (·|w)‖1 ≥
( log(n)1+θ

(nΓ(1−σ)/2
n )1−σ

)1/2
.

(A3) The order dn of the context tree τn satisfies, for all n sufficiently large,

dn ≤ nδ , for some δ ∈ (0, 1) ,

such that

[(nw)σ]− dn ≥ nλ , for some λ > 0 , and all w ∈ τn ,

where nw := n− |w| + 1 and [x] := max{` ∈ N : ` ≤ x}.

(A4) For the minimal transition probabilities, for all n sufficiently large,

min
x∈X ,w∈τn

P (x|w) ≥ 1
n
.

The assumptions (A2)-(A4) are all probabilistic conditions about the sparseness of the
terminal context tree τ tn.
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Remark 6 Because of the first condition in assumption (A2), the cardinality of the ter-
minal context tree τ tn is bounded by ∣∣τ tn∣∣ ≤ 1

Γn
≤ nγ .

The second condition in assumption (A2) is measuring relevance of terminal nodes in
comparison with their ancestors.

Remark 7 Assumption (A3) is about the maximal growth rate for the approximating
order of the context tree. Consider a full Markov chain of order dn. Then, |τn| = |X |dn ,
which by assumption (A2) is required to be smaller than nγ . Thus, the assumption
becomes

dn ≤
γ

log(|X |) log(n).

Hence, the choice of δ in the interval (0, 1) from (A3) is without restrictions. With VLMC’s
we can also treat models with a memory growing only in certain directions with dn of
polynomial order less than 1. This is a big advantage of VLMC’s in comparison with full
Markov chains.

The power of the Context Algorithm is shown in the next two theorems, which state,
that the estimate of the minimal state space and of the probability distribution of general
stationary processes is asymptotically correct. According to Theorem 1, the Context Algo-
rithm selects asymptotically the right final-dimensional model components and increases
model complexity for infinite dimensional components. This cannot be achieved by more
traditional selection criterion such as AIC or BIC due to the extremely large number of
possible submodels.

Theorem 1 Under the assumptions (A1)-(A4),

P[τ̂n = τn] −→ 1 (n→∞).

Since knowledge of the context function cn(·) (or of the terminal context tree τ tn) is equiv-
alent to knowing the context tree τn, the assertion of Theorem 1 can be restated as

P[ĉn(·) = cn(·)] −→ 1 (or P[τ̂ tn = τ tn] −→ 1) (n→∞).

Theorem 2 Under the assumptions (A1)-(A4),

(i) sup
x∈X ,w∈τn

∣∣∣P̂ĉn(x|w)− P (x|w)
∣∣∣ = oP (1) ,

(ii) P̂ĉn(xr1) P−→ P (xr1) (n→∞) , ∀xr1 ∈ X r , ∀ r ∈ N.
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Example 2 We consider the threshold-AR(1) process (Yt)t∈Z defined by

Yt = m(Yt−1) + εt

m(x) = φx1{x>0} ,

where φ ∈ R with |φ| < 1, 1{·} the indicator function and εt iid ∼ F with F having a
density with respect to Lebesgue measure. The process (Yt)t∈Z is stationary and α-mixing
(see Doukhan (1994)). We then construct the process (Xt)t∈Z, defined on X = {0, 1} by

Xt := 1{Yt>0}.

The context function of (Xt)t∈Z is given by

c(x0
−∞) = x0

−h ,

where h = min{k : x−k = 0 and x0
−k+1 = 1 · · · 1} is depending on x0

−∞. Thus, the context
tree τ of (Xt)t∈Z grows up to the infinity as shown in Figure 2.
To support empirically the consistency of the estimate of the context tree τ we have
simulated six series of data with εt iid ∼ N (0, 1) and φ = 0.85, once with n=1000 and
once with n=10000. Then from each of the six series we have opted for the two most
representative. The choice of the cut-off value K in the Context Algorithm is purely
subjective: for n=1000 we used χ2

1;0.965/2 and for n=10000 χ2
1;0.995/2.

