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Estimation of Graphlet Counts in Massive Networks

Ryan A. Rossi , Rong Zhou, and Nesreen K. Ahmed

Abstract— Graphlets are induced subgraphs of a large network
and are important for understanding and modeling complex
networks. Despite their practical importance, graphlets have been
severely limited to applications and domains with relatively small
graphs. Most previous work has focused on exact algorithms;
however, it is often too expensive to compute graphlets exactly in
massive networks with billions of edges, and finding an approx-
imate count is usually sufficient for many applications. In this
paper, we propose an unbiased graphlet estimation framework
that is: (a) fast with large speedups compared to the state of
the art; (b) parallel with nearly linear speedups; (c) accurate
with less than 1% relative error; (d) scalable and space efficient
for massive networks with billions of edges; and (e) effective
for a variety of real-world settings as well as estimating global
and local graphlet statistics (e.g., counts). On 300 networks from
20 domains, we obtain <1% relative error for all graphlets. This
is vastly more accurate than the existing methods while using
less data. Moreover, it takes a few seconds on billion edge graphs
(as opposed to days/weeks). These are by far the largest graphlet
computations to date.

Index Terms— Graphlets, network motifs, induced subgraphs,
estimation methods, unbiased graphlet estimation, local graphlet
count estimation, graphlet statistics, parallel algorithms, higher-
order network analysis, machine learning.

I. INTRODUCTION

G
RAPHLETS are small induced subgraphs1 and are

important for many predictive and descriptive modeling

and learning systems/tasks [1]–[8] such as image process-

ing and computer vision learning systems that use neural

networks [1], [9], network alignment [6], [10]–[12], classi-

fication [2], [3], visualization and sensemaking [13], [14],

dynamic network analysis [15], [16], community detec-

tion [17]–[19], role discovery [20], anomaly detection

[21], [22], and link prediction [8], [23], [24]. Unfortunately,

the application and general use of graphlets (especially those

of size k = 4 nodes and larger) remain severely limited to

networks that are small enough to avoid the scalability and

performance limitations of exact algorithms [13], [25]–[28].

For instance, Shervashidze et al. [3] take hours to count

graphlets on small networks (i.e., a few hundreds/thousands

of nodes/edges) for the graph classification [2].

In many applications, finding an "approximate" answer

is usually sufficient where the exact answer is not worth
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1The terms graphlet and induced subgraph are interchangeable.

the extra cost and time. The recent rise of big data [29]

has made approximation methods even more critical [30],

especially for practical applications [31]–[35]. More recently,

the approximation methods have been proposed for important

problems such as triangle counting [36]–[40], the shortest path

problems [33], [41], finding max cliques [42], and many

others.

This paper aims to overcome the above-mentioned compu-

tational limitations to make graphlets more accessible to other

applications/domains with much larger graphs. In particular,

this paper proposes a general graphlet estimation framework

for deriving unbiased estimates2 of a variety of graphlet

statistics (e.g., frequency of an arbitrary k-vertex-induced

subgraph) from a small set of edge-induced neighborhoods.

The graphlet estimators provide accurate and fast approxima-

tions of a variety of global and local graphlet properties.3

Intuitively, a global graphlet property assigns a single value

(or distribution/map) to a graph G, whereas a local graphlet

property assigns a single value (or distribution/map) to a

particular graph element such as an edge or node of G [43].

An example of a global graphlet statistic is the total number

of 4-cliques in G, whereas an example of a local statis-

tic is the number of 4-cliques containing a certain graph

element such as an edge or node.4 Furthermore, a number

of important machine learning tasks are likely to benefit

from the proposed graphlet estimation framework, including

graph anomaly detection [21], [22], entity resolution [44], role

discovery [45], and relational classification [46].

The key contributions of this paper are as follows.

• Graphlet estimation framework: A general unbiased

estimation framework is proposed for approximating

global and local graphlet properties (such as counts) in

massive networks with billions of edges. The framework

is shown to be accurate, fast, and scalable for both dense

and sparse networks of arbitrary size.

• Accurate: For all graphlets and data (300 graphs from

20 domains), the methods are more accurate than the

existing state-of-the-art methods (<1% relative error)

while using only a small fraction of the data. Provable

error bounds are also derived and shown to be tight

(see Section IV-B).

• Efficient: The proposed estimation algorithms are orders

of magnitude faster than the recent state-of-the-art algo-

rithm and take a few seconds as opposed to days/months.

