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SUMMARY

This is a review of various aspects of estimation of genetic
parameters, concentrating on developments since the last World Congress.
Improvements in algorithms to estimate variance and covariance components are
described. We discuss the relevance of these procedures, developed for
unselected populations, when they are applied to selected populations and
indicate unresolved difficulties. We comment on the use of mixed model
methodology to estimate realised heritabilities. We consider the design of
experiments to estimate multivariate parameters. In particular, we show that
for bivariate uncorrelated data the variance of the estimated genetic
parameters can be reduced by 0.4 relative to more conventional designs.

INTRODUCT ION

Thompson (1982) reviewed methods of estimation of variance and
covariance components. Part of our paper is related to updating that review
and pointing out improvements in algorithms and their application to selected
data.

Often the precision of estimates, especially from multivariate data,
is low. We investigate the design of bivariate experiments showing that by
suitable selection of parents we can increase the precision of estimates.

ALGORITHMS FOR VARIANCE COMPONENT ESTIMATION
For illustration we consider estimation in the linear model
y = Xa + Zb+e (1)

where y is a nxl1 vector of observed responses, X and Z are known matrices of
size nxp and nxq, a is a pxl vector of fixed effects, and b is a gx1 vector of
random effects distributed as N(O, d”~1) and e is a vector of residual terms

distributed as N(©O, d2l). If the elements of X and Z are zero or one and

each row of X and Z has only one non zero element then (1) can be thought of
as a ANOVA mixed model.

For this model Patterson and Thompson (1971) introduced the idea of
residual maximum likelihood (REML) wusing the likelihood (L) of error
contrasts to estimate the variance components d2 and d2. Iterative schemes

are needed if the design is not balanced. Patterson and Thompson (1971) gave
schemes based on expected values of second differentials of L. However the
computation of second differentials can be complicated, for example Meyer
(1983), and using first differentials of L might take more iterations but
could be computationally cheaper.
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Ore general scheme, possible whenever there is missing data, which
can be thought of as using the first differentials is the expectation-
maximisation (EM) algorithm (Dempster et al., 1977). In our case the missing
data are the random effects b and e. The estimation of variance components
using the BM algorithm has been described for model (1) by Dempster et al.
(1984) and for other genetic models by Henderson (1985a,b). Thishas been
despite indications (Thompson, 1979) thatthe procedure can be slow to
converge, especially with animal breeding data.

For balanced designs, analyses of variance can be easily constructed
and estimators for the various mean squares trivially constructed and then
simply transformed to give efficient estimates of the variance components.
This raises the question whether the BEM algorithm can be improved by a
transformation of parameters.

Thompson and Meyer (1986) have shown that such an improvement in the
rate of convergence is possible. For example in model (1) with p=1 and a
representing an overall mean effect and n/q observations involving each random
effect (i.e. a balanced design) then a natural parameterisation is d2 and d2»

+ qd2/n. An BM algorithm, for these parameters, converges in one iteration.
Obviously in animal breeding studies datais not often balanced but the
transformation from d2, d2” to d2 and d2~+ d2/k, where k is an average

number of observations on the random effects, can dramatically improve
convergence. Note that as k tends to infinity we get the more usual BEM
algorithm.

The same argument can be applied to other designs, for example for an
hierarchical analysis between sires, between dams within sires and within
dams. Then the natural parameters are d2, d2d + d2/k® and d2s + tf2d/k2 +

d2/kik2 where k| and k|k2 are measures of dam and sire family size (Thompson
and Meyer, 1986). Sometimes d2, d2” and d2s can be interpreted as d2p -
d2n/2-3d2p/4, d2A/4 + d2p/4 and d2A/4 where d2p, d2” and d2p are phenotypic,

additive and dominance variances respectively. For this model Henderson
(1985a,b) suggested, for computational convenience, two 'EM schemes based on
dp <A d2j) and linear functions of d2A and d2p, that will be slower to

converge.

