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Abstract
Generalized Linear Latent Variable Models (GLLVM), as de�ned in Bartholomew

and Knott (1999) enable modelling of relationships between manifest and latent vari-
ables. They extend structural equation modelling techniques, which are powerful
tools in the social sciences. However, because of the complexity of the log-likelihood
function of a GLLVM, an approximation such as numerical integration must be used
for inference. This can limit drastically the number of variables in the model and lead
to biased estimators. In this paper, we propose a new estimator for the parameters
of a GLLVM, based on a Laplace approximation to the likelihood function and which
can be computed even for models with a large number of variables. The new estimator
can be viewed as a M -estimator, leading to readily available asymptotic properties
and correct inference. A simulation study shows its excellent �nite sample properties,
in particular when compared with a well established approach such as LISREL. A real
data example on the measurement of wealth for the computation of multidimentional
inequality is analysed to highlight the importance of the methodology.
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1 Introduction

In many scienti�c �elds researchers use models based on theoretical concepts that cannot

be observed directly. This is particularly the case in social sciences. In economics, for ex-

ample, there is a vast literature on welfare (see e.g. Sen, 1987) which involves measuring the

standard of living of people or households in di�erent economies. In psychology, researchers

often use concepts such as intelligence and anxiety, which are important within the frame-

work of theoretical models. However, when these models are validated using observed data,

the problem of measurement arises. How can welfare or intelligence be measured? For wel-

fare, income is often taken as a substitute, and in psychology, researchers have developed

a battery of tests to measure intelligence indirectly.

In these situations, the researcher deals with theoretical concepts that are not observ-

able directly (they are latent) and on the other hand, to validate the models, he (or she)

uses observable quantities (manifest variables) that are proxies for the concepts of interest.

This problem is not new and statistical methods have long been available; see e.g. Jöreskog

(1969), Bartholomew (1984a), and Arminger and Küsters (1988). Factor analysis is one

such model. A model is proposed to link manifest variables (supposed to be multivariate

normal) with latent variables (or factors) and likelihood analysis can be carried out. Since

the work of Jöreskog (1969), much research has been done to extend simple factor anal-

ysis to more constrained models under the heading of covariance structure or structural

equations modelling. Most of these developments are readily available in software, such as

LISREL (see Jöreskog, 1990; Jöreskog and Sörbom, 1993) or gllamm in the package Stata

(Rabe-Hesketh, Skrondal, and Pickles, 2004).

Although LISREL incorporates methods dealing with a wide variety of applied prob-

lems, it assumes that the manifest variables are multivariate normal. When this is obviously

not the case (as in the case of binary variables), the manifest variables are taken as indirect
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observations of multivariate normal variables.

In our opinion, it is essential that the manifest variables are treated as they are, i.e.

binary, ordinal or continuous, and that the model that formalizes the relationship between

the manifest and the latent variables should take the type of data into account. Such mod-

els were �rst investigated by Bartholomew (1984a,b) who considered the case of binary

data. More recently, Moustaki (1996) and Moustaki and Knott (2000) considered mixtures

of manifest variables. They proposed a generalized linear latent variable model (GLLVM)

(Bartholomew and Knott, 1999) that allows one to link latent variables to manifest vari-

ables of di�erent type (see Section 2.2).

The statistical analysis of GLLVM presents a di�culty: since the latent variables are

not observed, they must be integrated out from the likelihood function. Moustaki (1996)

and Moustaki and Knott (2000) propose using a simple Gauss�Hermite quadrature as

a numerical approximation method. While this is feasible in fairly simple models, its

application is often infeasible when the number of latent variables is larger than two; see

Section 5. Moreover, simple Gauss�Hermite quadrature can completely miss the maximum

for certain functions and can be ine�cient in other cases.

A possible improvement is provided by an adaptive Gaussian quadrature which appro-

priately centers and rescales the quadrature nodes and consequently is much less likely to

miss the maximum; it requires a many fewer quadrature points (Rabe-Hesketh, Skrondal,

and Pickles, 2002). This technique is implemented in the function gllamm in Stata to �t

generalized latent and mixed models and can be used to �t our models. However, due to

a long computing time, the resulting estimators could not be compared in Section 5.

We propose instead using the Laplace approximation of the likelihood function. This

idea has been used in other models, for example by Davison (1992). In the case of gener-

alized linear mixed models (GLLAMM), which can be seen as a generalization of GLLVM,

a simpli�ed version of the Laplace approximation is used by Breslow and Clayton (1993)
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and Lin and Breslow (1996) which results in the estimator proposed by McGilchrist (1994)

and Lee and Nelder (1996) (see also Section 3.3). Laplace approximation of the likelihood

has the important advantage with respect to quadrature that it allows one to estimate

more complex models as well as models with correlated latent variables. Moreover, a di-

rect estimation of individual scores on the latent variables space (see Section 3.3) and the

statistical properties of the estimator to carry out valid inference can easily be derived.

Finally, alternative estimation methods include methods based on stochastic approxima-

tions such as MCMC and MCEM; see Yau and McGilchrist (1996). While these methods

have been applied successfully in many complex situations, there are potential drawbacks

such as long computation times and stopping rules.

