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Abstract: The applicability of laser ultrasonics for the determination of grain size and phase com-
position in steels under different temperatures was investigated. This was done by obtaining the
velocity and attenuation of propagating ultrasonic waves in a simulated steel medium. Samples
of ferrite and austenite with varying microstructures were modelled and simulated with the finite
difference method, as were samples with varying ratios of austenite and martensite. The temperature
of the medium was taken into account as an essential parameter, since both velocity and attenuation
are temperature dependent. Results of the velocity and attenuation analysis showed that the use of
the wave propagation velocity is not feasible for determination of grain size or phase composition
due to a high sensitivity to temperature and sample thickness. The frequency-dependent ultrasonic
wave attenuation was less sensitive to the variation of temperature and sample thickness. It can be
concluded that accurate knowledge of the temperature is essential for obtaining a correct grain size
or phase ratio estimation: a temperature accuracy of 100 ◦C yields a grain size accuracy in the order
of a micrometer using the attenuation. Similarly, a temperature accuracy of 70 ◦C leads to a phase
ratio estimation accuracy of 10%.

Keywords: laser ultrasonics; non-destructive testing; steel; microstructure; multiphase; temperature;
attenuation; sound velocity; finite difference; simulation

1. Introduction

The mechanical properties of advanced high strength steels (AHSS) are greatly influ-
enced by the grain size and the composition of the metallurgical phases. Both grain size
refinement and the introduction or creation of secondary phases (e.g., martensite, bainite,
pearlite) are mechanisms to strengthen AHSS. Hence, control of grain size, and control of
secondary phase volume fraction are essential to master the mechanical properties. For
consistent behavior of the product in forming processes, the mechanical properties, and
hence the microstructure and composition, should remain constant. Therefore, real-time
monitoring and control of the production process is important but challenging due to the
harsh conditions. A potential way to measure the grain size and the secondary phase
volume fraction in an inline manner during steel hot rolling is via laser ultrasonics (LUS).
A complicating factor, however, is that the temperature varies during the process, affecting
the ultrasonic properties as damping and wave velocity.

Since the proposal to use LUS as a new contactless measurement method for non-
destructive testing of metals [1–5], the technology has been developed over the years to
become a mature technology for a wide range of applications, such as corrosion monitor-
ing [6], delamination detection in reinforced polymers [7], and in the determination of
material properties [8–11]. Whereas in conventional transducer-based ultrasonic characteri-
zation a contact probe is used, LUS employs a laser pulse to generate an ultrasonic wave in
the medium by ablating a small fraction of the sample material. The propagating ultrasonic
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wave can be recorded by a measuring laser. The resulting measurement scheme is contact-
less, making it suitable for inline measurements in a steel mill, where the movement and
temperature of the steel strip are a challenge for conventional transducers. Details on the
physical background and practical applications of LUS techniques are described in several
books and articles, e.g., [12–16]. Various LUS systems have been developed and used in
offline systems [5,10,17–19] or as inline systems in steel mills [20].

Grain size and metallurgical composition are among the key factors determining
material properties, such as strength, deformability, hardening and toughness, but also
for detecting the formation of corrosion and pitting. Grain sizing. and time-varying
aspects such as growth, deformation, recovery, and recrystallization have been studied in
a variety of metals, such as manganese alloys [5], cobalt alloys [21], nickel alloys [9,22],
aluminum [19,23] and stainless steels [24–27]. Monitoring of the metallurgical composition
is especially important in dual phase (or multiphase) steels, where formability and strength
depend on the phase ratio and phase distribution [28–32].

Efforts to model the ultrasonic wave propagation in materials with a microstructure
have mainly focused on calculating attenuation and wave velocities in 3D, but backscat-
tering has also been considered. Increasing computational power and the development
of sophisticated computational methods such as finite difference (FD) or finite-difference
time-domain (FDTD) methods [33,34] and finite element methods (FEM) [24,35–37], have
enabled the modelling and computation of large three-dimensional samples. In these
studies, materials with (poly)crystalline structures, consisting of different phases, or with
inclusions, voids or cracks have been modelled.

Our investigation presents a model-based study to evaluate the capability of the LUS
method to measure these grain size and metallurgical composition (apart from experimental
measurement uncertainties). The study addressed the (inter-)dependencies of such a
measurement, for example, to temperature. The literature (as mentioned before) has often
provided insights in the relation between grain size or composition and various mechanical
or (micro)structural properties, leading to a specific behavior of a material. However, the
dependency on temperature fluctuation, and the effect of a temperature change on the
estimation of grain size and phase composition, have not been studied extensively. The
simulation setup enabled us to specify the properties of each grain independently, allowing
for the generation of multiphase steels, temperature-dependent elastic properties, and
texture.

Our analysis approach was to obtain the velocity and attenuation from simulations of
ultrasonic wave propagation in various computer-generated (artificial) steel microstruc-
tures, at a range of temperatures. The research questions are:

1. How accurate can grain size be determined from LUS simulations on various simu-
lated microstructures and temperatures?

2. How accurate can the phase composition be determined from LUS simulations on
various multiphase media and temperatures?

Our studies were limited to modelling the ultrasonic wave propagation in the medium;
the temperature dependency of the generation and detection of the waves by the laser were
not considered, nor was the complex process of laser ablation.