2A graphlet estimate Xi is unbiased if E[Xi ] = Y [36] and Y is the actual.
3The term graphlet properties is used more generally toer to graphlet

(single-valued) statistics and distributions.
4Note that the total number of 4-cliques in G is an example of a global

graphlet statistic since it is computed over all graph elements (edges and
nodes) in G , as opposed to an individual graph element in G .
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• Parallel methods: This paper proposes parallel graphlet

estimation methods for shared and distributed memory

architectures. Strong scaling results with nearly linear

speedups are observed across a variety of networks.

• Estimation of graphlet statistics—beyond counts: This

paper proposes estimation methods for both global and

local graphlet counts, as well as other graphlet prop-

erties beyond simple counts (see Section II-B). This

is in contrast to the existing estimation methods for

graphlets [47]–[49] that focus only on approximating

global graphlet counts.

• Largest investigation and graphlet computations:

To the best of our knowledge, this paper provides:

(i) the largest graphlet computations to date and (ii) the

largest empirical investigation using 300+ networks from

20+ domains.

II. LOCALIZED GRAPHLET ESTIMATION FRAMEWORK

In this section, we propose a new family of graphlet estimation

methods based on selecting a set of localized neighborhoods.

This gives rise to the localized graphlet estimation frame-

work (LGE) that serves as a basis for deriving unbiased

and consistent estimators that are fast, accurate, and scalable

for massive networks. As shown later in Section IV, LGE

has many interchangeable components and is effective for

a wide variety of networks, applications, and domains (e.g.,

biological, social, and infrastructure/physical networks), which

have fundamentally different structural properties.

A. Preliminaries

Let G = (V , E) be an undirected simple graph with

N = |V | vertices and M = |E | edges. Sets are ordered,

unless otherwise mentioned. Given a vertex v ∈ V , let 0(v) =

{w | (v,w) ∈ E} be the set of vertices adjacent to v in G.

Similarly, given an edge e = (u, v) ∈ E , let 0(e) denotes the

edge neighborhood of e defined as

0(e) = 0(u, v) = 0(u) ∪ 0(v) \ {u, v} (1)

where 0(u) and 0(v) are the neighbors of u and v, respec-

tively. The (explicit) edge neighborhood is 0e = G({0(v) −

u}∪{0(u)−v}). The subgraph 0e consists of the set of vertices

adjacent to v or u (noninclusive) and all edges between that

set. Moreover, the degree of a vertex v denoted as dv = |0(v)|

is equal to the number of edges that contain v. We also denote

1(G) as the maximum vertex degree.

Definition 1 (GRAPHLET): A graphlet Gi = (Vk, Ek) is a

connected-iuced subgraph consisting of a subset Vk ⊂ V of

k vertices from G = (V , E) together with all edges whose

endpoints are both in this subset Ek = {∀e ∈ E | e =

(u, v)∧u, v ∈ Vk}. By definition, a graphlet has one connected

component.

A k-graphlet is defined as an induced subgraph with k-

vertices. Furthermore, we define G(k) as the set of k-vertex-

induced subgraphs and G = G(2) ∪ · · · ∪ G(k). A graphlet

frequency distribution (GFD) is defined in the following.

Definition 2 (GRAPHLET FREQUENCY DISTRIBUTION):

Given a graph (or graph elements such as an edge,

node, or subgraph), the GFD is defined as fi = (X i/
∑

i X i )

TABLE I

SUMMARY OF GRAPHLET PROPERTIES AND NOTATION

for all i = 1, . . . , |G| where X i is the frequency of graphlet Gi .

The resulting vector f = [· · · fi · · · ] is the GFD.

A summary of the graphlet notation and important proper-

ties are provided in Table I.

B. Problem Formulation

The goal of this paper is to obtain fast and accurate estimates

of a variety of graphlet statistics (e.g., counts). In particular,

we focus on four basic types of graphlet statistics that can be

described by two pairs of exclusive attributes: single-valued

versus distribution and global versus local (See [43] for further

details). Intuitively, the four types of graphlet properties are

as follows.
P1 Global single-valued statistics such as the total number

of 4-cycles in G.

P2 Global distributions, e.g., a GFD computed using the

total graphlet frequencies of G.

P3 Local single-valued statistics, e.g., the number of

4-cycles containing a specific graph element such as an

edge (node).

P4 Local distributions, e.g., a GFD of an individual graph

element such as an edge (or node).
The proposed framework gives rise to the graphlet estimation

methods that are fast and accurate for a variety of these four

types of graphlet properties. Obviously, estimation methods

for global/local graphlet statistics return a single value (scalar

value), whereas the methods for global/local distributions

return the estimated distribution.