The paper is organized as follows: in Section 2, we brie�y introduce the underlying

variable approach to dealing with non�normal manifest variables and the GLLVM. In

Section 3, we propose a new estimator for the GLLVM based on Laplace approximation

of the likelihood function, investigate its statistical properties, and compare it to similar

estimators. Explicit formulae in the case of a GLLVM with binomial and a mixture of

normal and binomial manifest variables are given in the Appendix. In Section 4, we show

that the model has multiple solutions and a procedure is proposed to constrain the solution

to be unique. We compare our estimator with those provided by LISREL and the GLLVM

with Gauss�Hermite quadrature in Section 5. This reveals that the new estimator has

better performance in terms of bias and variance. In Section 6 we analyse a real data

set from a consumption survey in Switzerland to build wealth indicators to be used for

inequality measurement.
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2 Two approaches for modelling latent variables
2.1 The underlying variable approach of LISREL

The underlying variable approach assumes that all the manifest variables are multivariate

normal. If a variable is not normal, it is assumed to be an indirect observation of an

underlying normal variable. This approach can be formulated as follows. Let X be a

Bernoulli manifest variable, z a vector of latent variables, and α a matrix of parameters.

Let the conditional distribution of Y given z be normal with mean αTz and unit variance.

Given z, a link is then established between X and Y in that it is assumed that X takes

the value 1 if Y is positive and 0 otherwise. Then,

E(X|z) = P (Y > 0 | z) = Φ(αTz),

where Φ(·) is the normal cumulative distribution function. We obtain from the last equation

that

probit{E(X | z)} = Φ−1{E(X | z)} = αTz.

Consequently, the assumption of an underlying normal variable in the LISREL approach

can be compared to the one with the GLLVM (see below), except that the link function

is a probit instead of a logit. These two link functions are very close (Lord and Novick,

1968), so that in our simulations the estimators provided by LISREL can be compared to

those we propose (see Section 5).

In practice, the model parameters are estimated in three steps (Jöreskog, 1969, 1990).

First, the thresholds of the underlying variables are estimated from the univariate means

of the manifest variables. In a second step, the correlation matrix between manifest and

underlying variables is estimated using polychoric, polyserial and Pearson correlations and,

�nally, the model parameters are obtained from a factor analysis.
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2.2 Generalized Linear Latent Variable Model

In this section, we present the GLLVM starting from the framework of generalized linear

models (McCullagh and Nelder, 1989). The purpose of a GLLVM is to describe the rela-

tionship between p manifest variables x(j), j = 1, . . . , p, and q < p latent variables z(k),

k = 1, . . . , q. It is assumed that the latent variables explain the observed responses in

the manifest variables, so that the underlying distribution functions are the conditional

distributions gj(x
(j)|z), j = 1, . . . , p, which belong to the exponential family

gj(x
(j)|z) = exp

{
(x(j)αT

j z− bj(α
T
j z))/φj + cj(x

(j), φj)
}

, (1)

and z = [1, z1, . . . , zq]
T = [1, zT

(2)]
T . Each distribution gj will then depend on the type of

manifest variable x(j), as well as on a set of parameters αj = [αj0, . . . , αjq]
T (also called

loadings) and scale φj.

The essential assumption in GLLVM is that, given the latent variables, the manifest

variables are conditionally independent. In other words, the latent variables explain all

the dependence structure between the manifest variables. Hence, the joint conditional

distribution of the manifest variable is
∏p

j=1 gj(x
(j)|z). It is also assumed that the density

h(z(2)) of the latent variables is standard normal and that they are independent. This last

assumption can be relaxed (Section 3). The joint distribution of the manifest and latent

variables is
p∏

j=1

gj(x
(j)|z)h(z(2)). (2)

Since the latent variables z(2) are not observed, their realizations are treated as missing,

and are integrated out, giving the marginal density of the manifest variables

f�,�(x) =

∫ { p∏
j=1

gj(x
(j)|z)

}
h(z(2))dz(2). (3)

Note that gj(x
(j)|z) may be either normal or binomial according to j, or, indeed, another

exponential family distribution. Our aim is to obtain estimators for the parameters αj
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and φj, with j = 1 . . . p. Then one can use them to establish a relationship between the

manifest variables x and the latent variables z.

Note also that (3) formulates the general approach used with missing values (Dempster,

Laird, and Rubin, 1977). However, an explicit expression for (3) avoiding the integration

doesn't exist, and a numerical approximation is needed. The EM algorithm can then be

used to �nd the approximate maximum likelihood estimator of α and φ, as is pointed out

in Sammel, Ryan, and Legler (1997). Notice that a numerical approximation is performed

within each step of the EM algorithm.