Whereas with 1000 data the estimates of τ show still small deviations from the right
structure (see Figure 3), those with 10000 data are almost perfect (see Figure 4).

0

-1

-2

-3

0 1

0 1

0 1

0 1

Figure 2: Context tree for Example 2.

4.2 Processes with Values in an Increasing Size Categorical Space

We now consider the case of an increasing size categorical space and without loss of gen-
erality denote it by Xn = {0, 1, ...,Mn − 1}, n ∈ N. To estimate the minimal state space
and the probability distribution of general stationary processes with values in Xn, we can
make use of the same ideas developed in Section 3. For the cut-off constant C = Cn of
the Context Algorithm we have now C > 2 |Xn|+ 3 which increases with at least the same
order as |Xn|.
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Figure 3: Estimates of the context tree for Example 2 with 1000 data.

We make the further assumption:

(A5) The cardinality of Xn satisfies for all n sufficiently large

|Xn| ≤ log(n)1+µ , for some µ > 0. (5)

Corollary 1 Under the assumptions (A1)-(A5),

P[τ̂n = τn] −→ 1 (n→∞).
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Figure 4: Estimates of the context tree for Example 2 with 10000 data.

Corollary 2 Under the assumptions (A1)-(A5),

(i) sup
x∈Xn ,w∈τn

∣∣∣P̂ĉn(x|w)− P (x|w)
∣∣∣ = oP (1) ,

(ii) P̂ĉn(xr1) P−→ P (xr1) (n→∞) , ∀xr1 ∈ (Xn)r , ∀ r ∈ N.

An important application of the above corollaries occurs when quantizing real-valued pro-
cesses. Let (Yt)t∈Z be a process with values in R. We consider quantizers

Qn : R −−−→ Xn = {0, 1, ...,Mn − 1}
y ∈ Ix,n 7−→ Qn(y) = x

where (Ix,n)x∈Xn is a partition of R into disjoint sets, i.e.

·⋃
x∈Xn

Ix,n = R and Ix1,n ∩ Ix2,n = ∅ for x1 6= x2.

The process (Xt)t∈Z := (Qn(Yt))t∈Z is then a process with values in Xn.
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A specific example of a quantizer is as follows. Assume (Yt)t∈Z to be an R-valued
stationary, geometrically α-mixing process with mixing coefficients (αY (i))i∈N and one-
dimensional continuous cumulative distribution function F . The assumption on the dis-
tribution function F is only made to avoid discontinuity problems. We define the quantized
process (Xt)t∈Z on Xn = {0, 1, ...,Mn − 1} (and hence the quantizer Qn) by

Xt :=


0 , −∞ < Yt ≤ F−1( 1

Mn
)

x , F−1( x
Mn

) < Yt ≤ F−1(x+1
Mn

) , x = 1, ...,Mn − 2

Mn − 1 , F−1(Mn−1
Mn

) < Yt <∞.

(6)

The process (Xt)t∈Z is hence Xn-valued, stationary and geometrically α-mixing with co-
efficients (αX(i))i∈N bounded by those of the process (Yt)t∈Z. By means of the Context
Algorithm we estimate the probability distribution Pn of (Xt)t∈Z on (Xn)Z by P̂n,ĉn . We
define an estimate of F by

F̂n(y) :=
∑

Qn(y)≤y
P̂n,ĉn ◦Qn(y) , y ∈ R

and those of the finite-dimensional distributions F (r), r ∈ N, of (Yt)t∈Z by

F̂ (r)
n (yr1) :=

∑
Qn(yr1 )≤yr1

P̂n,ĉn ◦Qn(yr1) , y ∈ R

Qn(yr1) := (Qn(y1), ..., Qn(yr)) , r ∈ N.

where the summation range is (defined) componentwise.

