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Estimation of Generalized Mixtures and
Its Application in Image Segmentation

Yves Delignon, Abdelwaheb Marzouki, and Wojciech Pieczynski

Abstract—We introduce in this work the notion of a generalized
mixture and propose some methods for estimating it, along
with applications to unsupervised statistical image segmentation.
A distribution mixture is said to be “generalized” when the
exact nature of components is not known, but each belongs
to a finite known set of families of distributions. For instance,
we can consider a mixture of three distributions, each being
exponential or Gaussian. The problem of estimating such a
mixture contains thus a new difficulty: We have to label each
of three components (there are eight possibilities). We show
that the classical mixture estimation algorithms—expectation-
maximization (EM), stochastic EM (SEM), and iterative condi-
tional estimation (ICE)—can be adapted to such situations once
as we dispose of a method of recognition of each component
separately. That is, when we know that a sample proceeds from
one family of the set considered, we have a decision rule for
what family it belongs to. Considering the Pearson system, which
is a set of eight families, the decision rule above is defined by
the use of “skewness” and “kurtosis.” The different algorithms
so obtained are then applied to the problem of unsupervised
Bayesian image segmentation. We propose the adaptive versions
of SEM, EM, and ICE in the case of “blind,” i.e., “pixel by pixel,”
segmentation. “Global” segmentation methods require modeling
by hidden random Markov fields, and we propose adaptations of
two traditional parameter estimation algorithms: Gibbsian EM
(GEM) and ICE allowing the estimation of generalized mixtures
corresponding to Pearson’s system. The efficiency of different
methods is compared via numerical studies, and the results of
unsupervised segmentation of three real radar images by different
methods are presented.

Index Terms—Bayesian segmentation, generalized mixture esti-
mation, hidden Markov fields, mixture estimation, unsupervised
segmentation.

I. INTRODUCTION

O
UR WORK addresses the mixture estimation problem

with applications to unsupervised statistical image seg-

mentation. In the case of independent observations, some iter-

ative mixture estimation algorithms giving generally satisfying

results have been proposed. The expectation-maximization

(EM) [5], [9], [31], which allows, in some circumstances,

to reach the maximum likelihood, is the pioneer one. Some

variants, such as stochastic EM (SEM) [24], [26], which tend
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to facilitate calculations or improve the EM’s performances,

have since been proposed. An alternative method, called

iterative conditional estimation (ICE) [3], [4], [26]–[28], is

based on the conditional expectation instead of the maxi-

mum likelihood, and still allows estimate mixtures. All these

methods allow one to treat the case where the nature of the

components of a given mixture is known. The aim of our

work is to introduce a more general model, called “generalized

mixture,” and propose some methods deriving from EM,

SEM, or ICE for its estimation. A generalized mixture is a

mixture of components where the nature of

each is not known exactly; however, this nature belongs

to a given finite set of natures. For

instance, if we consider a mixture of two densities

each of them being exponential or Gaussian, we have

exponential laws Gaussian laws There are four

possibilities of “classical” mixtures (both exponential,

both Gaussian, exponential and Gaussian,

Gaussian and exponential) and we do not know in what

case we are. The problem of the estimating such a generalized

mixture becomes twofold: First, we have to decide to which

family of each of the densities belongs; second, what

are the parameters defining them.

The generalized mixture estimators we propose below are

then applied to the statistical unsupervised image segmentation

problem. Among numerous methods of image segmentation,

the family of statistical ones turns out to be of exceptional

efficiency in some situations [1]–[8], [10]–[29], [31]–[36]. The

use of such methods requires modeling by random fields: For

(the set of pixels) we consider two sets of random variables

called “random fields”. Each

takes its values in a finite set of classes and

each takes its values in The problem of segmentation is

then that of estimating the unobserved realization of

the field from the observed realization of the field

where is the digital image to be segmented. The

problem is then solved by the use of a Bayesian strategy, which

is the “best” in the sense of some criterion. If we want to use a

given Bayesian strategy , we need to know some parameters

defining the distribution of The latter distribution is

generally defined by the distribution of and the family

of the distributions of conditional to Let us denote

by all parameters concerning and by all parameters

concerning the family we need. Making the strategy

unsupervised amounts to proposing a way of estimating and

from the only data available. The parameter is
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generally of the form where defines the

distribution of conditional to If these distributions

are Gaussian, which is the most frequently considered case,

each is of the form with being the mean

and being the variance. The previous parameter estimation

problem is then the Gaussian mixture estimation problem. In

real situations, the nature of the grey-level distribution can

vary in time. For instance, the nature of the radar grey-level

distribution of the sea surface depends on its state [8], the

latter depending on the weather. Thus, if we want to segment

a radar image where sea is one of the classes and we wish

to dispose of an algorithm insensitive to weather conditions,

we must consider the problem of estimating a generalized

mixture.