Now, we define the specific graphlet statistics and dis-

tributions (from the above-mentioned four types of graphlet

properties) that are estimated in this paper including:

• Counts of graphlets Gi ∈ G, for all i = 1, 2, . . . |G| or the

count of a specific graphlet Gi ∈ G. In partic-

ular, this paper proposes estimators for both global

XG =
[

X1 X2 · · ·
]

and local graphlet counts

xi =
[

x1 x2 · · ·
]

for edge ei ∈ E .

• Graphlet frequency distributions (Definition 2).

• Aggregate (single valued) statistics such as the

max, mean, median, variance, etc. These aggregate
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Fig. 1. Overview of the LGE framework for estimating local graphlet counts. The sampled edge from step 1 is shown in red (−) and highlighted. Unsampled
neighbors shown in step 1–2 are dashed and light gray.

statistics are derived by calculating, choosing, or con-

structing a single value from a local statistic or

distribution.
Estimators are derived for each of the above-mentioned

graphlet problems. Existing estimation methods such as

in [47]–[49] are limited to simple count statistics, whereas this

paper instead proposes a unifying unbiased estimation frame-

work that generalizes for a variety of other important graphlet

properties beyond simple counts.5 In addition, the previous

work has mainly focused on estimating global statistics (e.g.,

total count of a graphlet in G), whereas this paper introduces

estimators for both global and local graphlet statistics and

distributions.

C. Framework Outline and Intuition

An overview of the LGE framework is provided in Fig. 1

for intuition. The LGE framework is based on the following

general steps.
S1 Sampling a graph element (edge and node).

S2 Obtaining a localized subgraph H by sampling the local

neighborhood (egonet) of that graph element.

S3 Given H , compute the graphlets containing the graph

element (sampled from step S1).

S4 Use these counts to derive unbiased estimates (e.g.,

using the Horvitz–Thompson construction [36], [50]).

Note that if we are estimating global graphlet statistics,

then steps S1–S3 are repeated K times prior to deriving

estimates.
In this paper, we sample edge neighborhoods (as opposed

to node neighborhoods). In particular, an edge neighborhood

0(e) is sampled with some probability from the set of all

edge-induced neighborhoods (see Algorithm 1). Using the

(potentially partial) edge neighborhood 0(e) centered at e ∈ E

as a basis, we compute the frequency of each graphlet

Gi ∈ G, for i = 1, . . . , |G|. Let us note that the edge

(or node) may be selected uniformly at random or by an

arbitrary weighted distribution F (as shown in Algorithm 1).

The weighted distribution could be based on degrees, k-core

numbers, or any attribute of interest. Furthermore, an edge

5As an aside, counts have been used for many important measures in
computational biology such as the graphlet degree distribution [11] and
agreements [11].

(or node) neighborhood may be selected with a replace-

ment or without. Selecting an edge neighborhood with replace-

ment allows each edge neighborhood 0(e) to be used multiple

times, whereas sampling without replacement ensures that

each edge neighborhood included in the sample is unique (by

label) and never repeated. Edge-centric graphlet decomposition

algorithms6 also lend themselves for (parallel) implementation

on both shared memory and distributed memory architectures

(see Section III). In addition, the fastest state-of-the-art sub-

graph counting approach can always be used in the proposed

framework (see Step 3 in Fig. 1) to speedup the estimation

even further. For instance, instead of using PGD [13] to count

graphlets (as done in this paper), one can always use the fastest

state-of-the-art subgraph counting algorithm.

A taxonomy for graphlet estimation is proposed in Table II.

In particular, the existing graphlet estimation methods can be

categorized as direct graphlet estimation methods since they

sample a set of k-vertices directly from G and retrieve the

k-graphlet induced by that set, whereas the proposed class

of LGE methods select an edge and sample locally from the

neighborhood. Table II also summarizes the existing estima-

tion methods as well as our proposed approach according to

the global and local graphlet (single valued) statistics and

distributions estimated by each, as well as computational and

algorithmic properties offered by each approach. Section II-D

introduces a general estimation framework for global graphlet

statistics, whereas Section II-E proposes a framework for

estimating local graphlet statistics.