Let us now consider a sample, x1, . . . ,xn with xi = [x
(1)
i , . . . , x

(p)
i ], i = 1, . . . , n. Let

α = [α1, . . . , αp] be a (q +1)× p matrix of structural parameters, and φ = [φ1, . . . , φp] the

vector of scale parameters. Then the log-likelihood is

l(α,φ|x) =
n∑

i=1

log
∫ [ p∏

j=1

exp
{

x
(j)
i αT

j z− bj(α
T
j z)

φj

+ cj(x
(j)
i , φj)

}]
h(z(2))dz(2) (4)

where bj and cj are known functions that depend on the chosen distribution gj (McCullagh

and Nelder, 1989).

Equation (4) contains a multidimensional integral which cannot be computed explicitly,

except when all the gj(x
(j)|z) are normal. Consequently, an approximation of this integral

is needed, on which the bias and variance of resulting estimators will depend.

3 Estimators based on Laplace approximation

The Gauss�Hermite quadrature (GHQ) approximation to the integral in (4) proposed by

Moustaki (1996) is easy to implement but has several drawbacks. Firstly, the accuracy

increases with the number of quadrature points, but decreases exponentially with the

number of latent variables q. As a consequence, it is currently impossible in practice to

handle more than two latent variables. Secondly, making correct inference on the resulting

estimators seems to be very di�cult. Finally, the resulting estimator appears to be biased;
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see Section 5.

With the Laplace approximation, inference is easier and the error rate is of order p−1,

where p is the number of manifest variables. This property means that the approximation

improves as the number of latent variables grows (because with more latent variables

one needs more manifest variables). The Laplace approximation is also well designed for

functions with a single optimum, which is the case of our likelihood function. In addition,

the Laplace approximation yields automatically estimates of individual scores ẑi(2) on the

latent variable space; see Section 3.3. Finally, in our simulations, we found that it leads to

approximately unbiased estimators; see Section 5.

3.1 Approximation of the likelihood function

By (1) and (3), the marginal distribution f�,�(x) can be written as

f�,�(xi) =

∫
ep·Q(�,�,z,xi)dz(2), (5)

where

Q(α, φ, z,xi) =
1

p

[
p∑

j=1

{
x

(j)
i αT

j z− bj(α
T
j z)

φj

+ cj(x
(j)
i , φj)

}
−

zT
(2)z(2)

2
− q

2
log (2π)

]
. (6)

Applying the q-dimensional Laplace approximation to the density (5) (De Bruijn, 1981;

Tierney and Kadane, 1986), we obtain

f�,�(xi) =

(
2π

p

)q/2

[det{−U(ẑi)}]−1/2 epQ(�,�,ẑi,xi){1 + O(p−1)}, (7)

where

U(ẑi) =
∂2Q(α, φ, z,xi)

∂zT ∂z

∣∣∣∣
z=ẑi

= −1

p
Γ(α, φ, ẑi), (8)

Γ(α,φ, ẑi) =

p∑
j=1

1

φj

∂2bj(α
T
j z)

∂zT ∂z

∣∣∣∣
z=ẑi

+ Iq, (9)
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and ẑi = [1 ẑi(2)] is the maximum of Q(α,φ, z,xi), i.e. the root of ∂Q(α, φ, z,xi)/∂z = 0

de�ned through the iterative equation

ẑi(2) = ẑi(2)(α,φ,xi) =

p∑
j=1

1

φj

{
x

(j)
i − ∂bj(α

T
j ẑi)

∂αT
j ẑi

}
αj(2), i = 1, . . . , n, (10)

with αj = [αj0,α
T
j(2)]

T .

Notice that there are n vectors ẑi(2) to be determined by the implicit equations (10)

and each ẑi(2) depends on all the parameters of the model and the observation xi.

3.2 Laplace approximated maximum likelihood estimators

The Laplace approximation eliminates the integral from the marginal distribution of xi.

From (6), (7), (9), and (9), we obtain the approximate log-likelihood function

l̃(α,φ|x) =
n∑

i=1

(
−1

2
log detΓ(α,φ, ẑi)

+

p∑
j=1

{
x

(j)
i αT

j ẑi − bj(α
T
j ẑi)

φj

+ cj(x
(j)
i , φj)

}
−

ẑT
i(2)ẑi(2)

2

)
. (11)

The new estimators of α and φ based on the Laplace approximation are found by equating

the derivative of (11) to zero and inserting (10) into (11). For the structural parameters

α, we have

∂l̃(α, φ|x)

∂αkl

=
n∑

i=1

[
−1

2
tr

{
Γ(α,φ, ẑi)

−1∂Γ(α,φ, ẑi)

∂αkl

}
+

1

φk

{
x

(k)
i − ∂bk(α

T
k z)

∂αT
k z

∣∣∣∣
z=ẑi

}
ẑil

]
= 0,

(12)

where ẑil is the lth element of the vector ẑi and ∂Γ
∂�kl

is the (q× q) matrix obtained from Γ

by di�erentiating all its elements with respect to αkl, k = 1, . . . , p, l = 0, . . . , q.