Some of the terms involved in the differentials of L can be
interpreted in terms of the quantities in mixed model equations (Henderson,
1973). Results on partitioned matrices can simplify the computation. For
instance if X represents one fixed factor then XX will be diagonal, and if p
is much greater than g then it is convenient to find the prediction of b from

(2'sz +1 g-1) b =2ZSy
or Q b = Z'Sy
where S = I-X(X'X)-IX' and g = d~/d2

The iterative procedure can be formulated in terms of b and Q*1. In each

round of the iterative procedure a different value of g is used and hence the
inversion of a different gxqg matrix is required.
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Patterson and Thompson (1971) recognised this problem and suggested a
transformation of O into PCD + g-11)P' with P orthogonal and D a diagonal
matrix. Then Q1 can be simply found from P (0 + g_)I)~Ip. This can be
thought of as working with a set of n-p independent sums of squares, n-p-g+1
with expectation d2”and g-1 with expectation a function of d2, d2” and D

This fits naturally into the generalized linear model framework (McCullagh and
Nelder, 1983) using the gamma distribution.

Smith and Graser (1986) suggest an attractive scheme that avoids the
calculation of the latent roots D. They suggest finding an orthogonal
transformation PN such that Pj QPj' is tridiagonal (P™ is often calculated

first when P and D are found). They show that only a small number of
calculations (proportional to q) are needed to give the first differentials of

L once Pf is known.

For multivariate data with v traits there is an obvious extension of
the model (1) when v observations are taken on each animal. The variance
components d2 and d2” being replaced by vxv symmetric matrices ~ and

Equations of predictors will normally involve all v traits. Thompson (1982)
pointed out that a canonical transformation setting up traits that are
independent both genetically and phenotypically is possible and allow the
predictors to be found using univariate calculations. Meyer (1985) has shown
that there are simplifications in a REML procedure to estimate ~and”j-, by
using a canonical transformation. The P transformation is even more useful

in this multivariate case since it avoids the inversion of v gxq matrices in
each round of iteration (Taylor et al,1985).

SELECTION

Not all animals used in analysis are chosen at random. Often there
is either concious or unconcious selection of animals. In certain
circumstances some analyses appropriate for random data are also appropriate
for selected data.

Suppose there is data y§ on some males with mean X] and variance
Vii. Certain males are chosen as parents at random and observations, y2> are
taken on their offspring with mean X2a and variance V2 and the covariance
between y| and y2 is V2* Then y2 given y-j, y2j has mean X2a - V2L v11 1xla
and variance ~"\21 N11~n12* Now ff male parents are selected on the
basis of y-j, then the mean and variance of y2 change but the mean and variance
°f y2.i do not change. This argument is used by Kempthorne and von Krosigk
in Henderson et al. (1959) to derive M. estimates of fixed effects and

variance components when there is selection of animals and they show the
estimates have the same form as when there is random selection. Thompson
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(1982) reviewed other applications of this approach, pointing out that the
estimating equations could be unbiased. Simulations by Rothschild et al
(1979), Meyer and Thompson, (1984), Sorensen and Kennedy, (1984b) and Walter
and Mao (1985) verify that likelihood methods can take some account of
seiGetione

When selection is based on certain linear contrasts of y, say L'y,
then Henderson (1975) considers using a conditional model for y given L'y and
derives BLUP equations. When L'y is translation invariant (i.e. L'(y-XaO0)=L'y)

then these equations are identical with those when selection is at random.
When L'y is not translation invariant, there are differences. If the fixed
effects were known, the predictors of the random effects would have the same
form as when there is random selection. However, there is a difference in the
estimation of the fixed effects. For the example above, if L'y=y, then the
estimates of the fixed effects depend on y2j and not directly on y-]. By

contrast yi is used in the likelihood approach and presumably could be used
before the parents were selected. There are cases when y2>i provides little

information on some fixed effects. These arguments suggest at least four
methods for estimating variance components in the example above when the
selection rate is not translation invariant, (i) using y| and y2 (ii) using ¥|

alone (iii) using y2”~ alone, (iv) pooling yy and y2.v These alternative

procedures have not been investigated.

In some ways one can expect differences between these two approaches
since they are based on the statistical principles of likelihood and repeated
sampling. It is well known that these alternative principles can lead to
different conclusions (e.g. Cox and Hinkley, 1974). Simulation might be used
to clarify some of these issues and give operational guidelines. However most,
if not all, simulations have been of location invariant schemes where there is
less uncertainty. We have not seen any simulation of location variant schemes.
Ore problem is to explicitly define the class of designs that might arise in
these simulations (Thompson, 1982).