D. Estimation of Global Graphlet Statistics

Given the sampled set of edge-centric neighborhood,

we show how to compute the estimated graphlet counts in

Algorithm 2. More formally, let Te = 0(u) ∩ 0(v) be the set

of nodes that complete triangles with e(v, u) ∈ J . Likewise,

Su = {w ∈ 0(u) \ {v}|w /∈ 0(v)} and Sv = {w ∈ 0(v) \ {u}|

w /∈ 0(u)}, and thus |Sv | and |Su | are the number of 2-stars

centered at v and u, respectively. These quantities are com-

puted in Lines 5–9 of Algorithm 2. For further intuition, see

Fig. 2. Let us also note that 9(·) is a hash table for checking

6The term edge-centricers to algorithms that iterate over edges as opposed
to nodes, see [51].
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TABLE II

COMPARISON OF GRAPHLET ESTIMATION METHODS

edge existence in o(1) time (see Algorithm 2). As an aside, this

is an implementation detail and 9(·) can easily be replaced

with another data structure (bloom filters) or even removed

entirely in favor of binary search (which may be favorable

in situations where memory is limited). These possibilities

are discussed in detail later. Note that 9(·) is also used as

a way to encode the different types of nodes. Thus, nodes are

hashed using λ1, λ2, and λ3, which may be defined as any

unique symbol. In our implementation, we avoid the cost of

resetting by ensuring that each λi is unique for each edge-

centric neighborhood. In Line 4 of Algorithm 2, we mark the

neighbors 0(v) of v as λ1. Later in Line 8, a triangle is marked

with λ3, whereas Line 9 encodes a wedge as λ2.

Next, Algorithm 2 maintains the unrestricted graphlet

counts7 in the following equations:

C5 +
=

(
|Te|

2

)

(2)

C6 +
= |Te| · (|Su | + |Sv |) (3)

C8 +
=

(
|Su |

2

)

+

(
|Sv |

2

)

(4)

C9 +
= |Su | · |Sv | (5)

The quantities C5, C6, C8, and C9 are later used to derive

chordal cycles, tailed triangles, 3-stars, and 4-paths in o(1)

time, respectively. In addition, we maintain C2, C3, C4, and

7Note all count variables are initialized to zero; and +
= is the addition

assignment operator.

C7 (see Algorithm 2). These quantities are computed for each

edge-centric neighborhood in the sample, and then used for

estimation. In particular, the three-vertex graphlet counts are

estimated as follows:

X2 = W2σ2C2 (6)

X3 = W3σ3C3 (7)

where X2 and X3 are the estimated counts of graphlets G2

and G3, respectively. Similarly, the 4-vertex graphlet counts

are estimated through the following equations:

X4 = W4σ4C4 (8)

X5 = W5σ5(C5 − C4) (9)

X6 = W6(σ6C6 − 4X5) (10)

X7 = W7σ7C7 (11)

X8 = W8(σ8C8 − X6) (12)

X9 = W9σ9(C9 − C7) (13)

where X4–X9 are the estimated counts of the graphlets

G4–G9, respectively. Furthermore, W ∈ R
κ is a weight vector

to account for the edge multiplicities

W =

[

1
1

3

1

2

1

6
1

1

2

1

4

1

3
1

]T

(14)

Algorithm 1 LGE framework for estimating global graphlet

statistics
Input:

a graph G = (V, E)

a sample size K , or sample probability p

1: parallel for j = 1, 2, . . . , K do

2: Select e via an arbitrary (weighted/uniform) distribution F

3: Set J ← J ∪ {e}

4: Obtain estimated graphlet counts X for J via Alg. 2

5: return X – the estimated graphlet counts

Algorithm 2 Family of parallel LGE methods for deriving

unbiased estimates of global graphlet statistics

Input: a graph G and a set of sampled edges J

1: parallel for each e = (v, u) ∈ J in order do

2: Reset Te = ∅ and Su = ∅

3: for w ∈ 0(v) do

4: if w 6= u then 9(w) = λ1

5: for w ∈ 0(u) do

6: if w = v then continue

7: if 9(w) = λ1 then

8: Te ← Te ∪ {w} and set 9(w) = λ3 F triangle

9: else Su ← Su ∪ {w} and set 9(w) = λ2 F wedge

10: Update unrestricted counts via Eq. 2–5

11: C2 +
= |Te | F Note +

= is the addition sum C2 = C2 + |Te |

12: C3 +
= C3(e) = (du + dv − 2) − 2|Te | F equiv. |Su| + |Su |

13: C4 +
= C4(e) = CLIQUE(9, Te) F in parallel (Alg. 3)

14: C7 +
= C7(e) = CYCLE(9, Su) F in parallel (Alg. 4)

15: end parallel

16: Compute estimated graphlet counts X via Eq. 6-13

17: return X, where X i is the estimate for graphlet G i

where each Wi is used to correct the counts of graphlet

Gi [13]. Furthermore, we also define p ∈ R
κ as a vector of

sampling probabilities where pi is the sampling probability

for graphlet Gi ∈ G. Note that pi can be proportional to
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Fig. 2. Let T be the set of nodes completing a triangle with the edge
(v, u) ∈ E , and let Sv and Su be the set of nodes that form a 2-star with
v and u, respectively. Furthermore, Ec is the set of edges that complete a
4-cycle with respect to the edge e = (v, u) where for each edge (r, s) ∈ Ec

such that r ∈ Sv and s ∈ Su and both (r ∩ Su) ∪ (s ∩ Sv ) = ∅.