Corollary 3 Under the assumptions (A1)-(A5),

F̂ (r)
n (yr1) P−→ F (r)(yr1) (n→∞) , ∀ yr1 ∈ Rr , ∀ r ∈ N.

The quantizer in (6), but replacing F by the empirical one-dimensional distribution F̂
and approximating the quantized process by a VLMC, has been successfully applied in
practical problems (see Bühlmann (1998a)). Our Corollaries 1-3 justify this procedure on
a theoretical basis.

5 Proofs

To prove Theorem 1 we make use of some ideas developed in Bühlmann and Wyner (1999)
and apply an exponential inequality for α-mixing processes.
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Proof of Theorem 1 The error event En = {τ̂n 6= τn} for sample size n for the context
tree τn can be decomposed into the disjoint union of the under- and the overestimation
events Un and On, where

Un = {∃ w ∈ τ̂n with wu ∈ τn and wu /∈ τ̂n, for some u ∈
∞⋃
i=1
X i}

On = {∃ w ∈ τn with wu ∈ τ̂n and wu /∈ τn, for some u ∈
∞⋃
i=1
X i}

Therefore, we can bound the error of estimating the underlying context tree by separately
treating the under- and the overestimation. Let us first bound the underestimation event
Un.

Lemma 1 Under the assumptions (A1)-(A3),

P[Un] = O(exp(−D log(n)1+θ)) (7)

for some constant D > 0 and θ as in assumption (A2).

Proof We define a sequence (ρn)n∈N by ρn := nΓ(1−σ)/2
n and then using the event

Hn = {N (w) ≥ ρn for every w ∈ τ tn}

we partition Un. It follows, that

P[Un] ≤ P[Un ∩Hn] + P[Hc
n].

To bound P[Un ∩Hn] we apply the same techniques used in Bühlmann and Wyner (1999)
and reformulate for our case Lemma 5.1 and Lemma 5.2. First, from Bühlmann and
Wyner (1999) (see (5.1)-(5.4)) we have

P
[
Un ∩Hn

]
≤

∑
wu∈τ tn,u∈X

nwu∑
k=ρn

nw∑
j=k

P
[
D(P̂ (·|wu)||P̂ (·|w)) < C log(n)/k,N (wu) = k,N (w) = j

]
≤ |X |

( ∑
wu∈τ tn,u∈X

nwu∑
k=ρn

nw∑
j=k

(
sup
x∈X

P
[ ∣∣∣P̂ (x|wu)− P (x|wu)

∣∣∣2 ≥ an(k), N (wu) = k
]

+ sup
x∈X

P
[ ∣∣∣P̂ (x|w)− P (x|w)

∣∣∣2 ≥ an(k), N (w) = j
]))

≤ |X |
∣∣τ tn∣∣n2

(
sup
x∈X

P
[ ∣∣∣P̂ (x|wu)− P (x|wu)

∣∣∣2 ≥ an(k), N (wu) = k
]

+ sup
x∈X

P
[ ∣∣∣P̂ (x|w)− P (x|w)

∣∣∣2 ≥ an(k), N (w) = j
])

(8)

where

an(k) =
(Υn

2
−
√
C logn
k

)2
. (9)
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Note that for n sufficiently large

min
k≥ρn

an(k) ≥ log(n)1+θ

ρ1−σ
n

. (10)

We treat the two last summands in (8) in the same manner denoting with v either wu or
w. Let p = P (x|v) and p̂ = P̂ (x|v). In order to find an upper probabilistic bound for the
event

{|p̂− p|2 ≥ an(k), N (v) = k}

consider the extension of X1, ..., Xn to the infinite sequence (Xt)t∈N and define Ii(v) as the
time of the ith occurrence of v in (Xt)t∈N. Then let Zi = XIi+1 be the symbol that occurs
after the ith occurrence of v in (Xt)t∈N. The stochastic process (Zi)i∈N is stationary and
α-mixing with mixing coefficients bounded by the same bound as the α-mixing coefficients
of (Xt)t∈N. Define Yi = 1{Zi=x} and observe, that