SH ECTION EXPERIMENTS

Some of the motivation for considering selection has been to correct
for bias in farm or field data but selection can also be used to investigate
the genetic structure in experimental populations. We will discuss this in
the context of designing experiments to estimate multitrait genetic variances
and covariances, but first some comments on selection experiments without
controls seen in order given recent papers in this area (Blair and Poliak,
1984; Sorensen and Kennedy, 1984a).

In selection experiments with two divergent lines, or one selected
line with a control, estimates of realised heritability can be found from
comparing response to selection with cumulative selection differential
(Falconer, 1981). When there is only one line without a control it is more
difficult to disentangle genetic and environmental contributions. Blair and
Poliak (1984) in the analysis of a sheep selection experiment calculated
predictions of the genetic merit for animals born in each year. To derive an
estimate of realised heritability h2BP they suggested regressing the predicted
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genetic merit against the cumulative selection differential. However
Thompson (1986) has shown for two simple designs without controls that h2gp is

more a function of the value of heritability used to generate the predictions
than the heritability in the population (see also Thompson, 1979, Dempfle,
1982). In a sense two predictions are being compared rather than a
prediction with a response.

Of course other estimators of heritability could be used (Thompson,
1982, Sorensen and Kennedy, 1984b) and some involve sums of squares of
predicted values. One cannot however expect these estimates to be very
precise if there are no controls. For example, the information provided by
parent-offspring regression is inversely proportional to the sums of squares
of parental values, and if only a selected line is measured then the variance
of selected parents will be small.

DESIGN OF MULTIVARIATE SELECTION EXPERIMENTS

Precise, unbiased estimates of genetic parameters, such as
heritability and genetic covariance, are necessary to optimise breeding
programs and to predict rates of change for various selection schemes. One
experimental design objective in single trait selection experiments is to
minimise the variance of heritability estimated from the regression of the
mean progeny performance on that of the parent. Hill (1971) has derived
equations for calculating the variances of various univariate designs, taking
account of genetic drift and measurement error.

When dealing with two or more traits, the genetic variances and
covariances are parameters of interest, but it is not as obvious what the
optimal design objective should be when three or more parameters are
considered. We suggest an objective that is symmetric for all parameters and
compare the efficiencies of different selection designs. A different
experimental design to the classical high-low individual selection method is
examined and it is shown to be more efficient and robust.

Given a regression model Y r Xp+ e, where Y is the vector of the
dependent variable, X is the design matrix of the independent variables and e
is the vector of residuals with variance-covariance matrix V, then the
confidence ellipsoid of the generalised least squares estimate £ of £
N = (X'V-'XAX'V-iY, with variance (X'V-1X)-1, has the form r 1

[f: (3>{b) X'V"IX (f-]) < constant]

for any specified confidence coefficient. The content of the ellipsoid (e.g.
volume in 3 dimensions) is proportional to [ XVWIX Therefore, one
design criterion which we use is to minimise the content of the ellipsoid or
to maximise 'X'V_1X] the D-optimality criterion. The determinant of XV* q is
denoted by DET("). The D-optimality criterion has the useful invariance
property that if a design X maximises DET(B), then the same design also

maximises DET(T*j5), where T* is a full rank transformation matrix.
Therefore, a design that is optimal for estimation of pis also optimal for a
linear transformation, T*£, of There are other overall criterion, but the

do not have this invariance property.

The genetic and phenotypic variance-covariance matrices for the
traits are denoted by G and P respectively. We consider cases of
standardised traits, with mean zero, when the diagonal elements of the P
matrix are equal to one and assume that the traits are normally distributed.
The methods and designs considered can be applied to multivariate data but are
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developed using bivariate data. The genetic variances and covariances of the
standardised traits are then heritabilities (h* and and co-heritabilities

(rAhjh2 where rA is the genetic correlation between the two traits). In the

estimation of these parameters, it is convenient to work in terms of the (3x1)
vector = 0.5 [h* rAhih2 h2] rather than the (2x2) symmetric matrix of

genetic variances and covariances.

There is no loss of generality from standardising the traits, for if
the diagonal elements of the P matrix are not equal to one, then the
phenotypic variables can be standardised using a transformation, T* such that
the transformed G matrix becomes T*GT*'. The invariance argument of the
design criterion shows that a design optimal for the parameter”is also
optimal for the genetic parameters in T*GT*.