Similarly, for φ, we obtain

∂l̃(α,φ|x)

∂φk

=
n∑

i=1

[
−1

2
tr

{
Γ(α,φ, ẑi)

−1∂Γ(α,φ, ẑi)

∂φk

}

− 1

φ2
k

{x(k)
i αT

k ẑi + bi(α
T
k ẑi)}+

∂ck(x
(j)
i , φk)

∂φk

]
= 0, k = 1, . . . , p. (13)
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Hence (12) and (13) provide a set of estimating equations de�ning the estimators for

the model parameters. In addition, (10) is required for the computation of all nq terms

zi(2).

In the derivation of the estimating equations, the model has been kept as general

as possible without specifying the conditional distributions gj(x
(j)|z). In the Appendix,

we give speci�c expressions for the quantities used in the log-likelihood (11), the score

functions (12) and (13), and ẑi(2) in (10) for binomial and a mixture of binomial and

normal manifest variables. The analytic computations are tedious but straightforward.

An alternative approach would be to use numerical derivatives in (12) and (13). In this

paper, we focus our examples on binomial distributions and a mixture of normal and

binomial distributions.

3.3 Interpretation of the new estimator

A way to interpret the estimators derived in Section 3.2 is to consider the zi as parameters

in (2). Then the �likelihood� would be

l∗(α,φ, z|x) =
n∑

i=1

log

{
p∏

j=1

gj(x
(j)
i |zi)h(zi(2))

}

=
n∑

i=1

[ p∑
j=1

{
x

(j)
i αT

j zi − bj(α
T
j zi)

φj

+ cj(x
(j)
i , φj)

}

−
zT

i(2)zi(2)

2
− q

2
log (2π)

]
= p

n∑
i=1

Q(α,φ, zi,xi)

(14)

which di�ers from (11) by the additive term

−1

2

n∑
i=1

log det {Γ(α, φ, zi)} − n
q

2
log(2π). (15)

Taking the derivative of l∗ with respect to α and φ doesn't lead to the same expressions for

the score function as (12) and (13) and hence, the corresponding estimators are di�erent.
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However, taking the derivative of l∗ with respect to zi(2) leads to the same implicit equation

(10) de�ning the ẑi(2) needed by the Laplace approximation. Hence, the ẑi(2) are directly

interpretable as the �maximum likelihood estimators� of the individual latent scores. They

can then be used for example to represent graphically the subject in the latent variable

space.

It should be stressed that (14) de�nes the Lee and Nelder (1996) h-likelihood. In the

context of generalized linear mixed models, (14) is recognized by Breslow and Clayton

(1993, equation (6)) as Green (1987)'s penalized quasi likelihood. The maximization of the

h-likelihood is also called BLUP (best linear unbiased prediction) by McGilchrist (1994).

It is then clear that because of the inclusion of the additive term (15) in the log-likelihood,

the Laplace Approximated Maximum Likelihood Estimators (LAMLE) for α,φ we pro-

pose is di�erent from the penalized quasi likelihood estimator or indeed the maximum

h-likelihood estimator. On the other hand, the estimated latent scores ẑi(2) are penalized

quasi likelihood or maximum h-likelihood estimators.

3.4 Statistical properties of the Laplace approximated likelihood
estimator

Let θ̂L be the vector containing all the LAMLE of α and φ for a GLLVM. It is de�ned by

the estimating equations (12) and (13), where the ẑi(2) are de�ned by (10).

The LAMLE θ̂L belongs to the class of M -estimators (Huber, 1964, 1981) which are

implicitly de�ned through a general Ψ-function as the solution in θ of
n∑

i=1

Ψ(xi; θ) = 0.

The Ψ-function for the LAMLE is given by (12) and (13). Then, under the conditions

given in Huber (1981, pp. 131�133) or Welsh (1996, p. 194), the LAMLE is consistent and

asymptotically normal, i.e.

n1/2(θ̂L − θ0)
D→ N(0, B(θ0)

−1A(θ0)B(θ0)
−T )
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as n →∞, where

A(θ0) = E
[
Ψ(x; θ0)Ψ

T (x; θ0)
]
, B(θ0) = −E

[
∂Ψ(x; θ0)

∂θ

]
.

These conditions must be checked for each particular conditional distribution gj.

Moreover, the function l̃(α,φ|x) in (11) plays the role of a pseudo-likelihood function

and can be used to construct likelihood-ratio type tests as in Heritier and Ronchetti (1994,

p. 898), by de�ning ρ(x; θ) = −l̃(α,φ|x). This allows one to carry out inference and

variable selection in GLLVM.

4 Constraints and correlated latent variables

The estimating equations which de�ne the LAMLE, or the maximum likelihood estimator,

may have multiple solutions. In this section, we �rst investigate the number of constraints

which are required to make the solution unique and we propose a procedure to select those

constraints. Then, we extend the LAMLE to the case of correlated latent variables.

4.1 Constraining the Laplace approximated likelihood estimators

Let us recall that the GLLVM model is based upon a generalized linear model. Therefore,

ν(E(x|z)) = α0 + αTz(2),

where ν(·) is a link function and we de�ne z(2) to be centered and standardized. Let H

be an orthogonal matrix of dimension q × q. It is possible to rotate the matrix α by

pre-multiplying it by H and thus to obtain a new matrix of parameters α∗ = Hα. Since

z(2) is centered and standardized and H is orthogonal, z∗(2) = Hz(2) is standard normal.