The organization of the paper is as follows. In the next sec-

tion, we address the generalized mixture estimation problem

without reference to the image segmentation problem. Such a

mixture is defined and a method of its estimation based on the

SEM is proposed.

Section III contains a description of Pearson’s system, which

is a set of eight families of distributions, and different methods

for estimating generalized mixtures whose components belong

to this set are proposed. In fact, it is shown that the classical

methods EM, SEM, or ICE can be generalized resulting in

generalized EM, SEM, ICE (denoted by GEM, GSEM, GICE,

respectively).

In Section IV, we address the problem of unsupervised

image segmentation, treating “local” and “global” methods.

In the first case, GEM, GSEM, and GICE can be applied

directly and we show that the use of their adaptive versions

is of interest. The second case, where the segmentation is

performed by the maximum posterior mode (MPM) [21],

requires modeling by hidden Markov random fields. Different

parameter estimation methods have been proposed; let us

mention Gibbsian EM [5], the algorithms of Zhang et al. [37],

[38], stochastic gradient [35], the algorithm of Lakshmanan et

al. [20], the algorithm of Devijver [16], and ICE. We consider

two of them (Gibbsian EM and ICE) and show that they can

be generalized in order to deal with the generalized mixtures

estimation problem we are interested in.

Section V contains results of some simulations, and seg-

mentations of three real radar images are presented.

Conclusions are in the sixth section.

II. GENERALIZED MIXTURE ESTIMATION

The “classical” mixture estimation problem can be treated

with methods like EM, SEM, or ICE. In this section, we will

limit our presentation to GSEM. Furthermore, for the sake

of simplicity, we shall consider the case of two classes and

two families of distributions; its generalization is immediate

and does not pose any problem. Let us note that the results

of this section can be applied to any problem outside image

segmentation.

A. Classical Mixture Estimation and the SEM Algorithm

Let us suppose that the random variables with

are independent and identically distributed (i.i.d.),

each taking its values in and in

The distributions of conditioned on are

Gaussians respectively. So, given

the parameter defining the distribution of

is SEM is an iterative procedure that

runs as follows.

1) Initialization: let be an initial

guess of

2) Calculation of

from and

, as follows.

a) Compute, for each the distribution of

conditioned on If we denote by the

based densities this distribution is given

by

(1)

(2)

b) Sample, for each a realization in

according to the distribution above and

consider the “artificial” sample

of so obtained.

c) Consider the partition of

defined by

and (3)

d) Calculate

by

(4)

(5)

3) Stop when the sequence stabilizes.

B. Generalized Mixture Estimation

Let us consider a set of two families of

distributions, a real random variable whose distribution

belongs either to or to and

a sample of realizations of Let us temporarily assume that

we dispose of a decision rule , which allows us to

decide from in what set between and the distribution

of lies. Such a decision rule, still called “ recognition,”

will be made more explicit in what follows.
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In order to simplify things, we expose the generalized

mixture estimation algorithm in the case of two classes and

two possible families, but the generalization to any number

of classes and any number of possible families is quite

straightforward. Thus, we consider two random variables

where takes its values in and in The

distribution of is given by

and the distributions of conditional to are

given by densities , respectively. Let with

the Gaussian family and the exponential one. We assume

that is Gaussian or exponential and

likewise for Thus, we have four possibilities for “classical”

mixture (both Gaussian, both exponential,

Gaussian and exponential, exponential and Gaussian)

and we do not know in what case we are. We observe a sample

of realizations of , and the problem is to

1) estimate priors;

2) choose between the four cases above;

3) estimate the parameters of the densities chosen.

The GSEM we propose runs as follows.

1) Initialization.

2) At each iteration

a) sample as in the case of the SEM;

b) apply, on and the rule determining the

families that and belong to;

c) use and for estimating parameters (mean and

variance if the family is Gaussian, mean if the family

is exponential), in the same way that with SEM.