any arbitrary function/weight computed on the graph G. One

possibility is to use uniform sampling probabilities such that

each pi is

pi = |J |/|E |. (15)

Intuitively, pi is the fraction of edge neighborhoods selected

thus far. Results for both uniform and nonuniform sampling

probabilities are discussed and investigated in Section IV. In

addition, let σi be defined as

σi =
1

pi

where σi is the inverse sampling probability of graphlet i

used to correct the sampling bias. This corresponds to the

Horvitz–Thompson construction [36], [50]. Let us note that in

Algorithm 2, the cliques and cycles are computed via Algo-

rithms 3 and 4 using information from the (k − 1)-graphlets.

However, when memory is limited, then Algorithms 5 and 6

should be used. These methods search over the sets Te, Su , and

Sv from the (k − 1)-graphlets directly using binary search.

Error Analysis: Let Yi (e) be the true count of an arbitrary-

induced subgraph Gi ∈ G if and only if the subgraph

is incident to e, then Yi =
∑

e∈E Yi (e). Assume that we

Algorithm 3 Clique counts via neigh-iter

1: procedure CLIQUE(9, Te)

2: Set Ke ← 0

3: parallel for each w ∈ Te do

4: for each r ∈ 0(w) where 9(r) = λ3 do set Ke ← Ke + 1

5: Reset 9(w) to 0

6: return Ke

Algorithm 4 Cycle counts via neigh-iter

1: procedure CYCLE(9, Su)

2: Set Ce ← 0

3: parallel for each w ∈ Su do

4: for each r ∈ 0(w) where 9(r) = λ2 do set Ce ← Ce + 1

5: Reset 9(w) to 0

6: return Ce

Algorithm 5 Clique counts restricted to searching Te

1: procedure CLIQUERES(9, Te )

2: Set Ke ← 0

3: parallel for each vertex wi in an ordering w1, w2, · · · of Te do

4: for each w j ∈ {wi+1, . . . , w|Te |} in order do

5: if wi ∈ 0(w j ) via binary search then Ke ← Ke + 1

6: return Ke

Algorithm 6 Cycle counts restricted to Su and Sv

1: procedure CYCLERES(9, Su, Sv )

2: Set Ce ← 0

3: parallel for each w ∈ Su do

4: for all r ∈ Sv do

5: if r ∈ 0(w) via binary search then Ce ← Ce + 1 F 4-cycle

6: return Ce

sample a set of edge neighborhoods with probability φ, then

X i =
∑

e∈J (Yi (e)/φ) where X i is an estimator for Gi .

E[X i ] = Yi is an unbiased estimate. The proof is as follows:

E[X i ] = E

[
∑

e∈J

Yi (e)

φ

]

=
∑

e∈J

E

[
Yi (e)

φ

]

(16)

=
∑

e∈E

E[Ie]

φ
· Yi (e) =

∑

e∈E

Yi (e)

φ
· φ = Yi (17)

where Ie is a Bernoulli random variable that indicates whether

e and its neighborhood is sampled. Furthermore, the mean

squared error MSE(X i ) is

E[(X i − Yi )
2] = V[X i ]

︸ ︷︷ ︸

Variance

+ (E[X i ] − Yi )
2

︸ ︷︷ ︸

Bias

(18)

where V[X i ] is the variance component and (E[X i ] − Yi )
2

is the bias component of the estimator X i . Therefore,

MSE(X i ) = V[X i ] since X i is an unbiased estimator.

Complexity: Let Tmax and Smax denote the maximum number

of triangles and stars incident to a selected edge e ∈ J .

Note that Smax in reality is much smaller since for each

edge e = (v, u) ∈ J , Algorithm 2 computes only Su
8

such that du ≤ dv , and thus, |Su | ≤ |Sv |. For a single

0(e), Algorithm. 2 counts 4-cliques and 4-cycles centered

at e in O(1Tmax) and O(1Smax), respectively. From either

4-cliques/cycles, we derive all other graphlet counts in

o(1) using combinatorial relationships along with the

(k–1)-graphlets. Thus, Algorithm 2 counts all graphlets for

{0(e1), . . . , 0(eK )} up to k = 4 in

O(K1Tmax + K1Smax) = O(K1(Tmax + Smax)).