2. Materials and Methods
2.1. Simulation Framework

Wave propagation in an elastic medium can be accurately and efficiently described
using a finite-difference approach, which was the method followed in this study. Phys-
ical phenomena, such as mode conversion and frequency dependent scattering from
grain boundaries, are included automatically. To calculate wave propagation, the elasto-
dynamic equations are used, where the stresses and the particle velocities in the medium
are described. Three sets of equations are required: the equation of motion, the strain-
displacement equation, and the constitutive relation [38,39]. Note that the steel grains are
modelled as anisotropic elastic media, thereby ignoring intrinsic damping mechanisms.
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The numerical scheme that is used for the finite difference framework is based on a
rotated staggered grid (RSG). Staggered grids are often used in finite-difference frameworks,
which allows differences to be taken in a straight-forward way (parallel to one of the
principal axes). However, they can lead to numerical artifacts in case of anisotropy, where
differences over boundaries are not taken into account properly. In that case, an RSG
provides better results. Saenger [39] applied the RSG to velocity-stress formulations of the
elasto-dynamic wave equations. The advantage is that components are now located only at
edges and in the center of an elementary cell, and not on the sides anymore.

A schematic process of the finite-difference simulation framework is depicted in
Figure 1, from the source data (geometry, phase, and material properties; top left), via
the individual grain (single crystal) elasticity constants to a 3D grid usable in the finite-
difference simulation. The output of the simulation is the modelled measurement response
of the microstructure to a specific excitation.
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Figure 1. Schematic overview of the simulation process.

2.2. Fullsize Microstructures

Essential inputs for simulation are the properties of the sample, i.e., the grain structure,
the phases of the individual grains and the texture. Periodic 3D microstructure models
of relevant samples were digitally generated by Tata Steel in the form of a representative
volume element (RVE) describing the location of individual grains [40]. The RVE generator,
based on a multi-level Voronoi algorithm, is able to create periodic structures of up to
200,000 grains. Each grain is associated with a phase number and a set of three Bunge
Euler angles describing the texture. The Bunge Euler angles are taken from the orientation
distribution function (ODF) obtained from EBSD measurements. An ODF describes the
distribution of Euler angles in the 3D Euler angle space. An example of such a microstruc-
ture is given in Figure 2. The size of a microstructural model is determined by the grain
size and the used frequencies. With a maximum frequency of 60 MHz, a shear wave
velocity of 3000 m/s, and at least 12 grid points per wavelength, the minimum grid size is
4.2 µm. In order to describe a wave appropriately, at least two sample points are needed
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per grain. This means that a grid size of half the minimal grain diameter is needed (i.e.,
2.5 µm for grains with diameter 5.0 µm). Based on these requirements, an integer grid
size has been chosen and fixed to 3 micrometers. A grid size lower than this size, leads
to a computationally much larger model (which scales to the power of four: three spatial
dimensions and one temporal dimension).

Since the number of grains which can be handled by the microstructure generator
software is bound to a maximum of 200,000 grains for periodic structures, the RVE samples
cannot be generated at full size for FD simulation. Typically, the RVE sizes are in the order
of 0.3× 0.3× 1.0 mm, while the simulated sample is 3.0× 3.0× 2.0 mm, which is 200 times
larger. This limitation is overcome by replicating the original sample in all three Cartesian
directions until the desired size has been obtained. This allows the generation of a much
larger sample for FD simulation. However, replication of a sample leads to repetitive
structures, which in turn lead to (strongly) amplified effects in ultrasonic wave propagation.
The effect becomes more and more apparent as the replication number increases. Although
it is unavoidable to obtain a repetitive microstructure (grain morphology), the texture
can be randomized under the assumption that there is no spatial correlation between the
texture of the individual grains. For each phase, the existing sets of three Euler angles are
randomly redistributed over all grains belonging to that phase, keeping the sets themselves
intact (and thus preserving the texture), and keeping the sets bound to their specific phase
(no cross-over of texture between phases). As a result, the texture is not repetitive anymore,
although the microstructure remains periodic. This process is illustrated in Figure 3.
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Figure 2. A 2D cross-section of: (a) a microstructure; (b) the corresponding three phases; and (c) the
first of three Bunge Euler angles. The colors in (a) refer to a grain number, the colors in (b) refer to the
phase, and the color scale in (c) is related to an angle between 0 and 2π.

An essential aspect in the interaction of ultrasonic waves and microstructure is grain
scattering. The physical background behind grain scattering is the contrast between two
adjacent grains, which causes a part of the incoming wave to be scattering instead of being
transmitted. The level of grain scattering in a material depends on one hand on the size of
the grains, and on the other hand on the contrast in the elastic properties. The contrast itself
depends on the texture (crystal alignments, determined by a set of Bunge Euler angles, with
respect to the RVE frame) and on the physical properties of the grain (crystal properties,
determined by its material and phase). Modelling grain scattering hence requires the grain
morphologies, the grain material (phase) and its single crystal properties, and the texture.
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Figure 3. An example of replication and randomization. On the left (a), the phase is shown, replicated
three times in y-direction. The middle image (b) shows an ordinary replication of the first Bunge
Euler angle. Note the repetitive patterns in the zooms. The image on the right (c) shows the results of
Euler angle randomization per phase after replication, which eliminates the repetitive pattern in the
texture. After randomization, the phases corresponding with (c) still remaining the same as in (a).
The colors are corresponding with those used in Figure 2.

A set of RVEs were generated with one or two different phases, varying phase ratios
(in steps of 25%), and/or varying grain sizes (5, 10, 15 or 20 µm in diameter). This grain size
range is typically expected in steel during processing in the hot strip mill. In the computer-
generated microstructures, different phases were indicated by a different identifier. The
actual physical properties of a phase were attributed only upon the ultrasonic wave simu-
lation. This procedure allowed the reuse of the same morphologies for simulations with
different phase constituents.