Thus, the GSEM will be defined once we propose a decision

rule

In this paper, we will consider a well suited to the

Pearson family described in the next section; however, other

possibilities exist [14].

III. SYSTEM OF PEARSON AND RECOGNITION

A. System of Pearson

In this section, we specify the family we will use in the

unsupervised radar image segmentation and a decision rule

Our statement about Pearson’s system we will use is rather

short, and further details can be found in [17].

A distribution density on belongs to Pearson’s system

if it satisfies

(6)

The variation of the parameters provides dis-

tributions of different shape and, for each shape, defines the

parameters fixing a given distribution. Let be a real random

variable whose distribution belongs to Pearson’s system. For

let us consider the moments of defined by

(7)

and (8)

and two parameters defined by

(9)

is called “skewness” and “kurtosis.”

On the one hand, the coefficients are related to

by (10)–(13), shown at the bottom of the page.

On the other hand, given

the eight families of the

set whose exact shape will be given in the

next section, are defined by

(14)

The eight families are illustrated in the Pearson’s graph

given in Fig. 1.

What is important is that moments can be easily

estimated from empirical moments, from which we deduce

the estimated values of by (9). Finally, we estimate

the family using (14). Once the family is estimated, values

of given by (10)–(13) can be used to solve

for parameters defining the corresponding densities (given

(10)

(11)

(12)

(13)
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Fig. 1. The eight families of Pearson’s system function of (
1; 
2):

in Section III-B, where the shapes of the eight families are

recalled).

Let us consider an i.i.d. sequence of real random variables

whose distribution belongs to Pearson’s system.

We now specify the estimator used in step 2 of GSEM (see

Section II-B).

1) Consider the partition of

2) For each class use in order to estimate by

(15)

for (16)

3) For each class calculate from

according to (9).

4) For each class use and (14) to estimate which

family among the density belongs to.

5) With the estimated family and the computed

[(10)–(13)], estimate the parameters of the distribution.

(For each the exact relationship between

density parameters and the computed is

given in the next section.)

B. Shape of Pearson’s System Densities

In this section, we specify the shape of the eight distribution

families forming Pearson’s system.

(Beta Distributions of the First Kind): Densities are

given by

for

otherwise

(17)

with

(18)

(19)

Parameters are called form parameters. can

take five different forms according to To be more precise

1) for density is bell shaped;

2) for density is shaped with

;

3) for density is shaped with

;

4) for density is shaped with

;

5) for density is uniform.

(Type II Distributions): These distributions are particu-

lar cases of obtained for in (17), as follows:

for

otherwise

(20)

with

(21)

(22)

(Gamma Distributions): Densities are given by

for

otherwise

(23)

with

(24)

(Type IV Distributions): Densities are given by

(25)

with such that and
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Fig. 2. Ring image, its noisy version, and results of unsupervised segmentations based on GGICE, GGEM, ASEM, and GSEM.

(Inverse Gamma Distributions): Densities are given by

for

otherwise
(26)

with

(Beta Distributions of the Second Kind): Densities are

given by

for

otherwise

(27)

with

where is the scale parameter and are the form

parameters.

(Type VII Distributions): Densities are given by

(28)

with such that

(Gaussian Distributions): Densities are given by

(29)

with and

C. Generalized EM and ICE Algorithms

The EM and ICE algorithms are two other mixture estima-

tion methods that can also be “generalized” to give the GEM

and GICE. We briefly describe below their operation.

1) GEM: Let be the distributions

computed from

the current parameter Priors are reestimated by formula

(30), which is the same as that in the EM algorithm, and

the recognition is the same as that the recognition

described at the end of Section III-A, with the difference that

given for by formulas

(31) and (32), are used instead of those given by formulas

(15) and (16).

(30)

(31)

(32)

2) GICE: In the context of this paper, the GICE used is

a “mixture” of GSEM and GEM. In fact, the reestimation of

priors is the same as in GEM, and the family recognition and

noise parameter reestimation is the same as in GSEM.
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Fig. 3. Image 1: SEASAT image of the Brittany coast.

IV. UNSUPERVISED IMAGE SEGMENTATION

In this section, we propose some applications of different

generalized mixture estimators to the problem of unsupervised

image segmentation. We shall consider two well known ap-

proaches: the “blind” approach and the “global” one. In the

blind approach the generalized SEM, EM, and ICE algorithms

above can be applied directly. In the global one we propose

two adaptations of Gibbsian EM and ICE. For each method

we specify here the reestimation formulas; the initialization of

different algorithms is described in Section V.