{∣∣∣N(v)∑
i=1

Yi
N (v)

− p
∣∣∣2 > an(k), N (v) = k

}
⊆
{∣∣∣ k∑

i=1

Yi
k
− p
∣∣∣2 > an(k)

}
and consequently

P[|p̂− p|2 > an(k), N (v) = k] ≤ P
[∣∣∣ k∑

i=1

Yi
k
− p
∣∣∣2 > an(k)

]
. (11)

Lemma 2 Let (Yi)i∈N with E[Yi] = p be the above defined process and an(k) be as in (9).
Then under the assumptions (A1)-(A2), for k ≥ ρn and for all n sufficiently large

sup
0<p<1

P
[∣∣∣ k∑

i=1

Yi
k
− p
∣∣∣2 > an(k)

]
≤ 4 exp

(
− 1

16
log(n)1+θ

)
+

11
√

5Cα
ν σ̃

n
(5−σ)(1−σ)

4 ν σ̃n ,

for σ̃ = σ(1−σ)(1− γ
2 (1−σ)), Cα as in assumption (A1) and σ, θ as in assumption (A2).

Proof The process (Xt)t∈Z has α-mixing coefficients α(j) ≤ Cαν
j, ν ∈ (0, 1), and the

same bound applies also for the α-mixing coefficients of the process (Yi)i∈N. Since (Yi)i∈N
is a zero-mean real-valued process with |Yi| ≤ 1, for all i ∈ N, we get from Theorem 1.3,
Chapter 1.4 in Bosq (1996)

sup
0<p<1

P
[∣∣∣ k∑

i=1

Yi
k
− p
∣∣∣2 > an(k)

]
= sup

0<p<1
P
[∣∣∣ k∑

i=1

(Yi − p)
∣∣∣ > k

√
an(k)

]
≤ 4 exp

(
− 1

8
qan(k)

)
+ 22

(
1 +

4√
an(k)

)1/2
qα([k/2q]). (12)
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From inequality (10) by choosing q := [k1−σ/2] we obtain for k ≥ ρn and for all n suffi-
ciently large

qan(k) ≥ 1
2
ρ1−σ
n

log(n)1+θ

ρ1−σ
n

=
1
2

log(n)1+θ.

For the second summand in the inequality (12) we have by (10) and by ρn ≤ n1−σ

(
1 +

4√
an(k)

)
≤ 1 + 4ρ

1−σ
2

n ≤ 5n
(1−σ)2

2 .

Since q = [k1−σ/2] ≤ k1−σ/2 ≤ n1−σ/2 and ρn = (nΓ(1−σ)/2
n )1−σ ≥ n(1−σ)(1− γ

2
(1−σ)) we

get

q · α([k/2q]) ≤ 1
2
n1−σα([ρσn]) ≤ 1

2
n1−σα([n(1−σ)(1− γ

2
(1−σ))σ])

≤ Cα

2ν(1−σ)(1− γ
2

(1−σ))σ
n1−σνσ(1−σ)(1− γ

2
(1−σ))n.

The assertion of the lemma follows then immediately. 2

A direct application of Lemma 2 to the above inequality (8) proves, that for k, j ≥ ρn and
for all n sufficiently large

P[Un ∩Hn] ≤ 2 |X |n2+γ(4 exp(− 1
16

log(n)1+θ) +
11
√

5Cα
ν σ̃

n
(5−σ)(1−σ)

4 ν σ̃n)

= O(exp(−D1 log(n)1+θ)) , for some constant D1 > 0.