Using K processing units (cores and workers), this reduces to

O(1(Tmax + Smax)). Our approach is also space efficient and

requires a lot less space than the existing approaches [25], [26],

[47], [48]. In particular, the space complexity of Algorithm 2 is

O(N +21−1) = O(N) using a hash table 9 of size N = |V |

(Algorithms 3 and 4) or O(31 − 1) = O(1) using binary

search over T or Su and Sv directly (Algorithms 5 and 6).

8As opposed to both Su and Sv .
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E. Estimation of Local Graphlet Statistics

This section formulates the local graphlet estimation problem,

then describes a computational framework for estimating local

graphlet statistics. The experiments in Section IV-E demon-

strate the effectiveness of these methods. Computing local

graphlet statistics xi for an individual edge ei ∈ E (or

node) in G (as opposed to the global graph G) is important

with numerous potential applications. For instance, they can

be used as powerful discriminative features {x1, x2, . . . , xM }

for improving statistical relational learning (SRL) tasks [52]

such as relational classification [46], link prediction, and

weighting tasks (e.g., recommending items, friends, web sites,

music, events, etc.) [53] detecting anomalies in graphs (e.g.,

detecting fraud, or attacks/malicious behavior in computer

networks) [21], [22], among many others [44], [45], [54].

However, it is often expensive and computationally prohibitive

to compute such local graphlet statistics in large networks. In

this paper, we propose a local graphlet estimation framework

that derives accurate approximations of the local graphlet

statistics while being orders of magnitude faster than exact

methods.

Definition 3 (LOCAL GRAPHLET ESTIMATION): Given a

graph G = (V , E) and an edge ei = (v, u) ∈ E, the local

graphlet estimation problem is to find

xi = [x1 x2 x3 · · · x6 x7 · · · ]T (19)

where xi is an approximation of the exact local graphlet

statistics denoted by yi for edge ei such that D( xi k yi ) is

minimized (i.e., xi ≈ yi ) as well as the computational cost

associated with the estimation.

The aim of the local graphlet estimation problem is to

compute a fast yet accurate approximation of the graphlet

statistics (such as counts) centered at an individual edge. Note

that D( xi k yi ) in Definition 3 can be any loss function.

Instead of approximating all graphlets up to size k, one

may relax the above-mentioned problem to estimate a single

graphlet pattern Gj ∈ G of interest (e.g., 4-node cliques).

A general estimation framework for the local graphlet

estimation problem is shown in Algorithm 7. In particular,

Algorithm 7 takes as input an edge ei , a graph G or 0(ei )

(neighborhood subgraph of ei ), a sampling probability pe, and

it returns the graphlet feature vector xi ∈ R
κ for ei ∈ E where

κ = |G|. This generalization gives rise to a highly expres-

sive unifying local graphlet estimation framework with many

interchangeable components. For computing the local graphlet

statistics in Algorithm 7, any edge-centric method can be used

such as PGD [13], [14], VCP [8], [23], Orca [28], or any

future state-of-the-art approach. In this paper, we use the

PGD library [13] to compute the local graphlet statistics

required for estimation. Moreover, the class of local graphlet

approximation methods has many attractive properties such as

unbiasedness and consistency.

We now discuss Algorithm 7 in detail. In particular,

Algorithm 7 shows how to efficiently estimate all graphlets

of size k ∈ {2, 3, 4} for an edge ei ∈ E . First, we compute

Te, Su , and Sv in Lines 3–9. Then, we use these sets to

derive all graphlets of size k = 3 exactly in a constant time

Algorithm 7 Family of localized graphlet estimation (LGE)

methods for accurate and unbiased estimation of local graphlet

properties. Given an edge ei or edge-induced subgraph 0(ei )

and a sampling probability pe, the general approach returns

the estimated graphlet feature vector x = xi for ei ∈ E

1: procedure LOCALGRAPHLETESTIMATION(0(ei ) or G, ei , pe)

2: Initialize variables

3: parallel for each w ∈ 0(v) do

4: if w 6= u then Sv ← Sv ∪ {w} and 9(w) = λ1

5: parallel for each w ∈ 0(u) and w 6= v do

6: if 9(w) = λ1 then

7: Te ← Te ∪ {w} and set 9(w) = λ3 F triangle

8: Sv ← Sv \ {w}

9: else Su ← Su ∪ {w} and set 9(w) = λ2 F wedge

10: x2 = |Te| F triangles/3-cliques

11: x3 =
(

du + dv − 2
)

− 2|Te | F 2-stars

12: parallel for each w ∈ Te do

13: for j = 1, . . . , ddw · pee do

14: Select a vertex r ∈ 0(w) via an arbitrary distribution F

15: if 9(r) = λ3 then Set x4 ← x4 +
(

dw/ddw · pee
)