Offspring-parent regression techniques can be used to estimate genetic
parameters of more than one trait simultaneously. The standardised
observations on two traits for the j-th parent and the mean of its offspring
are x-,j, X2j and oxlj,0x2j respectively. Then

— = = - + e
5xlj =~ 05 &1 X 1j" +e = 05G 51" + e *1J  s2j 0

5x2j_ X2j_ 20 S0 sk s
where sJj and s2j are (xij-rpx2i)/(-1by and GRi-PI/(LD) respectively,

and rP is the phenotypic correlation between the traits x| and x2. .
Assume a total of 2M unrelated individuals, of one sex in the

parental generation, are measured for both traits and a proportion pg are
selected, such that 2MpEzdN. We assume equal family sizes of n=R/pE progeny

per family to give a total of 2MR progeny which are reared and recorded.

The parameter 6 can be estimated by combining the information from all
4N offspring-parent pairs. The residuals are correlated within families but
not between families. The variance-covariance matrix of residuals (V) is a
8Nx8N block diagonal matrix and the only non-zero elements are a 2x2 matrix,
denoted F, repeated 4N times down the diagonal. The structure of the F matrix
can be derived from the univariate equations of Hill (1971) and is
F = [(0.25G-0.25GP- 'G) + (P-0.25G)/n], when family members are half-sibs. Note
that the first term is the variance of a family genotypic mean about the
regression (drift variance) and the second term is the variance of measurement
error in the family mean value.

Investigation of DET(B) and the calculation of the inverse of V would
be simpler if F was a diagonal' matrix. A canonical transformation can be used
to give independent traits and F would be diagonal for these canonical traits.
Let S* be the transformation matrix from the original scale to the canonical
scale, such that [C™ C2]' = S*(xi x2]', then S* is such that S*PS*' equals

the identity matrix and S*GS* = G" where Gq is the diagonal variance-

covariance matrix on the canonical scale. For half-sib family data, matrix
F-1 = diag D where dj = [0.25Xj(1-X]j) + (1-0.25Xj)/n]-1 and Xj denotes the

heritability of the j-th canonical trait. The expected value of DET(pc) =
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iX-"Xc | = dld2(d-|B2+d2Bi)(BiB2-B22) where B-|, Bp and B3 are the expected

sums of squares and crossproducts of the observations on the canonical scale.
When using offspring-parent regression to estimate genetic
parameters, the variances of the estimated genetic parameters depend on the
sums of squares of the observations of the parents. When only one trait is
of interest, the sum of squares is maximised by selecting individuals with
high and low values to be parents (i.e. selection on individuals with extreme
values). By analogy, in the two dimensional case, this suggests selecting
individuals measured which are as far from the origin as possible.
Invariance arguments suggest using a quadratic index of the form
(x-j X2)'P-"N(xi X2) where Xj are the standardised phenotypic values.

Geometrically, this can be thought of as selecting individuals outside an
ellipse given by the formulae (x1#x2)2/2(1+rp) + (xi-x2)2/2(1-rp) = w2, where

w is chosen such that a proportion pE of the individuals are outside the

ellipse. As this ellipse used in selecting parents depends on P, we call it a
phenotypic selection ellipse. Tallis (1963) considered this type of
selection in a different context and derived the proportion pE = exp(-w2/2)

and the variance-covariance matrix of the observations after elliptical
selection P* = (1-log p£) p.

Transformation onto the canonical scale results in the diagonalisation
of the F matrix and DET(pc) = (PMp~d-~tdi+dpXl-log pE)3. (2)

The phenotypic selection ellipse (] x2)'P-1(xi x2) = w2 has axes
x-]+X2 and x-]-x2- For canonical traits the selection ellipse reduces to a

circle.

It is wuseful to compare values of DET(jS) obtained using the
phenotypic selection ellipse (E) with those obtained from more conventional
designs. The classical design (C) is to split individuals in the parental
generation into two groups, selecting high and low within one group for trait
x1 and selecting high and low within the other group for trait X. An index

design would use an index of both traits as the selection criteria in each
group rather than selecting directly on the traits measured. We have shown

(Cameron and Thompson, 1986) that indices aiix-]+ai2X2 ar)6 a2lx1+a22x2 with the
Sjj's chosen such that the indices are uncorrelated and have unit phenotypic

variance are reasonably efficient indices. Two pairs of such indices are
(Xi+x2)/>/2(1+rp), (xi-x2)/N"2(1+rp) and x1, (x2-rpxi)/ (1-rp), denoted 01 for

orthogonal indices. We note that any such pair of orthogonal axes can be used
to generate the phenotypic selection ellipse.