A. Blind Approach

The “blind” approach consists of estimating the realization

of each from This is the simplest one and, generally,

the least efficient. However, its “adaptive” version can be very

competitive in some situations [26]. Let be priors and

be densities of the distribution of conditional to

The blind Bayesian strategy is

if

if
(33)

This strategy is made unsupervised by the direct use of the

GSEM algorithm described above: One chooses a sequence of

pixels and considers that is the value of the

grey level at pixel In an “adaptive” version of the “blind”

approach, one considers that priors depend on the position

of the pixel in The blind adaptive Bayesian strategy is

the same as above with instead of The

GSEM algorithm is modified as follows. Let

be the sequence obtained by sampling at a given iteration.

In GSEM the priors are reestimated by the frequencies

computed using all the sample points; in “adaptive” GSEM one

considers, for each a window centred at and

are reestimated by frequencies computed from Let

us note that in “adaptive” GSEM the sequence of pixels

has to cover In the following, the generalized

adaptive SEM, EM, and ICE will be denoted by GASEM,

GAEM, and GAICE.

B. Global Approach

1) Markovian Model and Global Segmentation: In the

global approach, each is estimated from

The field is a Markov random field and we will

consider Ising’s model, which is the simplest one. In order to

simplify notations we will limit our presentation to the case of

two classes; however, the generalization to any other number

of classes poses no particular problem.

The distribution of is given by

(34)

with

and

if

,if
(35)

Thus, is defined by The random variables

will be assumed independent conditionally to and further-

more, the distribution of each conditional to will be

assumed equal to its distribution conditional on Under

these hypothesis all distributions of conditional to are de-

fined by the two distributions of conditional to

respectively. Let us denote by the densities of these

distributions and assume that they belong to Pearson’s system.

They are thus given by parameters and

, respectively.

Finally, all distributions of conditional to are defined

by and thus defines the distribution

of

The possibility of simulating realizations of according to

its posterior, i.e. conditional to distribution constitutes the

main interest of this model.

2) Generalized Global ICE (GGICE): According to the

ICE principle, let us suppose that is observable. We have

then to propose

There exist numerous estimators of the parameter

from such as the coding method [2], the least squares

error method [12], or the maximum likelihood estimate [35].

As our model is very simple, we can use an empirical

frequency based estimator. In fact, there exists a simple link

between and probabilities “ knowing that the

neighborhood of contains times,” where can take 0,

1, 2, 3, 4 as values. For instance, if we take we select in

the image a sample of neighborhoods of containing

two and two The probability “ knowing that

the neighborhood of contains two ” is estimated by the

proportion of the sample giving On the other hand

this probability is given by

(36)

which gives an estimated value of

We take for the same estimator as in the case of

independent mixture, Section III-A.
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Fig. 4. Unsupervised segmentation results of Image 1, Fig. 3.

Fig. 5. Image 2 and its unsupervised segmentations.

Finally, the GGICE runs as follows.

1) Sample according to .

2) Compute .

3) Consider and

and apply 2–5 of the end of Section

III-A.

3) Generalized Gibbsian EM (GGEM)

The difference between GGICE above and GGEM is sit-

uated at the noise parameter reestimation level. We have

two noise distributions conditional to the two classes and we

are interested in estimating the four first moments of each

of them. In the case of GGICE, these two problems are

treated separately by considering the partition on

and of the set of

pixels In the case of GGEM each of them is treated by the

use of the whole set Let us put

(37)

The first four moments of the noise corresponding to the first

class are given by

(38)

and

(39)

for

Use analogous formulas for the second class.

V. EXPERIMENTS

We present in this section some results of numerical appli-

cations. Let us note that in the global case the segmentation is

performed by the maximizer of posterior marginals (MPM)

and, in the local case, it is performed by the rule (33).

Thus, unsupervised segmentation algorithms considered in this

paper mainly differ by their parameter estimation step: We

will note them by the parameter estimation method used. For

instance, GEM will denote the local segmentation (33) based

on parameters estimated with generalized EM, GGEM will

denote the global MPM segmentation based on parameters

estimated with generalized Gibbsian EM, and so on. The first

section is devoted to synthetic images and in the second one

we deal with three real radar images.