The next step is to find a bound for P[Hc
n]. First of all note, that since

E[N (w)] =
nw∑
t=1

P (w) ≥ nwΓn ≥ nwΓ(1−σ)/2
n (13)

and ρn <
1
2nwΓ(1−σ)/2

n , for all n sufficiently large, we have

P[Hc
n] ≤

∑
w∈τ tn

P[N (w) < ρn] =
∑
w∈τ tn

P[N (w)− E[N (w)] < ρn − E[N (w)]]

≤
∑
w∈τ tn

P[N (w)− E[N (w)] < −1
2
nwΓ(1−σ)/2

n ]

≤
∑
w∈τ tn

P[|N (w)− E[N (w)]| > 1
2
nwΓ(1−σ)/2

n ]

≤
∣∣τ tn∣∣ sup

w∈τ tn
P[|N (w)− E[N (w)]| > 1

2
nwΓ(1−σ)/2

n ] (14)
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Lemma 3 Under the assumptions (A1)-(A3), for all n sufficiently large

sup
w∈τn

P
[
|N (w)− E[N (w)]| > 1

2
nwΓ(1−σ)/2

n

]
≤ 4 exp(− 1

128
n(1−σ)(1−γ)) + 33Cανn(1−σ)(1+ γ

4
)νn

λ
,

for Cα as in assumption (A1), σ, γ as in assumption (A2) and λ as in assumption (A3).

Proof For t ≤ nw and w ∈ τn we define Wt := 1{Xt+|w|−1
t =w} − Pn(w). The process

(Wt)t∈Z has mean zero with |Wt| ≤ 1, for all t ∈ Z. We have

N (w)− E[N (w)] =
nw∑
t=1

Wt.

Note that for the α-mixing coefficients (αW (i))i∈N of (Wt)t∈Z we obtain

αW (i) ≤


α(i− |w|+ 1) , if i ≥ |w|

1 , if i < |w|
(15)

where (α(i))i∈Z are the α-mixing coefficients of (Xt)t∈Z. From Theorem 1.3, Chapter 1.4
in Bosq (1996) we get for q := [(nw)1−σ/2], σ as in assumption (A2) and w ∈ τn

P
[
|N (w)− E[N (w)]| > 1

2
nwΓ(1−σ)/2

n

]
= P

[∣∣∣ nw∑
t=1

Wt

∣∣∣ > 1
2
nwΓ(1−σ)/2

n

]
≤ 4 exp

(
− 1

32
qΓ1−σ

n

)
+ 22

(
1 + 8Γ−(1−σ)/2

n

)1/2
qαW

(
[(nw)/2q]

)
.

Because of q ≥ (nw − 1)1−σ/2 and assumption (A2), we have for all n sufficiently large

qΓ1−σ
n ≥ 1

2
(nw − 1)1−σ

nγ(1−σ)
=

1
2
(nw − 1

n

)1−σ
n(1−γ)(1−σ) ≥ 1

4
n(1−γ)(1−σ) (16)

and (
1 + 8Γ−(1−σ)/2

n

)1/2 ≤ (9Γ−(1−σ)/2
n

)1/2 ≤ 3n
(1−σ)γ

4 . (17)

For the other part of the second summand in inequality (16), because of q ≤ n1−σ/2,
assumption (A3) and (15),

qαW ([(nw)/2q]) ≤ 1
2
n1−σαW ([(nw)σ]) ≤ 1

2
n1−σα([(nw)σ]− |w|+ 1)

≤ Cαν

2
n1−σν([(nw)σ ]−|w|) ≤ Cαν

2
n1−σνn

λ
. (18)

Since the upper bounds of the inequalities (16), (17) and (18) do not depend on w, the
assertion of the lemma then follows immediately. 2
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From inequality (14) we obtain

P[Hc
n] ≤ nγ(4 exp(− 1

128
n(1−σ)(1−γ)) + 33Cανn(1−σ)(1+ γ

4
)νn

λ
) = O(exp(−D2n

ξ)) , (19)

for some constants D2 > 0 and 0 < ξ < min(λ, (1− σ)(1− γ)).