Moreover, the rotation H does not change the following product:

α∗Tz∗(2) = αTHTHz(2) = αTz(2).
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Therefore, a rotation of α gives a new matrix of parameters which is also a solution for

the same model. This is the problem encountered in factor analysis. If a unique solution is

required, it is necessary to impose constraints on the parameters α.This is typically done

in exploratory model setting, where instead of constraining the matrix α, one uses, for

instance, a varimax rotation.

An orthogonal matrix of size q × q possesses q(q − 1)/2 degrees of freedom. In other

words, such a matrix needs at least q(q−1)/2 constraints on its elements to be unique and

this represents the number of constraints we have to impose to obtain a unique solution

for the model.

Proposition Let α̂ be a matrix of dimension q × p containing the LAMLE of α.

If all the elements of the upper triangle of α̂T are constrained, then α̂T is completely

determined, except for the sign of each column. If at least one constraint of the jth column,

with j = 2, . . . , q, is di�erent from zero, then the sign of the corresponding column is

determined.

The proof is given in Appendix B.

4.2 Laplace approximated likelihood estimators of a generalized
linear latent variable model with correlated latent variables

The �exible form of the Laplace approximation allows us to handle correlated latent vari-

ables. Let Σ be the correlation matrix of the latent variables and consider latent variables

with unit variance. Then, the density of z(2) becomes

h(z(2)) = (2π)−q/2 |detΣ|−1/2 exp
(
−1

2
zT

(2)Σ
−1z(2)

)
,

which implies that the function Q, de�ned by (6), is modi�ed as follows:

Q(α,φ, z,xi,Σ) =
1

p

[
p∑

j=1

{
x

(j)
i αT

j z− bj(α
T
j z)

φj

+ cj(x
(j)
i , φj)

}
−

zT
(2)Σ

−1z(2)

2
− q

2
log(2π)

]
.

(16)
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Therefore, the implicit equation (10) de�ning z(2) becomes

ẑi(2) := ẑi(2)(α, φ,xi,Σ) =

p∑
j=1

1

φj

{
x

(j)
i − ∂bj(α

T
j ẑi)

∂αT
j ẑi

}
Σαj(2). (17)

Let

Γ(α,φ, ẑi,Σ) =

p∑
j=1

1

φj

∂2bj(α
Tz)

∂z∂zT

∣∣∣∣
z=ẑi

+ Σ−1. (18)

The estimating equations de�ning the LAMLE with correlated latent variables are the

modi�ed (12) and (13) using (18) and, in addition, the q(q−1)/2 equations for the elements

σkl of Σ:

∂l̃(α,φ|x)

∂σkl

=
n∑

i=1

[
−1

2
tr

{
Γ(α,φ, ẑi,Σ)−1∂Γ(α, φ, ẑi,Σ)

∂σkl

}

−1

2
tr

(
Σ−1 ∂Σ

∂σkl

)
+

1

2
ẑT

i(2)Σ
−1 ∂Σ

∂σkl

Σ−1ẑi(2)

]
= 0. (19)

5 Simulation study

In this section, we compare the LAMLE with uncorrelated latent variables with the maxi-

mum likelihood estimator using the GHQ approximation and the LISREL estimators that

we take as the benchmarks. We have considered models containing one, two, and four la-

tent variables but we present here the results only for four latent variables. The former can

be found in Huber, Ronchetti, and Victoria-Feser (2003). Since the GHQ approximation

for more than two latent variables is not available, we perform the simulations with four

latent variables only for the LAMLE and LISREL estimators.

We also tried to compare the performance of the LAMLE with the maximum likelihood

estimator with adaptative GHQ approximation as implemented in the package gllamm in

Stata, but as we mentioned above, it took about 20 hours to compute the approximate

maximum likelihood estimator of the parameters of the simple model with 10 manifest

variables, 2 latent variables and 60 observations. Therefore, we didn't pursue this compar-

ison.
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5.1 Design

To study the behavior of the LAMLE and to compare it with the benchmarks, we generated

samples from GLLVM with known parameters. As we showed in Section 2, this design can

be used to compare the LAMLE with the estimates provided by LISREL because they can

be interpreted as generalized linear models with a probit link function.

Random samples of size n are generated in S-Plus. The procedure is as follows:

1. Initialize all the parameters:

• p(q + 1) elements in the matrix α,

• p1 variances de�ning the vector φ for the normal variables.

2. Generate q independent standard normal vectors z of size n.

3. Generate a vector µ = E[X|z] of conditional means of all responses de�ned by

ν(µ) = αTz,

ν being the link functions corresponding to the distributions of each manifest variable.

4. Generate all responses x based upon the means µ that were calculated in step 3 as

well as the scale parameters φ for the normal responses.

A quasi-Newton procedure (Dennis and Schnabel, 1983) is used to solve the implicit

equations (10), (12) and (13). The algorithm is written in C and the program is available

from the authors upon request. For the LISREL estimators, the covariance matrix is

computed using LISREL 8.51 and a factor analysis is then performed with S-Plus. Then,

the estimators for the binomial loadings are multiplied by 1.7 to make them comparable

with the LAMLE; see Section 2.1.