F 4-clique

16: Set 9(w) to λ4

17: x5 =
(
|Te|

2

)

− x4 F chordal-cycles

18: parallel for each w ∈ Su do

19: for j = 1, . . . , ddw · pee do

20: Select a vertex r ∈ 0(w) via an arbitrary distribution F

21: if 9(r) = λ1 then set x7 ← x7 +
(

dw/ddw · pee
)

F 4-cycle

22: if 9(r) = λ2 then set x6 ← x6 +
(

dw/ddw · pee
)

F tailed-tri

23: Set 9(w) to 0

24: parallel for each w ∈ Sv do

25: for j = 1, . . . , ddw · pee do

26: Select a vertex r ∈ 0(w) via an arbitrary distribution F

27: if 9(r) = λ1 then set x6 ← x6 +
(

dw/ddw · pee
)

F tailed-tri

28: Set 9(w) to 0

29: x8 =
(
|Sv |

2

)

+
(
|Sv |

2

)

− x6 F 3-stars

30: x9 = (|Sv | · |Su |) − x7 F 4-paths

31: return x, where xk is the estimate of graphlet Gk for ei

(Lines 10 and 11) as done in [13] and [14]. Note that these

sets are computed exactly and up to this point, corresponds

exactly to the exact algorithm given in [13]. Next, we estimate

4-cliques in Lines 12–16. In particular, Line 12 searches each

vertex w ∈ Te in parallel. Given w ∈ Te, we sample a

neighbor r ∈ 0(w) with probability pe accordingly to an

arbitrary weighted/uniform distribution F. Then, we check if

r is of type λ3 (from Line 7), as this indicates that r also

participates in a triangle with e = (v, u), and since r ∈ 0(w),

then {v, u, w, r} is a 4-clique. Line 16 ensures that the same

4-clique is not counted twice. Chordal cycles are estimated

in Line 17. Furthermore, 4-node cycles are estimated in

Lines 18–23 as well as a fraction of the tailed triangles. The

other tailed triangles are estimated in Lines 24–28. Finally,

the remaining graphlets are estimated in o(1) time (Lines 29

and 30) using knowledge from the previous steps. Note that

if pe = 1 and sampling is performed without replacement,

then Algorithm 7 reverts back to the exact method proposed

in [13] and [14].

We can also use Hoeffding’s inequality [55] to obtain esti-

mates with provable error bounds. For instance, if we replace

ddw · pee everywhere in Algorithm 7 with
⌈

0.5�−2 ln(2/δ)
⌉

,

then the error rate of the estimate is at most � with confidence
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TABLE III

COMPUTATIONAL COMPLEXITY

at least 1 − δ [56]. The error rate � and confidence level δ

are specified by the user and given as input into Algorithm 7

(instead of pe).

Complexity: The computational complexity is summarized

in Table III. Note that just as before, we only need to compute

a few graphlets and can directly obtain the others in a constant

time. To compute all local graphlet statistics for a given edge,

it takes: O(1ub(|Su |+|Sv |+|Te|)) where 1ub is the maximum

degree from any vertex in Sv , Su , and Te. Alternatively,

we can place an upper bound 1ub on the number of neighbors

searched from any vertex in Sv , Su , and Te. This can drastically

reduce the time. The intuition is that for vertices with large

neighborhoods, we only need to observe a relatively small

(but representative) fraction of it to accurately extrapolate to

the unobserved neighbors and their structure.

F. Discussion

The proposed family of LGE methods easily generalizes to

graphlets of arbitrary size by replacing the definition of an

edge-centric neighborhood with the more general and suitable

notion of an edge `-neighborhood

0`(v, u) = {w ∈ V \ {v, u} | D(v,w) ≤ ` ∨ D(u, w) ≤ `}

where 0`(v, u) represents the set of vertices with distance less

than or equal to ` from e = (v, u) ∈ E . Thus, we set ` = 1 for

graphlets of size k ≤ 4, and ` = 2 for graphlets of size k = 5,

and so on. Investigating the methods for graphlets of size 5

and above is left for the future work. The LGE framework

also naturally allows for both uniform and weighted sampling

designs, and has many other interchangeable components as

well. Note that if the total number of edges is unknown

(due to streaming, problem constraints, or other issues), then

Algorithm 1 is easily adapted, e.g., one may simply specify

the number of graphlets to sample (instead of the fraction of

graphlets to sample denoted by φ in Algorithm 1). Unlike

the existing work, the proposed LGE methods are naturally

amenable to streaming graphs and for graphs too large to

fit into memory. For instance, we do not need to read the

entire graph into memory, as long as there is an efficient

way to obtain the `-neighborhood subgraph 0(ei ) required for

estimation.

