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SUMMARY

This is  a review  of various aspects o f estim ation o f genetic 
parameters, concentrating on developments since the la s t  World Congress. 
Improvements in algorithms to estimate variance and covariance components are 
described. We discuss the relevance of these procedures, developed fo r  
unselected populations, when they are applied to  se lected  populations and 
ind icate unresolved d i f f ic u lt ie s .  We comment on the use o f mixed model 
methodology to  estim ate rea lised  h e r ita b il it ie s .  We consider the design o f 
experiments to estimate multivariate parameters. In particular, we. show that 
fo r  b iva r ia te  uncorrelated data the variance o f the estimated genetic 
parameters can be reduced by 0.4 relative to more conventional designs.

INTRODUCTION

Thompson (1982) reviewed methods of estim ation o f variance and 
covariance components. Part o f our paper is  related to updating that review 
and pointing out improvements in algorithms and their application to selected 
data.

Often the precision of estimates, especially from multivariate data, 
is low. We investigate the design of bivariate experiments showing that by 
suitable selection of parents we can increase the precision of estimates.

ALGORITHMS FOR VARIANCE COMPONENT ESTIMATION

For illu stra tion  we consider estimation in the linear model

y = Xa + Zb+e (1)

where y is  a nx1 vector o f observed responses, X and Z are known matrices o f 
size nxp and nxq, a is  a px1 vector o f fixed effects, and b is  a qx1 vector of 
random effects distributed as N(0, d ^ I )  and e is  a vector o f residual terms

distribu ted  as N(0, d2I) . I f  the elements o f X and Z are zero or one and

each row o f X and Z has only one non zero element then (1) can be thought o f 
as a ANOVA mixed model.

For this model Patterson and Thompson (1971) introduced the idea of 
residual maximum lik e lih ood  (REML) using the lik e lih ood  (L ) o f error 
contrasts to estimate the variance components d2̂  and d2. Ite ra tive  schemes

are needed i f  the design is  not balanced. Patterson and Thompson (1971) gave 
schemes based on expected values o f second d ifferen tia ls o f L. However the 
computation o f second d if fe re n t ia ls  can be complicated, fo r  example Meyer 
(1983), and using f i r s t  d if fe re n t ia ls  o f L might take more ite ra t io n s  but 
could be computationally cheaper.
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One general scheme, possible whenever there is  missing data, which 
can be thought o f as using the f i r s t  d i f fe r e n t ia ls  is  the expectation- 
maximisation (EM) algorithm (Dempster et a l., 1977). In our case the missing 
data are the random effects b and e. The estimation o f variance components 
using the EM algorithm has been described fo r  model (1) by Dempster et a l.
(1984) and fo r  other genetic models by Henderson (1985a,b). This has been
despite ind ica tions (Thompson, 1979) that the procedure can be slow to
converge, especially with animal breeding data.

For balanced designs, analyses o f variance can be easily constructed 
and estim ators fo r  the various mean squares t r i v ia l l y  constructed and then 
simply transformed to g ive  e f f ic ie n t  estim ates o f the variance components. 
This ra ises the question whether the EM algorithm can be improved by a 
transformation o f parameters.

Thompson and Meyer (1986) have shown that such an improvement in the 
rate o f convergence is  possible. For example in model (1) with p=1 and a 
representing an overall mean effect and n/q observations involving each random 
effect (i.e. a balanced design) then a natural parameterisation is  d2 and d2^

+ qd2/n. An EM algorithm, for these parameters, converges in one iteration. 
Obviously in animal breeding studies data is  not often balanced but the
transformation from d2, d2  ̂ to d2 and d2  ̂+ d2/k, where k is  an average

number o f observations on the random e f fe c ts , can dram atically improve 
convergence. Note that as k tends to  in f in ity  we get the more usual EM 
algorithm.