2.3. Temperature-Dependent Material Properties

In the generation of an RVE, each grain is assigned to a phase. In Figure 2b an example
is shown for a sample with three phases. From the literature, a series of single crystal
properties can be obtained, as shown in Table 1 in Voigt notation. In general, these elastic
constants are computed from measurements to wave velocities, or strains and stresses. The
values of ferrite are very close (differences less than 1.5%) and those of austenite differ up
to 5%. This may indicate that the assumed temperatures might be off.
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Table 1. Single crystal properties found in literature.

Material

Ferrite
[41,42]

Ferrite
[43]

Martensite
[44]

Austenite
[45,46]

Austenite
[47]

Elastic
constants

[GPa]

C11 233.1 231.5 237 198 192.7
C22 233.1 231.5 237 198 192.7
C33 233.1 231.5 256 198 192.7
C23 135.4 135.0 144 125 131.3
C13 135.4 135.0 144 125 131.3
C12 135.4 135.0 144 125 131.3
C44 117.8 116.0 115 122 126.3
C55 117.8 116.0 115 122 126.3
C66 117.8 116.0 115 122 126.3

Zener’s
anisotropy Z 2.41 2.40 2.47 3.34 4.11

Reference
temperature TREF

300 K
(27 ◦C)

room
tempera-

ture

0 K
(−273 ◦C)

not
mentioned,
assumed

298 K (25 ◦C)

not
mentioned,
assumed

298 K (25 ◦C)

A dimensionless metric that describes the anisotropy of a crystal, known the Zener
ratio or Zener’s anisotropy, has been defined for cubic crystals [44,48] as

Z =
2C44

C11 − C12
. (1)

The ratio is (close to) 1 for isotropic media. The isotropy of the crystalline materials is
also listed in Table 1.

The elastic properties of steel depend on the temperature, as has been shown e.g.,
by Ghosh [41]. Based on GLUS® measurements (method described in [13,49]) and data
inversion [50], the temperature dependencies of the aforementioned material types have
been obtained.

The elastic constants Cij(T) were experimentally determined for each material in
Table 1 at a discrete number of different temperatures. A polynomial function was fitted
to this data to obtain the temperature dependency. The temperature dependency was
modelled as

Cij(T) =
(

a1,ijT2 + a2,ijT + 1
)

Cij(TREF), (2)

where Cij(TREF) is the elastic constant Cij at the reference temperature TREF (also listed in
Table 1), T is the temperature in the simulation, and

[
a1,ij a2,ij

]
are the experimentally

determined polynomial coefficients. In the simulations, the required elastic constants of a
material at a specific temperature were obtained by entering the constants at the reference
temperature (from Table 1) and the polynomial coefficients into Equation (2).

An example is shown in Figure 4a, where the temperature dependency of the elastic
coefficients C11, C12, and C44 is plotted. The curve is determined based on the aforemen-
tioned measurements in the range between 100 ◦C and 500 ◦C, but extrapolated values
down to −273 ◦C are also plotted as a dotted line. The experimental values which Ghosh
lists in his article [41] (originally measured by Rayne [42]) are shown as well. Although
there are deviations between Ghosh’s values and the curve, the trends are comparable. Tem-
perature dependencies of other phases have not been found in the literature but based on
the match between the extrapolated experimental results and Ghosh’s results, the approach
is considered to be valid.

Note that the temperature dependency of the elasticity matrix is different for each
component, both in absolute and in relative sense. For ferrite, the C12 shows a much smaller
relative decrease than C11, which has in turn a smaller relative decrease than C44. The
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ratio of their decrease determines the single crystal isotropy and the behavior at higher
temperatures, influencing the wave velocity and attenuation.

In addition to the elasticity matrix, the density also depends on the temperature. Values
for ferrite, martensite and austenite are taken from papers from Cho and Lyassami [51,52].
The resulting densities as a function of temperature are shown in Figure 4c.
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Figure 4. (a) The elastic coefficients C11, C12, and C44 of ferrite plotted as function of temperature
between room temperature and 900 ◦C as a solid line. An extrapolation down to the absolute
minimum temperature is shown as a dotted line. Values as given by Ghosh [41] are shown as crosses;
(b) the isotropy Z as derived from the temperature-dependent elasticity coefficients; and (c) the
temperature-dependent densities of ferrite, martensite and of austenite [51,52].

2.4. LUS Modelling, Data Processing and Analysis

The characterization of grain sizes and phase variations can be achieved by analysis of
the propagation of high-frequency ultrasonic waves in a LUS setup. Samples of 3.0 × 3.0 ×
2.0 mm (length × width × height) have been used with a spatial resolution of 3.0 µm. This
sample size is restricted due to practical limitations regarding computer memory use and
computation time.

For LUS, a relatively large source has been defined, with a flat top and smoothened
sides, as shown in Figure 5. The full width at half maximum (FWHM) is 1.5 mm, while the
flat top is roughly 0.75 mm in diameter. Note that the size is limited by the sample size,
which in turn is limited by computational capabilities.

The full bottom of the sample has been recorded throughout the simulation. A receiver
is defined with the same size as the source, but on the bottom side of the sample.
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The excitation signal is a single pulse with a center frequency of 25 MHz and a
bandwidth of 64 MHz (at −20 dB), as shown in Figure 6, inducing a vertical compressional
wave. The design of the spot size was optimized for grain size measurement, for texture
measurement a much smaller spot size should be used.
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Figure 6. (a) The excitation signal (a) in the time domain; and (b) in the frequency domain. The
dashed line denotes the bandwidth at −20 dB.