The initialization of GEM, GSEM, and GICE is as follows.

We assume that we have a mixture of two Gaussian distribu-

tions. With denoting the cumulated histogram we take

and

In order to initialize GGEM and GGICE, we use the

segmentation obtained by the blind unsupervised method,

which gives The noise parameters are initialized by the

final parameters obtained in the parameter estimation step of

the blind unsupervised method used.

A. Experiments on a Synthetic Image

Let us consider a binary image “ring” given in Fig. 2. White

is class 1 and black class 2. The class 1 is corrupted by a beta

noise of the first kind (family in Pearson’s system) and the

class 2 is noised by a beta noise of the second kind (family

in Pearson’s system). The parameters defining the noise

distributions, their estimates with different methods, and the

segmentation error rates are given in Table I. The noisy version

of the ring image and some segmentation results are presented

in Fig. 2. We have taken the same means and variances on
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TABLE I
PAR: PARAMETERS; TH: REAL VALUES OF PARAMETERS; �; �2: MEAN AND VARIANCE; 
1; 
2: SKEWNESS AND KURTOSIS;

TYPE: FAMILY IN PEARSON’S SYSTEM; ERROR: SEGMENTATION ERROR RATE; ITE: NUMBER OF ITERATIONS OF ALGORITHMS. �:

PARAMETER OF THE MARKOV DISTRIBUTION OF X: GGICE: GLOBAL GENERALIZED ICE, GGEM: GENERALIZED GIBBSIAN EM

TABLE II
PARAMETERS ESTIMATED FROM IMAGE 1, FIG. 3

purpose: The human eye is essentially sensitive to the two

first moments and, in fact, it is difficult to see anything in the

noisy version of the ring image.

According to Table I, the behavior of the GSEM and the

GICE is quite satisfactory when results obtained with GEM

are clearly worse. In particular, GEM does not find the right

families and Furthermore, the GSEM- and GICE-

based segmentation error rates are very close to the theoretical

one. On the other hand, the behavior of both the GGICE and

GGEM methods is very good. This is undoubtedly due to

a good initialization with GSEM; however, the estimates of

skewness and kurtosis are still improved. We do not dispose

of the theoretical segmentation error rate, as the ring image is

not a realization of a Markov field. However, the error rates

obtained seem quite satisfactory. As a conclusion, we may say

that the new difficulty of noise nature recognition is correctly

treated by the methods proposed, and the final segmentation

quality is not affected significantly. We also present in Fig.

2 the result of segmentation with generalized adaptive SEM

(GASEM) whose quality is nearly comparable with the quality

of global methods. The result obtained with GSEM is very

poor compared to the results of global methods: This is not

surprising, and is due to the segmentation method and not to

the parameter estimation step.

B. Segmentation of Real Images

We present in this section some examples of unsupervised

segmentation of three real radar images. The first one, given

in Fig. 3, does not seem particularly noisy and adaptive local

segmentation seems to be competitive compared to global

methods. The second one, given in Fig. 5, is more difficult

to segment, and the third one, given in Fig. 7, is very noisy.

From the results of Table II, we draw the following remarks.

1) Starting from Gaussian distributions (type 8) GSEM,

GEM and GICE all find beta distributions of the first

kind (kind 1) for both classes. Furthermore, all param-

eters get stabilised in these three methods at approxi-

mately the same values which can be relatively far from

the initialized values. From this we may conjecture, on

one hand, that real distributions are best represented by

beta distributions of the first kind and, on the other hand,

that the parameters are correctly estimated.
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Fig. 6. Segmentation of the Image 1 into four classes by generalized EM (GEM), generalized adaptive EM (GAEM), normal Gibbsian EM (NGEM),
and generalized Gibbsian EM (GGEM).

TABLE III
PARAMETERS ESTIMATED FROM IMAGE 2, FIG. 5

2) Global methods keep beta distributions of the first kind

given with the initialization by GSEM and thus we can

imagine that these distributions are well suited to the

image considered.