The same argument can be applied to other designs, for example for an 
h ierarch ica l analysis between s ires , between dams w ith in s ires  and w ithin 
dams. Then the natural parameters are d2 , d2d + d2/k  ̂ and d2s + tf2d/k2 +

d2/kik2 where k-| and k.|k2 are measures of dam and sire family size (Thompson

and Meyer, 1986). Sometimes d2, d2  ̂ and d2s can be in terpreted  as d2p -

d2^/2-3d2p/4, d2A/4 + d’2p/4 and d2A/4 where d2p, d2^ and d2p are phenotypic,

add itive  and dominance variances respec tive ly . For th is  model Henderson 
(1985a,b) suggested, for computational convenience, two 'EM' schemes based on 
d p  _<52A_d2j) and lin ea r functions o f d2A and d2p, that w i l l  be slower to

converge.
Some o f the terms involved in the d if fe r e n t ia ls  o f L can be 

interpreted in terms of the quantities in mixed model equations (Henderson, 
1973). Results on partitioned matrices can simplify the computation. For 
instance i f  X represents one fixed factor then X'X w ill  be diagonal, and i f  p 
is  much greater than q then i t  is  convenient to find the prediction of b from

(Z'SZ + I  g-1) b = Z'Sy 
or Q b = Z'Sy
where S = I-X (X 'X )-1X' and g = d^/d2

The it e r a t iv e  procedure can be formulated in terms o f b and Q“ 1. In each 
round o f the itera tive  procedure a different value o f g is  used and hence the 
inversion o f a different qxq matrix is  required.
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Patterson and Thompson (1971) recognised this problem and suggested a 
transformation o f 0 in to  PCD + g-1I )P ' with P orthogonal and D a diagonal 
matrix. Then Q_1 can be simply found from P (D + g_ ) l )~ lp . This can be 
thought o f as working with a set of n-p independent sums of squares, n-p-q+1 
with expectation d2  ̂and q-1 with expectation a function o f d2 , d2  ̂ and D.

This f i t s  naturally into the generalized linear model framework (McCullagh and 
Nelder, 1983) using the gamma distribution.

Smith and Graser (1986) suggest an attractive scheme that avoids the 
ca lcu lation  o f the la ten t roots D. They suggest fin d ing  an orthogonal 
transformation P̂ . such that Pj Q P j' is  trid iagonal (P^ is  o ften  calcu lated

first when P and D are found). They show that only a small number of 
calculations (proportional to q) are needed to give the first differentials of 
L once Pf is known.

For multivariate data with v tra its  there is  an obvious extension o f 
the model (1) when v observations are taken on each animal. The variance 
components d2 and d2  ̂ being replaced by vxv symmetric matrices ^  and

Equations of predictors w ill normally involve a ll v tra its. Thompson (1982) 
pointed out that a canonical transformation settin g  up t r a it s  that are 
independent both gen e tica lly  and phenotypically is  possib le and allow the 
predictors to  be found using univariate calculations. Meyer (1985) has shown 
that there are s im p lifica tio n s  in a REML procedure to  estim ate ^and^j-, by

using a canonical transformation. The P̂ . transformation is  even more useful

in this multivariate case since i t  avoids the inversion o f v qxq matrices in 
each round of iteration  (Taylor et al,1985).

SELECTION

Not all animals used in analysis are chosen at random. Often there
is either concious or unconcious selection of animals. In certain
circumstances some analyses appropriate for random data are also appropriate 
for selected data.

Suppose there is  data y-j on some males with mean X-| and variance

V ii. Certain males are chosen as parents at random and observations, y2 > are

taken on th e ir  o ffsp r in g  with mean X2 a and variance V2  and the covariance

between y-| and y2 is  V-|2 * Then y2 given y-j, y2j  has mean X2a - V21 v11_1x1a

and variance ~^21 ^11~^12* Now f f  male parents are se lected  on the

basis o f y-j, then the mean and variance o f y2  change but the mean and variance

°f y2.i do not change. This argument is used by Kempthorne and von Krosigk
in Henderson et a l. (1959) to derive ML estimates o f fix ed  e f fe c ts  and 
variance components when there is  se lec tion  o f animals and they show the 
estim ates have the same form as when there is  random se lection . Thompson
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(1982) reviewed other applications o f th is  approach, pointing out that the 
estim ating equations could be unbiased. Simulations by Rothschild e t  al 
(1979), Meyer and Thompson, (1984), Sorensen and Kennedy, (1984b) and Walter 
and Mao (1985) v e r ify  that lik e lih ood  methods can take some account o f 
seiGeti on•