The signal was recorded at the bottom of the sample for a duration long enough
to capture the primary wave and five or six passes through the thickness of the sample.
Since the source was relatively large, the wave travelling up and down in the sample
was regarded as a plane wave. Two cross-sections of a recording are shown in Figure 7,
respectively, a recorder line at the bottom at y = 0 mm, and a single recorder point at
(x, y) = (0, 0) mm. The receiver accumulates the signal from the bottom surface with
radius r = 2.1 mm. This leads to spatial averaging of the grain scatter noise, while
maintaining the shape of the plane wave.
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Figure 7. A cross-section of a recording (a) along a line (red colors denote a positive signal and blue a
negative); and (b) from a single receiver in the center.

The recorded signal shows a series of pulses. Those pulses are the primary com-
pressional wave and internal reflections of the compressional wave. The smaller events
in between the main pulses are mode conversions and noise due to grain scattering. As
can be seen, the amplitude of the pulses decreases over time due to the mode conver-
sion, energy spreading horizontally in the plate and grain scattering. Keyvani mentions
three main contributors to the attenuation of an ultrasound pulse in a medium with a
microstructure [21]:

1. Grain scattering, leading to wave energy dispersion due to mismatches in elasticity in
neighboring grains (crystallographic orientation differences due to texture);

2. Diffraction of the ultrasonic wave in the medium, affecting both the frequency content
as well as the amplitude;

3. Absorption of wave energy, which is assumed to be of minor importance to frequency-
dependent attenuation.

The first two aspects were incorporated in the finite-difference simulations; the third
was not, but according to Keyvani, this would have had a negligible effect on the results.

The wave velocity c can be determined by measuring the delay ∆t between the arrival
of pulses and the thickness of the sample H, as

c = 2H/∆t. (3)

The factor 2 is due to the fact that the wave travels up and down through the sample
in between two pulses. The wavelength λ corresponding to frequency f is given by

λ = c/ f . (4)

Due to grain scattering the spectral content of each pulse changes. Higher frequencies
are more attenuated due to grain scattering than lower frequencies. This can be seen in
Figure 8, where the weighted average frequency decreases for each subsequent echo. Note
that this attenuation also heavily depends on the average grain sizes of the material.
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Figure 8. (a) The windowed echoes in the time domain; and (b) their corresponding spectra in the
frequency domain. The four colors correspond in both subplots.

In general, three grain scattering regimes are considered, depending on the ratio of
wavelength and grain size [24,53]:

1. The Rayleigh regime, where λ� d, leading to an attenuation coefficient α ∼ d3 f 4;
2. The stochastic regime, where λ ≈ d, leading to an attenuation coefficient α ∼ d f 2;

and
3. The diffusion or geometric regime, where λ� d, leading to an attenuation coefficient

α ∼ d−1.

The attenuation coefficient over all these regions can be generalized to α ∼ dγ−1 f γ,
covering all three regions and bridging the gaps in between. An illustration of the ratio
between grain diameter and frequency is shown in Figure 9.
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For typical velocities of 5750 m/s and frequencies between 5 and 50 MHz, the wave
lengths are between 1.2 and 0.12 mm respectively. Compared to the considered grain sizes,
5 to 20 µm, the wave lengths are (much) larger, indicating that the Rayleigh scattering
regime is mostly applicable here, but close to the stochastic regime, with an expected
attenuation coefficient α ∼ f γ with 3 ≤ γ ≤ 4.

The frequency-dependent attenuation can be obtained in two ways, as described by
Keyvani [21]:

1. Compare two echoes of a single measurement, where one echo has travelled a longer
distance through the medium than the other and hence has undergone more attenua-
tion due to the medium’s microstructure;

2. Compare two echoes from two different measurements (both the same echo number),
of which one originates from a well-known medium and the other from the medium
to be characterized. Assumed is that the media have the same thickness and hence
the waves have travelled the same distance.

Following the second approach of Keyvani, i.e., comparing echoes from two different
measurements, the frequency-dependent attenuation αn,m( f ) of sample n for echo m is
obtained as

αn,m( f ) =
20

(2m− 1)H
log10

|SREF,m( f )|
Sn,m( f )

. (5)

where H is the sample thickness and hence (2m− 1)H corresponds with the total travelled
distance of the signal providing echo m. SREF,m and Sn,m are the spectra of the reference
sample and the sample to be analysed, respectively.

Echo 1 is the primary wave, which has travelled only once through the sample. As
a result, the influence of scattering and attenuation on this echo is not very pronounced.
The second echo has travelled three times through the sample and each next echo adds
two more passes compared with the previous one. Due to the limited path length, the
first echo is left out in further analysis, and only the second, third and fourth echoes are
used, hence m ∈ [2, 3, 4]. Echoes 5 and beyond are not considered, since the signal (echo)
to noise (scattering) ratio for those echoes decreases too drastically, especially for samples
with larger grain sizes. The attenuation for the given simulation example, compared to a
reference sample (here taken as the same material, but with a slightly larger grain size),
is computed and shown in Figure 10 for echoes 2, 3 and 4. Both γ = 3 and γ = 4 show a
reasonable fit in the considered frequency range, although an optimal value for γ might
be in between 3 and 4. Note that the frequency range depends on the echo: up to 55 MHz
for echo 2, up to 48 MHz for echo 3 and up to 41 MHz for echo 4. For higher order echoes,
scattering and interference of mode conversions becomes more apparent in the less smooth
curves. Additionally, the low SNR limits the upper boundary of the frequency range which
can be used for the fitting. In order to be able to use a large frequency range, the second
echo was chosen for further processing.
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Figure 10. The attenuation curves of respectively (a) the second echo; (b) the third echo; and (c) the
fourth echo normalized to a reference sample. For each curve, two polynomial fits α = a + b f γ are
overlaid for both γ = 3 and γ = 4.