For these conventional designs, the genetic parameters can be
estimated using responses to selection differentials (e.g. Gunsett et al,
1984). We prefer to use offspring-parent regression as there is a gain in
relative efficiency of (1+ix)/i2 for the Ol designs. There is still the choice
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of parental traits to be used in the regression analysis. One possibility is
just to use the parental selected trait for each group (i.e. for design Cuse
X., in the first group and x2 in the second group). This is similar to the

usual approach with responses to selection differentials and we use this for
design C. Another possibility is to use both parental traits with both groups
and we use this for design 01. .

For uncorrelated traits, the relative magnitudes of DET(p)v - for the
designs C, 01 and E are 1+ix : 2+ix : 2(l-log pE) respectively, where i and x

are the expected selection differential and abscissa on the standardised
normal curve corresponding to pE/2. Equal selection differentials are

assumed in the two groups for classical and index designs. For example, if
the selection proportion for the conventional design is 0.15, then pE equals

0.30 and the relative magnitudes of DET(P) for the designs C 01 and E are
261 : 3.61 : 4.41 respectively. As DET(p)l/3 is inversely proportional to the
variance of a genetic parameter estimate on the canonical scale, the above
values of DET(£)Y/,3 show a marked increase in precision of the elliptical
design compared with conventional designs (C or 01).

Formula for comparing C designs with 01 designs are more complicated
for correlated traits, but examination of the formula suggest that for
correlated traits design Cwill be even less efficient than design 01 than
when the traits are uncorrelated. For orthogonal designs, the weights given to
the traits x-|+x2 and xi~x2 are 1/v/2(1+rp) and 1/v~2(1-rp). By contrast, the

classical design gives equal weight to x1+x2 and x-j-x2. As rp deviates from

zero, the relative efficiency of design C compared with design 01 decreases.
Numerical examples in Cameron and Thompson (1986) illustrate this point and
also show the advantage of using orthogonal indices.

Optimising the selection proportion fan variouy designs

If the canonical heritabilities are equal, say to X, the optimum
proportion to select for maximising DET(p with different selection designs
can be found by differentiation of DET(®) with respect to p. When using a
conventional design (designs | and C), psatisfies (1-0.25X)/0.25RX( 1-X) =
(L+xM)/2p(1+ix-xO which is similar to the appropriate equation of Hill and
Thompson (1977) derived in a univariate context. When using a phenotypic

selection ellipse, pE satisfies (1-0.25X)/0.25RX(1-X) = -log Pg/PE*

These equations give an optimal design for fixed numbers of
individuals in the parental, 2M, and offspring, 2MR, generations. If the
balance of individuals in the two generations can be adjusted, R, then the
optimal value of DET(f)/(2M(1+R))3, a measure of the efficiency of the design
on a per individual measured basis, can be determined. The optimum value
occurs when pE satisfies (1-0.25X)70.25X(1-X) = (log pE/pE and R = -log pE

Since the genetic parameters are not known "a priori”, designs should
be robust to poor estimates of these parameters. Hill and Thompson (1977)
showed that their univariate designs were robust and Cameron and Thompson
(1986) show similar results hold for bivariate designs. For example, when R
equals 2.0, X values in the ranges (0.18, 0.87) and (0.13, 0.90) and designs
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using PgrO.20 are at least 0.90 and 0.95 as efficient as the optimal design.

When the canonical heritabilities are unequal, one suggestion is to
use a pooled value of X, with X chosen such that the resulting d value

satisfies 2d3 = d-" (see equation (2)). As there are two solutions

to the quadratic equation for X, we suggest using the X value that lies
between Xj and \2° The resul ting value of X is essentially independent of

the value of n, the family size, when n is moderate (n>15). Numerical
comparisons showed that using the derived X value is reasonable when the
canonical heritabilities are unequal.

We have demonstrated the theory using selected parents of one sex.
There have been gains from using assortative mating when estimating genetic
parameters for a single trait (Reeve, 1955). There will be similar gains from
multivariate designs, with selection of mates being based on minimising the
"phenotypic distance" between mates. The multivariate design theory naturally
extends to more than two traits and more than two generations.
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