This completes the proof of Lemma 1. 2

In order to find a bound for the overestimation event On, we use the same method as in
Bühlmann and Wyner (1999).

Lemma 4 Under the assumptions (A1)-(A4), for all n sufficiently large

P[On] ≤ |X | · n−r , (20)

where r := C − 2 |X | − 3 > 0 and C is the cut-off constant of the Context Algorithm.

Proof We define the event On(swv) for s ∈ τn, w ∈
∞⋃
i=1
X i and v ∈ X with swv /∈ τn by

On(swv) = {∆swv ≥ C log(n), N (swv) ≥ 2}.

Then from Lemma 5.3 in Bühlmann and Wyner (1999), using also assumption (A4) we
have

P[On(swv)] ≤ n−C+2|X |+1P[sw ∈ τ̂(0)].

Now let L denote the number of sequences occurring at least twice in the sequence
X1, ..., Xn. Since

P[On] ≤
∑
swv

P[On(swv)] ≤ n−C+2|X |+1 ·
∑
swv

P[sw ∈ τ̂(0)]

≤ n−C+2|X |+1 |X |E[L] ≤ |X | · n−C+2|X |+3

and C > 2 |X |+ 3 (see (4)), the assertion of the lemma follows then immediately. 2

By Lemma 1 and Lemma 4, we complete the proof of Theorem 1. 2

Proof of Theorem 2 (i) For ε > 0, let Gn := {
∣∣∣P̂ĉn(x|w)− P (x|w)

∣∣∣ > ε}. Then, by

means of the event H̃n = {N (w) ≥ ρn = nΓ(1−σ)/2
n for every w ∈ τn}, we partition Gn

and get

P[Gn] ≤ P[Gn ∩ H̃n] + P[H̃c
n]. (21)

Using the same arguments as in (14), we have

P[H̃c
n] ≤ |τn| sup

w∈τ tn
P[|N (w)− E[N (w)]| > 1

2
nwΓ(1−σ)/2

n ].
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Since |τn| ≤
∣∣τ tn∣∣ dn ≤ n2, from Lemma 3 follows

P[H̃c
n] = O(exp(−D2n

ξ)) ,

for some constants D2 > 0 and 0 < ξ < min(λ, (1− σ)(1− γ)). Now, note that

P
[
Gn ∩ H̃n

]
≤

n∑
k=ρn

P
[ ∣∣∣P̂ĉn(x|w)− P (x|w)

∣∣∣ > ε,N (w) = k
]
.

For all n sufficiently large, we have ε > an(k) (an(k) as in (9)) and thus by means of (11)
and Lemma 2 we obtain

P
[
Gn ∩ H̃n

]
≤

n∑
k=ρn

P
[ ∣∣∣P̂ĉn(x|w)− P (x|w)

∣∣∣ >√an(k), N (w) = k
]

≤
n∑

k=ρn

P
[ ∣∣∣∣∣

k∑
i=1

Yi
k
− p
∣∣∣∣∣ >√an(k)

]

≤ (n− ρn) sup
0<p<1

P
[ ∣∣∣∣∣

k∑
i=1

Yi
k
− p
∣∣∣∣∣ >√an(k)

]
= O(exp(−D3 log(n)(1+θ))) ,

for some constant D3 > 0 and θ as in assumption (A2).

(ii) Follows from part (i). 2

Proof of Corollary 1 We follow the proof of Theorem 1 and note that for the un-
derestimation event Un the found bound still holds (Lemma 1 with a constant D̃ different
from D). For the overestimation event On we have from Lemma 4

P[On] ≤ |Xn| · n−C+2|Xn|+3.

Because of assumption (A5) and C > 2 |Xn| + 3 the assertion of Corollary 1 follows
immediately. 2

Proof of Corollary 2 See the proof of Theorem 2. 2

Proof of Corollary 3 Follows immediately from the assertion of Corollary 2, since F
is continuous and the quantization becomes finer. 2
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