The choice of a fixed exponent for the fits is always an approximation, since the
attenuation α(d, f ) ∼ dγ−1 f γ depends both on the grain size d (which might vary in
between simulations, but is in the order of 5 to 20 µm) and frequency f (which covers a
range between 5 and 60 MHz in each simulation).

The scattering is considered to be in the Rayleigh regime (γ = 4) and in the transition
regime (γ = 3), as can be seen from the area of interest in Figure 9. Since several experi-
mental systems use a constant exponent γ = 3 [5,20,21,54], this same exponent has been
chosen here as a compromise. This constant exponent γ = 3 has been used for the whole
range of grain sizes.

After obtaining the attenuation α( f ) a function α̂( f ) = a + b f 3 is fitted, and the
parameter b is determined. A new parameter

b′ =

{√
|1000·b| for b ≥ 0
−
√
|1000·b| for b < 0

. (6)

is defined, based on [20,21]. Note that the signs of b and b′ are the same, enabling a
distinction between a positive and negative b.

3. Results

A set of ten samples was simulated at four different temperatures, ranging from 27 ◦C
up to 900 ◦C, and containing various phases, as shown in Table 2. The selected temperature
range matched with the temperatures met during the last stages of hot rolling and during
continuous annealing in steel manufacturing. The set of phase compositions were chosen as
a rigid matrix to obtain a straightforward comparison and simple trend lines; however, the
reader should be aware that certain combinations of phases, grain sizes and temperatures
will not occur in practice. From this full set of simulations, particular subsets can be taken
to study individual effects as grain size or phase variation:

A. The effect of grain size on the 100% austenite samples;
B. The effect of grain size on the 100% ferrite samples;
C. The effect of phase variation on the austenite/martensite samples;
D. The effect of temperature on all samples.
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The last column of the table shows which simulations are used for these four subsets.
Note that, in reality, some of these steel phases do not exist at the simulated temperatures,
but they are taken into account to study trends and dependencies.

Table 2. Ten simulation cases for LUS simulations. Each case has been simulated at temperatures of
27 ◦C, 300 ◦C, 550 ◦C, and 900 ◦C. The subset IDs refer to the four cases in Section 3.

Microstructure
Geometry ID

Average Grain
Diameter [µm]

Material Properties
(Phases and Phase Ratios) Subset IDs

1 10.0 100% Austenite A, D
2 15.0 100% Austenite A, C, D
3 20.0 100% Austenite A, D
4 5.4 100% Ferrite B, D
5 10.0 100% Ferrite B, D
6 15.0 100% Ferrite B, D

7 A: 15.0, M: 10.0 75% Austenite, 25%
Martensite C, D

8 A: 15.0, M: 10.0 50% Austenite, 50%
Martensite C, D

9 A: 15.0, M: 10.0 25% Austenite, 75%
Martensite C, D

10 10.0 100% Martensite C, D

3.1. Microstructure

Two subsets of the performed simulations were taken for analysis: a series of austenite
samples with increasing grain diameters, and a comparable set of ferrite samples with three
different grain diameters. These are the series A and B from Table 2. Grain diameters are
estimated from the data, ignoring the truncated grains at the edges. Assuming spherical
grains, an average grain diameter D̂ can be deduced from the average grain volume V̂ as

D̂ =
3

√
6V̂
π

. (7)

The grain diameters retrieved from the austenitic steel samples are 10.0, 15.0 and 20.0
µm, while the ferritic samples have diameters of 5.4, 10.0 and 15.0 µm, respectively. For
each of those six samples, simulations have been performed at four different temperatures
(27 ◦C, 300 ◦C, 550 ◦C, and 900 ◦C). These temperatures have been used in the simulations to
study the same temperature domain for ferrite and austenite. Note that the phase transition
temperature has not been taken into account, and that some of these (pure) steel phases do
not actually exist at the chosen temperatures.

Per set, the underlying microstructures only differ in grain size. The texture is isotropic
in all samples. The variation in between the average elasticity matrices of the three samples
within each set, is less than 0.1%, taken from samples at the same temperature. For the
pure polycrystalline materials austenite, ferrite and martensite, the corresponding Voigt-
Reuss-Hill averages [55] of the elasticity matrices at 27 ◦C are shown in Figure 11. Zener’s
anisotropy metricZ , as defined in Equation (1), of all three samples is 1.000, which indicates
perfect isotropy.
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Figure 11. (a) The Voigt-Reuss-Hill averaged elasticity matrix of the samples of (a) pure austenite;
(b) pure ferrite; and (c) pure martensite. All values are obtained from samples at a temperature of
27 ◦C. The elasticity matrices are independent of the grain size.

The wave propagation velocity can be determined as a function of the temperature by
finding the time delay between two consecutive echoes. By dividing the travelled distance
2H (i.e., double the sample thickness) by this time delay ∆t, the velocity c is obtained, as
in Equation (3). Results are shown in Figures 12 and 13, where the observed velocities are
plotted either as function of grain diameter or as a function of temperature.

As can be seen, the temperature has a significant effect on the wave velocity. This is
due to the strong temperature dependencies of both the elasticity matrix and the density.
Note that the individual components of the elasticity matrix and the density are nonlinearly
dependent of the temperature, as can be seen in Figure 4, leading to nonlinear velocity
curves in Figure 13. On the other hand, the grain size variation has a much smaller impact
on the wave velocity than temperature. Grain size affects the wave velocity due to small
time delays induced by scattering of waves, leading to relatively small changes in the
resulting wave velocity. The larger the grains, the greater the delay caused by multiple
scattering and hence the lower the resulting wave velocity.