When se lec tion  is  based on certa in  lin ea r contrasts o f y, say L'y, 
then Henderson (1975) considers using a conditional model fo r y given L'y and 
derives BLUP equations. When L'y is  translation invariant (i.e. L'(y-Xa0)=L'y)

then these equations are id en tica l with those when se lec tion  is  at random. 
When L'y is  not translation  invariant, there are d iffe ren ces . I f  the fix ed  
effects were known, the predictors of the random effects would have the same 
form as when there is  random selection. However, there is  a difference in the 
estim ation o f the fix ed  e ffe c ts . For the example above, i f  L'y=y, then the 
estim ates o f the fix ed  e f fe c ts  depend on y2j  and not d ire c t ly  on y-|. By

contrast yi is  used in the likelihood approach and presumably could be used

before the parents were selected. There are cases when y2>i provides l i t t l e

inform ation on some fixed  e ffe c ts . These arguments suggest at lea s t four 
methods fo r  estim ating variance components in  the example above when the 
selection rate is  not translation invariant, ( i )  using y-| and y2 ( i i )  using y-|

alone ( i i i )  using y2^ alone, ( iv )  pooling ŷ j and y2 .v  These a lte rn a tive

procedures have not been investigated.
In some ways one can expect differences between these two approaches 

since they are based on the sta tistica l principles o f likelihood and repeated 
sampling. I t  is  w e ll known that these a lte rn a tive  p rin c ip les can lead to 
different conclusions (e.g. Cox and Hinkley, 1974). Simulation might be used 
to c la rify  some of these issues and give operational guidelines. However most, 
i f  not a ll, simulations have been o f location invariant schemes where there is 
less uncertainty. We have not seen any simulation o f location variant schemes. 
One problem is  to exp lic itly  define the class of designs that might arise in 
these simulations (Thompson, 1982).

SELECTION EXPERIMENTS

Some of the motivation for considering selection has been to correct 
for bias in farm or fie ld  data but selection can also be used to investigate 
the genetic structure in experimental populations. We w ill  discuss this in 
the context of designing experiments to estimate m ultitra it genetic variances 
and covariances, but f i r s t  some comments on se lec tion  experiments without 
controls seen in order given recent papers in th is  area (B la ir  and Poliak, 
1984; Sorensen and Kennedy, 1984a).

In selection experiments with two divergent lines, or one selected 
l in e  with a control, estimates o f rea lised  h e r ita b il ity  can be found from 
comparing response to se lec tion  with cumulative se lec tion  d if fe r e n t ia l 
(Falconer, 1981). When there is  only one l in e  without a control i t  is  more 
d i f f i c u l t  to disentangle genetic and environmental contributions. Blair and 
Poliak (1984) in the analysis o f a sheep se lec tion  experiment calcu lated 
predictions of the genetic merit for animals born in each year. To derive an 
estimate of realised heritability h2BP they suggested regressing the predicted
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genetic m erit against the cumulative se lec tion  d if fe r e n t ia l.  However 
Thompson (1986) has shown fo r two simple designs without controls that h2gp is

more a function o f the value of heritab ility  used to generate the predictions 
than the h e r ita b il ity  in the population (see also Thompson, 1979, Dempfle,
1982). In a sense two predictions are being compared rather than a 
prediction with a response.

Of course other estimators o f heritab ility  could be used (Thompson, 
1982, Sorensen and Kennedy, 1984b) and some invo lve sums o f squares o f 
predicted values. One cannot however expect these estim ates to  be very 
precise i f  there are no controls. For example, the information provided by 
parent-offspring regression is  inversely proportional to the sums o f squares 
of parental values, and i f  only a selected lin e  is  measured then the variance 
o f selected parents w ill  be small.

DESIGN OF MULTIVARIATE SELECTION EXPERIMENTS

P re c is e , unbiased es tim a tes  o f g en e tic  param eters, such as 
h e r ita b il ity  and genetic covariance, are necessary to  optim ise breeding 
programs and to pred ict rates o f change fo r  various se lec tion  schemes. One 
experimental design o b je c t iv e  in s ingle  t r a it  se lec tion  experiments is  to  
minimise the variance of h e r ita b ility  estimated from the regression  o f the 
mean progeny performance on that o f the parent. H i l l  (1971) has derived 
equations fo r calculating the variances o f various univariate designs, taking 
account of genetic d r ift  and measurement error.

When dealing w ith two or more t ra its ,  the genetic variances and 
covariances are parameters o f in teres t, but i t  is  not as obvious what the 
optimal design ob je c t iv e  should be when three or more parameters are 
considered. We suggest an objective that is  symmetric for a ll parameters and 
compare the e f f ic ie n c ie s  o f d iffe ren t se lec tion  designs. A d if fe re n t  
experimental design to the classical high-low individual selection method is  
examined and i t  is  shown to be more e ffic ien t and robust.