500 samples of size 400 were simulated. They contain 8 normal and 8 binomial responses

with 4 latent variables. The parameters are given in Table 1.
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Normal items
α0 3.2 3.3 3.1 3.5 3.2 3.4 3.3 3.6
α1 -2.0 -4.0 7.0 0.0 5.0 -8.0 -8.0 -3.0
α2 0.0 1.0 -3.0 -2.0 0.0 3.0 4.0 5.0
α3 0.0 0.0 3.0 0.0 -1.0 2.0 4.0 -9.0
α4 0.0 0.0 0.0 2.0 -4.0 2.0 6.0 -4.0
φ 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Binomial items
α0 -0.7 0.9 0.8 0.8 0.1 0.3 0.4 -0.8
α1 0.6 0.6 -0.3 -0.6 0.0 0.5 0.3 -0.1
α2 0.1 0.2 -0.3 -0.2 -0.4 0.2 0.5 -0.3
α3 0.0 0.8 -0.3 -0.5 0.2 0.6 0.4 -0.5
α4 0.4 0.6 -0.3 -0.2 -0.7 -0.5 -0.2 -0.3

Table 1: Parameters for a model with four latent variables

5.2 Discussion of the results

Models with a single latent variable are rather simple and all methods (including the GHQ

approximation) give good results: all estimators are unbiased. The results are not shown

here but can be found in Huber, Ronchetti, and Victoria-Feser (2003).

In models containing two latent variables, large biases appear with the GHQ approxi-

mations and the LISREL approach; again see Huber, Ronchetti, and Victoria-Feser (2003).

The bias with GHQ approximation is explained by the fact that it is based upon the in-

tegration on pre-speci�ed and �xed quadrature points. With 16 and 8 quadrature points,

this grid becomes coarser and it can happen that the peak of the log-likelihood is missed.

On the other hand, the Laplace approximation searches for the point that is the maximum

of the likelihood and approximates adaptively (i.e. for each xi) the function in its neigh-

borhood. The LISREL estimators are unbiased for normal manifest variables but show

large biases for some of the binomial manifest variables.

Here, we consider the results of the model with 8 normal and 8 binomial responses and
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4 latent variables. Boxplots of the values of the estimators of α1 and α3 are presented in

Figures 1 and 2. As was the case for one and two latent variables, the LAMLE are almost

unbiased. On the other hand, the LISREL estimators for the loadings of binomial manifest

variables are signi�cantly biased. Similar plots were obtained for other parameter values.

����������������������

Insert Figures 1 and 2 here

����������������������

6 Consumption data analysis

In this section, we analyze a real data set and compare the results provided by the LAMLE

and LISREL. The data are from the consumption survey in 1990 in Switzerland, provided

by the Swiss Federal Statistical O�ce. This database consists of a series of wealth indicators

measured on households. Some of these variables are expenditures for general categories

such as food, housing, leisure, others are the ownership by the household of items such as

TV, washing machine, freezer, etc. The �rst type of variables are continuous, whereas the

second type are binary (with the value 1 indicating the presence of the item). Such data

are typically used for the measurement of multidimensional inequality (e.g. Maasoumi,

1986): the wealth indicators are �rst aggregated to independent wealth distributions on

which inequality measures are then computed. We propose here to use a GLLVM to

construct the aggregated measures of wealth. We have selected the following variables

(the currency is the Swiss franc) from the survey: logarithm of total income (income),

logarithm of expenditure for housing and energy (housing), logarithm of expenditure for

clothing (clothing), logarithm of expenditure for leisure activities (leisure), presence of a

freezer (freezer), presence of a dishwasher (dishwasher), presence of a washing machine
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(washing), presence of a (color) television (TV), presence of a video recorder (video) and

presence of a car (car).

The sample size is n = 9907, after removal of missing data. We �t these data using

the GLLVM with six binary and four normal manifest variables and two latent variables

using the LAMLE. We also estimate the same parameters using LISREL as a comparison.

The parameter estimates and the standard errors for the LAMLE are presented in Table

2. Unfortunately, no standard errors for the estimates using LISREL are available.

We can interpret these results at two levels. First, when one compares the estimates

provided by the LAMLE and LISREL, we �nd that they are very similar for the parameters

of the normal items (constants, loadings and standard deviations), but they di�er quite

substantially for the binary items. The loadings provided by LISREL are systematically

smaller which indicates a probable bias since this feature was found in the simulation study.

Second, by looking at the estimates provided by the LAMLE, one can see that the �rst

latent variable is essentially determined by the income and expenditure variables (large

loadings) whereas the second latent variable is essentially determined by the ownership

variables. This suggests that concerning wealth distributions, a distinction should be made

between income-expenditure and capital. However, a more extensive study is needed (that

includes for example more items) before �nal conclusions can be drawn.
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Appendix A: LAMLE for GLLVM with binomial and a
mixture of binomial and normal manifest variables
A.1 Binomial manifest variables

Let X, with possible values 0, 1, . . . , m, have a binomial distribution with expectation

m · π(z). Using the canonical link function for binomial distributions, we have

π(z) =
exp(αTz)

1 + exp(αTz)
.