Hence it can be concluded that the wave velocity itself cannot be used effectively
to estimate the grain size due to its small sensitivity to grain size and its much larger
temperature dependency. For a pure austenitic sample, an increase in grain size of 1 µm
means a velocity decrease of 1.6 m/s (Figure 12a), and for a pure ferritic steel this value is
1.1 m/s per µm (Figure 12b). However, the same velocity decrease can also be caused by
several other parameters, e.g., a temperature increase in the order of 1 to 2 ◦C (Figure 13a,b)
or a small change in sample thickness (in the order of micrometers). In order to be able
to determine such small velocity differences, parameters such as temperature and also
sample thickness must be measured very accurately, rendering this method unfeasible for
the determination of grain size.
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Figure 13. The relation between the temperature T, and observed wave velocity c for two material
types and three grain sizes: (a) shows 100% austenitic steel; and (b) 100% ferritic steel.

Simulations of other microstructure realizations or randomizations (pure austenite,
grain size 15 µm, at 300 ◦C) lead to velocity variations less than ±0.4 m/s. This relates to a
grain size variation up to 0.2 µm, which does not have a significant impact on grain sizing.

Results of the attenuation analysis are shown in Figures 14 and 15, where the results
of the fit to the attenuation of the second echo has been plotted, in terms of b′, as defined
in Equation (6). For each of the constant temperature series in Figure 14, the sample with
the middle grain size has been used as the reference sample. Hence, the corresponding
data points all coincide at b′ = 0 for martensite at d = 15 µm and for ferrite at d = 10 µm.
Similarly, as a reference sample in Figure 15, the sample with temperature T = 300 ◦C has
been used for each of the grain sizes.
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Figure 15. The relation between the temperature T, and parameter b′ for two material types and three
diameters: (a) shows 100% austenitic steel; and (b) 100% ferritic steel.

The curves, both as function of grain size and temperature, appear to be approximately
linear for pure austenite and pure ferrite, as far as can be determined with only three or
four data points per curve, which is in accordance with Wan [24]. A generic quantitative
relationship cannot be properly determined. Note that the attenuation parameter for
ferrite is a bit higher than expected for the smallest grain size (grain size less than 10 µm,
Figure 14b). It is assumed that this may be due to the fact that the wave propagation in the
small grains of these samples is prone to computational errors: since there are less than 2
grid points per average grain, the results are assumed to be less reliable.

The curves show slopes which depend on both grain size and temperature. Hence,
a change in attenuation can be attributed to a change in grain size, in temperature or
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in a combination of both. Knowing the sample temperature sufficiently accurate and
using a curve corresponding with this temperature is essential to avoid sizing errors. A
simultaneous measurement of the wave velocity to estimate the temperature (according to
Figure 12) may be used for such temperature correction.

A grain size increase of 1 µm leads to an increased attenuation b′ of 0.03 (pure austenite,
15 µm at 300 ◦C, Figure 14a). A temperature change of 10 ◦C causes an attenuation change
in the order of 0.004 (pure austenite, 15 µm at 300 ◦C, Figure 15a), which is one order of
a magnitude lower. This shows that an effect of temperature is present, but much less
prominent than in the velocity measurements. For ferrite, the slopes are not as large as for
austenite, indicating that grain size estimation from attenuation will be less accurate. Here,
the attenuation value is 0.011 per µm (pure ferrite, 10 µm at 300 ◦C, Figure 14b), which is
also some ten times larger than the attenuation change caused by a temperature increase of
10 ◦C: 0.0013 (pure ferrite, 10 µm at 300 ◦C, Figure 15b). Hence, estimation of grain size
in the order of 1 µm based on the attenuation requires measurement of the attenuation in
the order of a few hundredths, and measurement of the temperature in the order of 10 ◦C,
which is feasible.

The velocity computation is very sensitive to sample thickness, as can be seen in
Equation (3). The attenuation is expected to be less sensitive to sample thickness variation,
since it is based on the comparison of two signal spectra. The spectra themselves depend on
the travelled distance (which in turn directly relates to the sample thickness), but they vary
only slightly with thickness variations. Simulations with slightly varying thicknesses have
not been performed, rendering it impossible to quantify the effect of thickness variation on
attenuation and to present constraints.

Simulations of other microstructure realizations or randomizations (pure austenite,
grain size 15 µm, at 300 ◦C) lead to attenuation variations less than ±0.009. That variation
corresponds with a grain size variation of less than 0.3 µm. This indicates that variation in
morphologies and Euler angle distributions does not have a significant impact on grain
sizing.

3.2. Multiphase

A set of simulations has been performed on samples with various ratios of austenite
and martensite as material. This is the series marked with ‘C’ in Table 2. The grain diameters
are the same in all five samples: 10.0 µm for martensite and 15.0 µm for austenite. For each
of those samples, simulations have again been performed at four different temperatures
(27 ◦C, 300 ◦C, 550 ◦C, and 900 ◦C). These temperatures were used in the simulations to
study a large temperature domain. Note that again the phase transition temperature has
not been taken into account and that this multiphase steel might not actually exist at all
four simulated temperatures.

The elasticity coefficients (based on the polycrystalline Voigt-Reuss-Hill average) of
the sample are shown in Figure 16, as well as the isotropy. As can be seen, all samples are
nearly isotropic, and the coefficients show a (nearly) linear relation with the phase ratio
(in terms of percentage martensite). The given values are for a temperature of 550 ◦C, but
other temperatures show the same trends.
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Figure 16. All polycrystal (Voigt-Reuss-Hill averaged) coefficients plotted as function of the phase
ratio (in percentage of martensite, with the other phase being austenite). The bottom right curve
shows the isotropy Z (cf. Equation (1)) in all five samples for a temperature of 550 ◦C.