Given a regression  model Y r Xp+ e, where Y is  the vector o f the 
dependent variable, X is  the design matrix o f the independent variables and e 
is  the vector o f residuals with variance-covariance m atrix V, then the 
confidence e ll ip s o id  o f the generalised lea st squares estim ate £ o f £
^ = (X 'V -'X ^X ’V-iY, with variance (X'V-1X)-1, has the form r  1

[ f :  (J>-{b)' X'V"1X (f-| ) < constant]

for any specified confidence coefficien t. The content of the e llipsoid  (e.g. 
volume in 3 dimensions) is  proportional to |X'V“ 1X T h e r e f o r e ,  one 
design criterion  which we use is  to minimise the content of the e llipsoid  or 
to maximise !X'V_1X| the D-optimality criterion. The determinant o f X'V“ G( is  
denoted by DET(^). The D-optim ality c r ite r io n  has the useful invariance 
property that i f  a design X maximises DET(B), then the same design also 
maxim ises DET(T*j5), where T* is  a f u l l  rank transform ation matrix. 
Therefore, a design that is  optimal for estimation of p is  also optimal fo r a 
linear transformation, T *£ , o f There are other overall criterion , but the 
do not have this invariance property.

The genetic and phenotypic variance-covariance m atrices fo r  the 
t r a i t s  are denoted by G and P r e s p e c t iv e ly .  We consider cases o f 
standardised t r a it s ,  with mean zero, when the diagonal elements o f the P 
matrix are equal to one and assume that the tra its  are normally distributed. 
The methods and designs considered can be applied to multivariate data but are
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developed using bivariate data. The genetic variances and covariances o f the 
standardised tra its  are then h eritab ilities  (h* and and co-heritab ilities

( rAh-jh2  where rA is  the genetic correlation between the two tra its ). In the

estimation of these parameters, i t  is  convenient to work in terms of the (3x1) 
vector = 0.5 [h* rAhih2 h2] rather than the (2x2) symmetric matrix o f

genetic variances and covariances.
There is  no loss o f generality from standardising the tra its , for i f  

the diagonal elements o f the P matrix are not equal to one, then the 
phenotypic variables can be standardised using a transformation, T* such that 
the transformed G matrix becomes T*GT*'. The invariance argument o f the 
design c r ite r io n  shows that a design optimal fo r the param eter^ is also 
optimal for the genetic parameters in T*GT*'.

Offspring-parent regression techniques can be used to estimate genetic 
parameters o f more than one t r a i t  s im u ltan eou s ly . The standard ised  
observations on two tra its  for the j-th  parent and the mean o f its  offspring 
are x-,j, x2j and ox1j,ox2j  respectively. Then

5x1j = 0.5 GP_1 X 1j" + e = 0.5 G ’s1j"
+ e = *1J s2j 0

.5x2j_ _x2j_ ,s2j_
Z ,

_ 0 s1j s2j_
V Zv

+ e

where s.]j and s2j are (x i j-rpx2j)/(1-rp) and (x2j-rpx-j j)/(1-rp) respectively,

and rP is  the phenotypic correlation between the tra its  x-| and x2.
Assume a to ta l o f 2M unrelated ind iv idu a ls , o f one sex in the 

parental generation, are measured fo r  both t r a it s  and a proportion pg are

selected, such that 2MpEz4N. We assume equal family sizes o f n=R/pE progeny

per family to give a total o f 2MR progeny which are reared and recorded.
The parameter 6 can be estimated by combining the information from a ll 

4N offspring-parent pairs. The residuals are correlated within fam ilies but 
not between fa m ilie s . The variance-covariance matrix o f residuals (V) is  a 
8Nx8N block diagonal matrix and the only non-zero elements are a 2x2 matrix, 
denoted F, repeated 4N times down the diagonal. The structure of the F matrix 
can be derived from the univariate equations o f H ill (1971) and is  
F = [ (0.25G-0.25GP- 'G) + (P-0.25G)/n], when family members are half-sibs. Note 
that the f i r s t  term is  the variance o f a fam ily  genotypic mean about the 
regression (d r ift  variance) and the second term is  the variance of measurement 
error in the family mean value.