The scale parameter φ = 1 and the functions b and c in (1) are

b(αTz) = mlog{1 + exp(αTz)}, (20a)

c(x, φ) = c(x) = log
(

m
x

)
, (20b)

and

g(x|z) =

(
m
x

)
π(z)x{1− π(z)}(m−x). (21)

The log-likelihood for binomial responses, using the expressions in (11) is

l̃(α,φ|x) =
n∑

i=1

[
−1

2
log det

{
Γ(α, ẑi)

}

+

p∑
j=1

[
x

(j)
i αT

j ẑi −mlog{1 + exp(αT
j ẑi)}+ log

(
m

x
(j)
i

)]
−

ẑT
i(2)ẑi(2)

2

]
, (22)

with

Γ(α, ẑi) =

p∑
j=1

m
exp(αT

j ẑi)

{1 + exp(αT
j ẑi)}2

αj(2)α
T
j(2) + Iq =

p∑
j=1

mβjiαj(2)α
T
j(2) + Iq,

and βji = exp(αT
j ẑi)(1 + exp(αT

j ẑi))
−2. There, ẑi(2) is the solution of the implicit equation

(see (10)):

ẑi(2) =

p∑
j=1

{
x

(j)
i −m

exp(αT
j ẑi)

1 + exp(αT
j ẑi)

}
αj(2). (23)
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To compute the score functions, we �rst need

tr
{
Γ(α, ẑi)

−1∂Γ(α, ẑi)

∂αkl

}
= tr

[{ p∑
j=1

mβjiαj(2)α
T
j(2) + Iq

}−1

{ p∑
j=1

mβji

(
1− exp(αT

j ẑi)

1 + exp(αT
j ẑi)

∂αT
j ẑi

∂αkl

αj(2)α
T
j(2)

)
+ (1− δl0)(el ⊗αT

k + eT
l ⊗αk)

}]
,

(24)

where ⊗ denotes the Kronecker product and el is the vector of length q whose elements

are zeros except the lth one which is 1. Moreover,

∂bj(α
T
j ẑi)

∂αT
j ẑi

= m
exp(αT

j ẑi)

1 + exp(αT
j ẑi)

. (25)

Finally, by means of the generalized implicit functions theorem, we di�erentiate ẑi(2) and

obtain

∂ẑi(2)

∂αk0

= −mβkiΓ(α, ẑi)
−1αk(2) (26a)

∂ẑi(2)

∂αk(2)

= Γ(α, ẑi)
−1

[
−mβkiαk(2)ẑ

T
i(2) +

{
x

(k)
i −m

exp(αT
j ẑi)

1 + exp(αT
j ẑi)

}
Iq

]
. (26b)

The LAMLE of a model with binomial manifest variables is completely de�ned by the

pseudo log-likelihood (22) and its score functions (12) whose components are given by

(23), (24), (25), and (26).

A.2 Mixture of binomial and normal manifest variables

In practice, a mixture model with both normal and binomial responses is more realistic

than the models we presented in A.1. Let us suppose that among the p manifest variables,

the �rst p1 are normal and the last p − p1 follow a binomial distribution. To create the

approximate model, the procedure is the same as before except that all sums over j are

separated into two parts, depending on whether j is related to a normal or a binomial
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variable. Consequently, the pseudo log-likelihood takes the following form:

l̃(α,φ|x) =
n∑

i=1

[
−1

2
log det

{
Γ(α,φ, ẑi)

}

+

p1∑
j=1

[
αT

j ẑi

φj

(
x

(j)
i − αT

j ẑi

2

)
− 1

2

((
x

(j)
i

)2

φj

+ log(2πφj)

)]

+

p∑
j=p1+1

[
x

(j)
i αT

j ẑi −mlog{1 + exp(αT
j · ẑi)}+ log

(
m

x
(j)
i

)]
−

ẑT
i(2)ẑi(2)

2

]
, (27)

where

Γ(α,φ, ẑi) =

p1∑
j=1

αj(2)α
T
j(2)

φj

+

p∑
j=p1+1

mβjkαj(2)α
T
j(2) + Iq = Γ1(α,φ) + Γ2(α, ẑi) + Iq.