The observed wave velocities for the five samples and four temperatures are shown
in Figure 17, which show linear trends as function of the phase ratio. Although the grain
size of the individual phases is kept invariant in all simulations, the average grain size of
the total sample increases with the amount of austenite. However, since the scattering is
only of minor impact on the wave velocity (cf. Figure 12), the underlying elasticity matrices
are expected to be the dominant determining factor for the wave velocity. The resulting
relation is linear with the phase ratio. However, the relation with temperature (Figure 17b)
depends on the underlying material properties, which reveals its non-linearity.

Differences in wave velocity are relatively small (in the order of 3.7 m/s difference for
each percent in phase ratio difference (50% martensite at 300 ◦C, Figure 17a). Measurement
of such small differences (5 m/s means a change in the order of 0.1% of the total velocity)
means the sample thickness has to be measured at least as accurate (order of micrometers),
which is very challenging. At the same time, the temperature has to be known accurately
as well, since a 4 ◦C temperature increase can also lead to a 4 m/s velocity decrease (50%
martensite at 300 ◦C, Figure 17b). As in the previous case of grain sizes, the propagation
wave velocity measurement is also not a viable method for phase ratio characterization.

Results of the attenuation analysis are shown in Figure 18. As a reference, the sample
with 50% martensite and 50% austenite is taken in subplot a) and the sample with a
temperature of 300 ◦C in subplot b). With only five different ratios, the curves appear not
very smooth, although a trend is visible. Given this limited set of simulations, it is hard to
derive a reliable quantitative relationship.
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Figure 18. (a) The relation between the phase ratio and parameter b′ for austenite/martensite for the
four temperatures; and (b) between temperature and parameter b′.

The curves appear to be depending on both phase ratio and temperature, as expected,
although not in a linear fashion. A phase ratio change of 1% leads to an attenuation change
of 0.002 (50% austenite at 300 ◦C, Figure 18a). A temperature change of 10 ◦C causes an
attenuation change in the order of 0.003 (again 50% austenite at 300 ◦C, Figure 18b), which
is of the same magnitude order. This shows that the effect of temperature is significant and
cannot be ignored. Thus, assuming that the temperature can be measured on the order of
10 ◦C, the phase ratio can be estimated on the order of a percent.

It should be noted that in this series of simulations, both the average grain size and
composition vary simultaneously in the samples. The average grain size varies from 15 µm
at 100% austenite (0% martensite) down to 10 µm at 100% martensite. Since grain size also
impacts the attenuation (as shown in the previous section), the results obtained are due to
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the combined effect of grain size and composition, and not to composition only. This might
have contributed to the non-linear shape of the observed curves.

Note that the accuracy with which phase ratios can be determined depends on the
contrast between the phases (i.e., the differences in the corresponding elasticity matrices).
Austenite and martensite differ much more than ferrite and martensite for instance, as can
be seen in Figure 11. Hence it is expected that it will be even more difficult to determine
phase ratios of a ferrite-martensite composite.

4. Summary and Discussion

Two main questions were posed in the introduction:

1. How accurate can grain size be determined from LUS simulations on various simu-
lated microstructures and temperatures?

2. How accurate can the phase composition be determined from LUS simulations on
various multiphase media and temperatures?

Both questions were dealt with, and the results are summarized here. Consequently,
the question has been raised how well this can measured in practice, giving uncertainties
in sample thickness and temperature fluctuations.

All simulations in Table 2 were performed at four different temperatures to see the
impact of temperature on the results. As has been noticed in the previous section, tempera-
ture influences the elasticity matrix and density of a sample, and hence has an impact on
the wave velocity and the amount of scattering (via grain contrast).

Two parameters were determined from the individual simulations: pressure wave
velocity and frequency-dependent attenuation. Both are affected in a different way by the
sample characteristics. An overview is given in Table 3, where the impact of grain size and
phase fraction on the measurable velocity and on the attenuation is listed.

As mentioned, the temperature T and the sample thickness H should be known suffi-
ciently accurately as well, since they have an impact on the wave velocity and attenuation
as well. This leads to the list of cross-dependencies, as shown in Table 4. The values listed
in the table lead to velocity or attenuation changes that are in the same order as caused
by grain size variations of 1 µm or phase fraction variations of 10%, thus showing that no
quantifiable dependency can be given for the sample thickness in case of the attenuation.
Note that these dependencies scale linearly with the desired accuracy of the grain size and
phase fractions.

Table 3. An overview of the influence of sample characteristics on measurable properties.

Sample Characteristic Impact on the Pressure Wave
Velocity

Impact on the Frequency
Dependent Attenuation

Microstructure
(grain size)

Reference points:
Austenite: 15 µm

Ferrite: 10 µm

Austenite: velocity decrease
of 1.6 m/s per µm.

Ferrite: velocity decrease
of 1.1 m/s per µm.

Austenite: attenuation
increase

of 0.03 per µm.
Ferrite: attenuation increase

of 0.011 per µm.

Phase volume fraction
(austenite/martensite)

Reference point:
fraction of 50%/50%

Velocity increase of 37 m/s
per 10 percent increase of the

martensite fraction.

Attenuation increase of 0.02
per 10 percent increase of the

martensite fraction.



Appl. Sci. 2023, 13, 1121 21 of 25

Table 4. An overview of the cross-dependencies of temperature and thickness measurements.