Investigation o f DET(B) and the calculation o f the inverse of V would 
be simpler i f  F was a diagonal' matrix. A canonical transformation can be used 
to give independent tra its  and F would be diagonal for these canonical tra its. 
Let S* be the transformation matrix from the original scale to the canonical 
scale, such that [C^ C2] '  = S*(x i x2] ' ,  then S* is  such that S*PS*' equals

the id en tity  matrix and S*GS*' = Ĝ  where Gq is  the diagonal variance-

covariance matrix on the canonical scale. For half-s ib  family data, matrix 
F -1 = diag D where d j = [0.25Xj( 1 -X j) + (1-0 .25X j)/n ]-1 and Xj denotes the

h e r ita b il ity  o f the j- th  canonical t r a it .  The expected value o f DET(pc ) =
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iX*V-^Xc | = d 1d2(d-|B2 +d2Bi)(BiB2-B2 2) where B-|, Bp and B3 are the expected
sums of squares and crossproducts of the observations on the canonical scale.

When using o ffs p r in g -p a re n t  reg ress ion  to  estim ate genetic 
parameters, the variances of the estimated genetic parameters depend on the 
sums o f squares o f the observations of the parents. When only one tra it  is  
o f in te res t, the sum o f squares is  maximised by se lec tin g  ind ividuals with 
high and low values to be parents (i.e. selection on individuals with extreme 
values). By analogy, in the two dimensional case, th is suggests se lec tin g  
in d iv id u a ls  measured which are as fa r  from the o r ig in  as possib le. 
Invariance arguments suggest using a quadratic index of the form 
(x-j X2 ) ’ P- ^(xi X2 ) where Xj are the standard ised  phenotypic va lues.

Geom etrically, th is can be thought o f as se lec tin g  ind ividuals outside an 
ellipse given by the formulae (x1+x2)2/2(1+rp) + (x i-x2)2/2(1-rp) = w2, where

w is  chosen such that a proportion pE o f the ind ividuals are outside the

ellipse. As th is e llip se  used in selecting parents depends on P, we ca ll i t  a 
phenotypic se lec tion  e llip s e . T a ll is  (1963) considered th is  type o f 
se lec tion  in a d if fe re n t  context and derived the proportion pE = exp(-w2/2)

and the variance-covariance matrix o f the observations a fte r  e l l ip t i c a l  
selection P* = (1-log p£) p.

Transformation onto the canonical scale results in the diagonalisation 
of the F matrix and DET(pc) = (PM p^d-^tdi+dpXl-log pE)3. (2)

The phenotypic se lec tion  e ll ip s e  (x-| x 2 )'P -1 (x i x2) = w2 has axes

x-|+X2  and x-]-x2- For canonical t ra it s  the se lection  e l l ip s e  reduces to a

c irc le .
I t  is  useful to compare values o f DET(jS) obtained using the 

phenotypic selection e llip se (E) with those obtained from more conventional 
designs. The c la ss ica l design (C) is  to  s p lit  ind ividuals in the parental 
generation into two groups, selecting high and low within one group for tra it  
x 1 and selecting high and low within the other group for tra it  X2 . An index

design would use an index o f both t ra its  as the se lection  c r it e r ia  in  each 
group rather than selecting directly on the tra its measured. We have shown 
(Cameron and Thompson, 19 8 6 ) that indices aiix-|+ai2X2 ar)6 a21x1+a22x2 with the

S jj's  chosen such that the indices are uncorrelated and have unit phenotypic

variance are reasonably e f f ic ie n t  indices. Two pairs o f such ind ices are 
(x i+ x2)/>/2(1+rp), (x i -x 2)/v'2( 1+rp) and x 1 , (x2-rpx i)/  (1 -rp ), denoted 01 fo r

orthogonal indices. We note that any such pair o f orthogonal axes can be used 
to generate the phenotypic selection ellipse.

For these conventional designs, the genetic parameters can be 
estimated using responses to  se lection  d if fe re n t ia ls  (e.g. Gunsett e t  a l, 
1984). We prefer to  use offspring-parent regression as there is  a gain in 
relative effic iency of (1+ix)/i2 for the 01 designs. There is  s t i l l  the choice
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of parental tra its  to be used in the regression analysis. One possib ility is 
ju st to  use the parental selected t r a i t  fo r  each group (i .e .  fo r  design C use 
x., in the f i r s t  group and x2 in the second group). This is  s im ila r to  the

usual approach with responses to selection d iffe ren tia ls  and we use this for 
design C. Another possibility is to use both parental tra its  with both groups 
and we use this for design 01. .