ẑi(2) is obtained through the implicit equation:

ẑi(2) =

p1∑
j=1

1

φj

(x
(j)
i −αT

j ẑi)αj(2) +

p∑
j=p1+1

{
x

(j)
i −m

exp(αT
j ẑi)

1 + exp(αT
j ẑi)

}
αj(2). (28)

We di�erentiate (27) to obtain the score functions. As normal responses are present in the

model, score functions for φ are also required. The di�erent components of equations (12)

and (13) are

∂Γ(α,φ, ẑi)

∂αkl

= (1− δl0)
(
el ⊗αT

i + eT
l ⊗αi

)( 1

φk

D1 + mβkiD2

)

+

p∑
j=p1+1

mβji

{
1− exp(αT

j ẑi)

1 + exp(αT
j ẑi)

∂αT
j ẑi

∂αkl

αj(2)α
T
j(2)

}
, (29a)

where

D1 =

{
1 : 1 ≤ i ≤ p1

0 : p1 < i ≤ p
and D2 =

{
0 : 1 ≤ i ≤ p1

1 : p1 < i ≤ p
,

and

∂Γ(α,φ, ẑi)

∂φk

= − 1

φ2
k

αk(2)α
T
k(2) +

p∑
j=p1+1

mβji

1− exp(αT
j ẑi)

1 + exp(αT
j ẑi)

∂αT
j ẑi

∂φk

αj(2)α
T
j(2). (29b)

Moreover,

∂ẑi(2)

∂αk0

=

{
− 1

φk
Γ(α,φ)−1αk(2), if 1 ≤ i ≤ p1

−mβkiΓ(α, ẑi)
−1αk(2), otherwise

(30a)
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∂ẑi(2)

∂αkl

=





1
φk

Γ(α,φ)−1

{
−αk(2)ẑ

T
i(2) + (x

(k)
i −αT

k ẑi)Iq

}
, if 1 ≤ i ≤ p1

Γ(α, ẑi)
−1

[
−mβkiαk(2)ẑ

T
i(2) +

{
x

(k)
i −m

exp(αT
j ẑi)

1+exp(αT
j ẑi)

}
Iq

]
, otherwise

(30b)

∂ẑi(2)

∂φk

= −Γ(α,φ)−1

{
1

φ2
k

(x
(k)
i −αT

i ẑi)αk(2)

}
, if 1 ≤ i ≤ p1. (30c)

Thus, the pseudo log-likelihood (27) is maximized when the score functions given by

(12) and (13) are set to zero, where expressions (23), (29) and (30) are used.

Appendix B: Proof of Proposition 1

First, we establish the proposition for a square matrix α̂.

Let α̂ = (α̂ij)1≤i,j≤q and α̂∗ = (α̂∗ij)1≤i,j≤q be two square matrices of dimension q × q

and H = (hij)1≤i,j≤q an orthogonal matrix of dimension q × q. If α̂ and α̂∗ have the same

upper triangle, and if α̂ = Hα̂∗, then it is straightforward to show that H is diagonal, i.e.

hij = ±δij, with 1 ≤ i, j ≤ q and δij the Kronecker symbol.

The extension to matrices of dimension p×q is trivial as α̂ (resp. α̂∗) can be partitioned

into two blocks α̂1 and α̂2 (resp. α̂∗
1 and α̂∗

2) of dimensions q × q and (p− q)× q:
(

α̂1

α̂2

)
= H

(
α̂∗

1

α̂∗
2

)

It remains to show that if at least one constraint of a column is di�erent from zero, then

the sign of this column is determined. Let α̂·j (resp. α̂∗
·j) be the jth column of α̂ (resp.

α̂∗) and let α̂i′j′ be an element of the upper triangle of α̂. Assume that it is di�erent from

zero, which means

α̂i′j′ = α̂∗i′j′ = a 6= 0.

Then, α̂ = Hα̂∗ implies that α̂i′j′ = hi′i′α̂
∗
i′j′ = a and hi′j′ = 1. Hence, the sign of the jth

column of α̂ is determined.
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Figure 1: Estimation of α1 for a model with four latent variables
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Figure 2: Estimation of α3 for a model with four latent variables
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Normal items
Income Housing Clothing Leisure

Constants
LAMLE 9.134 (0.019) 7.218 (0.020) 5.803 (0.023) 6.138 (0.020)
LISREL 9.133 7.217 5.801 6.137

Latent variable 1
LAMLE 1.110 (0.013) 1.047 (0.020) 1.229 (0.019) 1.210 (0.017)
LISREL 1.106 1.051 1.226 1.211

Latent variable 2
LAMLE 0.069 (0.024) -0.055 (0.030) 0.129 (0.034) 0.054 (0.031)
LISREL 0.134 0.006 0.193 0.118

Standard deviations
LAMLE 0.555 (0.005) 1.014 (0.005) 1.033 (0.008) 0.813 (0.007)
LISREL 0.556 1.013 1.033 0.811

Binary items
Freezer Dishwasher Washing

Latent variable 1
LAMLE 0.222 (0.033) 0.463 (0.038) 0.175 (0.046)
LISREL 0.064 0.139 -0.046

Latent variable 2
LAMLE 0.764 (0.041) 0.895 (0.046) 0.553 (0.056)
LISREL 0.307 0.310 0.575

Binary items
TV Video Car

Latent variable 1
LAMLE -0.110 (0.077) 0.109 (0.040) 0.628 (0.055)
LISREL -0.029 0.014 0.110

Latent variable 2
LAMLE 1.898 (0.122) 1.092 (0.063) 1.264 (0.057)
LISREL 0.236 0.392 0.308

Table 2: Parameter estimates for the consumption data with standard errors between
parenthesis when available.
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