Sample
Characteristic Measurement Temperature

Accuracy Thickness Accuracy

Microstructure
(grain size)

1 µm accuracy

Velocity Austenite: 2 ◦C
Ferrite: 1 ◦C

Austenite: less than 10 µm
Ferrite: less than 10 µm

Attenuation Austenite: 100 ◦C
Ferrite: 100 ◦C -

Phase volume
fraction

10% accuracy

Velocity 50 ◦C In the order of 20 µm

Attenuation 70 ◦C -

4.1. Microstructure

Microstructures with various grain sizes were modelled. The finite-difference model
was capable of dealing with RVEs with varying grain sizes and yields reliable results for
grain sizes of 10 µm and larger. The frequency-dependent behavior of the attenuation as
function of grain size agrees well with what was expected from grain scattering theory, as
shown in Section 2.4. For smaller grain sizes differences are noticeable, which are expected
to be due to a different scattering regime, or due to a too low grain-to-grid size ratio in the
discretization.

From these simulations, it was observed that the wave velocities decrease with temper-
ature, as was expected since the ratio of the elasticity coefficients and the density decreases.
This is shown in Figures 12 and 13 where the velocity is plotted as function of temperature.
For the two samples (pure austenite and pure ferrite), the temperature should be known
accurately (order of 1 ◦C) and the velocity should be measured with high accuracy (order
of 1 m/s) to capture grain size variations in the order of 1 µm. This is practically not
considered feasible.

The attenuation coefficient b′(d) is much less sensitive to temperature than the velocity,
although temperature still plays a role in the attenuation. In Figures 14 and 15 the attenua-
tion is shown for both pure austenite and pure ferrite with varying grain sizes. Estimation
of grain size in the order of 1 µm based on the attenuation requires measurement of the at-
tenuation in the order of 0.01 to 0.03 (ferrite and austenite, respectively), and measurement
of the temperature in the order of ten degrees Celsius. This temperature measurement
constraint is achievable. The impact of temperature was one order of magnitude smaller
than in the velocity measurements.

4.2. Multiphase

Samples with varying ratios of austenite and martensite were modelled as well. Grain
sizes are kept the same, and no texture has been applied.

In these multiphase simulations, the velocities as function of temperature are shown
in Figure 17. As in the microstructure cases, both velocity and temperature measurements
should be very accurate, when a small ratio difference is to be detected. A phase ratio
change of 10% requires a velocity measurement accuracy in the order of a few tens of meters
per second and a temperature accuracy in the order of a few tens of degrees Celsius. This is
again challenging, as in the grain size case. Note that the multiphase simulation contains
two phases with a relatively high contrast (i.e., difference in elastic properties): austenite
and martensite. The less contrast there is between phases (as e.g., ferrite and martensite)
the more difficult it will be to quantify the phase ratios.

Figure 18 shows the attenuation as function of phase ratio and temperature for an
austenite-martensite mixture. If the phase ratio must be estimated with an accuracy of 10%,
the corresponding attenuation change must be accurate in the order of 0.02. This order of
change in attenuation can also be caused by a temperature fluctuation in the order of 70 ◦C.
This indicates that estimation of the phase ratio using attenuation is moderately sensitive
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to temperature fluctuations. In practice, determination of the phase in the order of 10%
would be feasible in terms of temperature sensitivity.

5. Conclusions and Way Ahead
5.1. Conclusions

In order to estimate grain size variations in the order of 1 µm, the wave velocity must
be known in the order of a few meters per seconds. In a similar fashion, an estimation of
phase ratio variations in the order of 10%, requires a wave velocity accuracy of a few tens
of meters per second. These accuracies are not feasible for practical use, since they lead to
constraints towards temperature accuracy in the order of a few tens of degrees Celsius or
less, and a sample thickness accuracy of less than 10 µm.

The attenuation coefficient is much less sensitive to temperature and sample thickness
than the velocity and is considered a more promising alternative. The accuracy of 1 µm in
grain size or 10% in phase composition can be obtained by measuring the attenuation with
an accuracy in the order of a few hundredths. This leads to constraints to the temperature
accuracy in the order of 70 ◦C.

5.2. Way Ahead

From these results, it can be concluded that the velocity on its own is insufficient
to reliably quantify the grain size or the phase fraction, especially given the impact of
small temperature or sample thickness variations. The attenuation is a more promising
metric for quantification of grain size and/or phase fraction. Note that in case of phase
fraction, the impact of grain size variation has not been taken into account, but that plays
an important role as well in actual measurements. In the simulations the impact of grain
size and phase fraction have been studied individually. Further research might focus on
the use of a combination of velocity and attenuation, in order to be able to determine grain
size and phase fraction within a sample at the same time.

In the previous analysis, the velocity was determined based on an observed time
delay and the measured sample thickness. Especially this latter parameter requires a
very accurate measurement, often in the order of micrometers. Since this is challenging,
especially with local thickness variations, an alternative approach might be considered,
such as the ratio of the pressure and shear wave velocities. The theoretical values of these
velocities, derived from the elasticity matrices and densities, are shown in Figure 19a,b, and
their ratios are shown in Figure 19c, again for the five samples and four temperatures. The
advantage of this velocity ratio is that the thickness (and its inherent measurement error)
drops out the equations, and hence the method does not require highly accurate thickness
measurements.

Future investigations will be directed towards a simultaneous estimation of grain size
and phase fraction, and/or texture. The challenge in this is that the setup for estimation of
grain size might differ from the setup for estimation of phase fraction or texture. The current
simulations have been performed with a relatively large source (laser spot) diameter, which
is dedicated to grain size measurements. This setup generates pure pressure waves and
hardly any shear waves. However, for texture and phase fraction measurements, the source
diameter can be reduced, leading to the generation of shear waves as well. Alternatively,
with a completely different setup (e.g., using piezo transducers) it is feasible to measure
both pressure and shear waves simultaneously.
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