For uncorrelated tra its , the re la tive  magnitudes o f DET(p)v - for the 
designs C, 01 and E are 1+ix : 2+ix : 2 (l- lo g  pE) resp ec tive ly , where i  and x

are the expected se lec tion  d if fe re n t ia l and abscissa on the standardised 
normal curve corresponding to pE/2. Equal se lec tion  d if fe r e n t ia ls  are

assumed in the two groups for classical and index designs. For example, i f  
the selection proportion for the conventional design is  0.15, then pE equals

0.30 and the re la tive  magnitudes of DET(P) for the designs C, 01 and E are 
2.61 : 3.61 : 4.41 respectively. As DET(p) 1 /3  is  inversely proportional to the 
variance o f a genetic parameter estimate on the canonical scale, the above 
values o f DET(£)1/,3 show a marked increase in precision  o f the e l l ip t ic a l  
design compared with conventional designs (C or 01).

Formula for comparing C designs with 01 designs are more complicated 
fo r corre lated  t ra its ,  but examination o f the formula suggest that fo r 
correlated  t r a it s  design C w i l l  be even les s  e f f ic ie n t  than design 01 than 
when the tra its  are uncorrelated. For orthogonal designs, the weights given to 
the t ra its  x-|+x2 and xi~x2 are 1/v/2(1+rp) and 1/v^2(1-rp). By contrast, the

c la ss ica l design gives equal weight to x1+x2 and x-j-x2. As rp deviates from

zero, the rela tive efficiency of design C compared with design 01 decreases. 
Numerical examples in Cameron and Thompson (1986) illu stra te  this point and 
also show the advantage of using orthogonal indices.

Optimising the selection proportion fan vario .ug designs

I f  the canonical h e r ita b il it ie s  are equal, say to  X, the optimum 
proportion to  se lec t fo r  maximising DET(p with d ifferent selection designs 
can be found by d if fe re n t ia t io n  o f DET(^) w ith respect to p. When using a 
conventional design (designs I  and C), p s a t is f ie s  ( 1-0.25X)/0.25RX( 1-X) = 
(1+x^)/2p(1+ix-xO which is  s im ilar to  the appropriate equation o f H ill  and 
Thompson (1977) derived in a univariate context. When using a phenotypic 
selection ellipse, pE satisfies (l-O.25X)/0.25RX(1-X) = -log Pg/PE*

These equations g ive an optimal design fo r  fix ed  numbers o f 
ind ividuals in  the parental, 2M, and o ffsp rin g , 2MR, generations. I f  the 
balance o f individuals in the two generations can be adjusted, R, then the 
optimal value o f DET(f)/(2M(1+R))3, a measure of the efficiency of the design 
on a per ind ividual measured basis, can be determined. The optimum value 
occurs when pE satisfies (1-0.25X)/0.25X(1-X) = (log pE)^/pE and R = -log  pE.

Since the genetic parameters are not known "a priori", designs should 
be robust to poor estimates o f these parameters. H il l  and Thompson (1977) 
showed that th e ir  univariate designs were robust and Cameron and Thompson 
(1986) show sim ilar results hold for bivariate designs. For example, when R 
equals 2.0, X values in the ranges (0.18, 0.87) and (0.13, 0.90) and designs
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using PgrO.20 are at least 0.90 and 0.95 as e ffic ien t as the optimal design.

When the canonical h eritab ilities  are unequal, one suggestion is  to 
use a pooled value o f X, with X chosen such that the resu lting  d value 
satisfies 2d3 = d -^  (see equation (2)). As there are two solutions

to  the quadratic equation fo r  X, we suggest using the X value that l ie s  
between X-j and \2‘ The resul t:i-ng value of X is  essentially independent of

the value o f n, the fam ily  s ize , when n is  moderate (n>15). Numerical 
comparisons showed that using the derived X value is  reasonable when the 
canonical h erita b ilitie s  are unequal.

We have demonstrated the theory using se lec ted  parents o f one sex. 
There have been gains from using assortative mating when estimating genetic 
parameters fo r a single tra it  (Reeve, 1955). There w ill  be similar gains from 
multivariate designs, with selection of mates being based on minimising the 
"phenotypic distance" between mates. The multivariate design theory naturally 
extends to more than two tra its  and more than two generations.
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