As in the case of the synthetic ring image, the GSEM-based

local segmentation, the only one represented on Fig. 4, gives

visually slightly better results that the GEM- and GICE-based

ones. Parameters are perhaps better estimated but no clear

explanation appears when analyzing the results in Table II,

apart from the fact that is close to values estimated by

GGEM and GGICE. The use of adaptive GSEM improves

the segmentation quality, which approaches the quality of

global segmentation methods. The efficiencies of the latter

ones appear quite satisfying (see Fig. 4).
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Fig. 7. Image 3 (Amazonia) and its segmentation into three classes by generalized global ICE (GGICE), generalized adaptive ICE (GAICE), and classical
adaptive ICE, which uses Gaussian densities (NAICE).

Concerning Image 2, all methods apart GSEM find beta

distributions of the first kind (type 1) for the first class

distribution and beta of second kind (type 6) for the second

class distribution; thus, we can reasonably assume that they

are well suited, among distributions of Pearson’s system, to

real distributions. Image 2 is rather noisy and the difference

between global and local methods appears clearly. We note

that global methods provide visually better results that the local

ones, and, among the latter, the adaptive manner of parameter

estimating provides some improvement.

Let us briefly examine how the different methods work in

the case of more than two classes.

We present in Fig. 6 the segmentations of the Image 1 into

four classes by GEM, GAEM, GGEM, and NGEM respec-

tively. NGEM means “normal Gibbsian,” or “normal global”

EM, in that no generalized mixture problem is considered and

all noise densities are assumed Gaussian. Thus, note that GEM

is generalized and local, and NGEM is traditional and global.

According to Fig. 6, we note that GEM meanly indicates the

presence of two classes and, as in the case of two classes

segmentation, the results obtained by GAEM are visually close

to the results, which means that the use of generalized mixture

estimation instead of the classical Gaussian mixture estima-

tion can have strong influence. Although their comparison is

difficult in the absence of the truth of the ground, we may

conjecture, as the Gaussian case is a particular case of the

generalized one, that the results obtained with GGEM are

better. As a curiosity, we note that the results obtained by

GAEM look like the results obtained by NGEM.

As a second example, we present in Fig. 7 some results

of segmentation into three classes of an ERS 1 image of a

forest area of Amazonia. ICE is the basic parameter estimation

method used, and we compare GGICE, GAICE, and NAICE.

As above, “N” means that only Gaussian densities are used,

which means that NAICE is the traditional AICE. Image 3 is

very noisy and comparison between the results of the these

segmentations is difficult in absence of the ground truth. Only

we can say is that GGICE produces a result that seems visually

the most consistent.

VI. CONCLUSIONS

We have proposed in this work some new solutions to the

problem of generalized mixture estimation, with applications

to unsupervised statistical image segmentation. A distribution

mixture is said to be “generalized” when the exact nature of

components is not known, but each of them belongs to a given

finite set of families of distributions. The methods proposed

allows one to

1) identify the conditional distribution for each class;

2) estimate the unknown parameters in this distribution;
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3) estimate priors;

4) estimate the “true” class image.

Assuming that each of unknown noise probability distri-

bution is in the Pearson system, our methods are based on

merging two approaches of classical problems. On the one

hand, we use classical mixture estimation methods like EM

[5], [9], [31], SEM [24], [26], or ICE [3], [4], [26]–[28].

On the other hand, we use the fact that if we know that the

sample considered proceeds from one family in the Pearson

system, we dispose of decision rule, based on “skewness” and

“kurtosis,” for which family it belongs to. Different algorithms

proposed are then applied to the problem of unsupervised

Bayesian image segmentation in a “local” and “global” way.

The results of numerical studies of a synthetic image and

some real ones, and other results presented in [22], show the

interest of the generalized mixture estimation in the unsuper-

vised image segmentation context. In particular, the mixture

components are, in general, correctly estimated.

As possibilities for future work, let us mention the possibil-

ity of testing the methods proposed in many problems outside

the image segmentation context, like handwriting recognition,

speech recognition, or any other statistical problem requiring

a mixture recognition. Furthermore, it would undoubtedly

be of purpose studying other generalized mixture estimation

approaches, based on different decision rules and allowing one

to leave the Pearson system.
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France, in 1993.

He is currently Associate Professor at the Ecole
Nouvelle d’Ingénieurs en Communication, Lille,
France. His research interests include statistical
modeling, unsupervised segmentation and pattern
recognition in case of multisource data.



DELIGNON et al.: ESTIMATION OF GENERALIZED MIXTURES 1375

Abdelwaheb Marzouki received the Ph.D. degree
in signal processing from the Université des Sci-
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