In this paper, we leveraged PGD [13] to count the graphlets

in the sampled neighborhood subgraph. However, the pro-

posed estimation framework is flexible for use with other

exact subgraph counting algorithms including Orca [28],

VCP [8], [23], or any future state-of-the-art approach. There-

fore, the fastest state-of-the-art enumeration approach can

always be used by the framework (see Step 3 in Fig. 1) to

speedup the estimation even further. In other words, the frame-

work is independent of the exact enumeration approach

used.

In the interest of space and to keep the presentation simple,

we have left out several details on performance enhancement

that we have in our implementation. To give a small example,

we use an adjacency matrix structure for small graphs in order

to facilitate o(1) edge checks. For larger graphs, we effi-

ciently encode the neighbors of the top-k vertices with the

largest degree (and relabel to save space/time) for o(1) graph

operations. We use a fast O(d) neighborhood set intersection

procedure to dynamically select local search procedures over

Te, Su , and have many other optimization’s throughout the

code (bit-vector graph representation, etc.).

III. PARALLELIZATION

Estimation methods from the framework are paral-

lelized via independent edge-centric graphlet computa-

tions over the selected set of edge-induced neighborhoods

{0(ei ), . . . , 0(eK )}. The parallelization is described such that

it could be used for both shared and distributed memory

architectures.9 The parallel constructs used are a worker task

queue and a global broadcast channel. Multithreaded Message

Passing Interface is used for an intermachine communication.

We assume each machine q has a queue and a copy of the

graph10 shared among the set of local workers (processing

units). For global graphlet statistics, the communication cost

for a single worker is O(|G|).

The main parallel loop can be viewed as a task generator

that farms the next b edges out to a worker, which then

computes the graphlets centered at each of the b edge neigh-

borhoods. Edge neighborhoods are dynamically partitioned to

workers by “hardness” where the most difficult edge neighbor-

hood is assigned to the first worker, the second most difficult

is assigned to the second worker, and so on. This ensures that

we avoid common problems present in other approaches such

as the curse of the last reducer [57] (due to the power-law

observation [58]).

The existing state-of-the-art estimation methods are based

on sequential algorithms which are inherently slow, difficult to

parallelize, and have t dependent parts due to implementation

issues, among others. Furthermore, our edge-centric parallel

estimation method provides a better load balancing (compared

to vertex-based approaches). It is straightforward to see that

if N < M , then our approach requires less computations per

edge than per vertex since

X i =

M
∑

e∈E

X i (e) =

N
∑

v∈V

X i (v). (20)

Parallelizing via edge-induced neighborhoods provides much

better load balancing for real-world sparse graphs that follow

9In the context of message passing and distributed memory parallel com-
puting, a nodeers to another machine on the network (or bus) with its own
set of memory, and multicore CPUs, etc.

10For implementation on parallel computing architectures with limited
memory, one only needs to transfer the set of edge-induced neighborhood
subgraphs, which can be streamed if needed.
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a power law. The time taken to count graphlets for each edge

obeys a power law with only a few edges taking much longer

than the others (as observed in [58]). In addition, each 0(e)

graphlet computation may be easily split into t independent

tasks, e.g., 4-cliques (Algorithm 3), 4-cycles (Algorithm 4),

solving the linear system, etc. Moreover, the edge-centric

estimation methods are useful for situations where one might

only be able to retrieve the (induced) neighborhood of an

edge due to privacy or data collection issues, etc. In addi-

tion, our approach does not require storage, knowledge, and

preprocessing of the entire graph (as opposed to the existing

work). Other important properties include the neighborhood

search order 5, the batch size b, and the dynamic assignment

of jobs (for load balancing). As an aside, there have been a

few distributed memory [59] and shared memory [60], [61]

exact algorithms. However, these algorithms are based on

older inefficient exact enumeration algorithms, whereas this

paper is focused on the estimation methods. In addition, these

approaches are all vertex-centric, as opposed to our edge-

centric approach, and mainly focus on finding network motifs,

i.e., statistically significant subgraph patterns.

IV. EXPERIMENTS

In this section, we evaluate the empirical error and per-

formance of the methods with extensive experiments on over

300 networks (real world and synthetic) from more than

20 domains with different structural characteristics. All data

are available at Network Repository [62]. Unless otherwise

mentioned, we use PGD [13] to compute the exact graphlet

counts for comparison.

A. Estimating Global Graphlet Statistics

We proceed by first demonstrating the effectiveness of the

proposed methods for estimating the frequency of graphlets up

to size k = 4. Given an estimated statistic X i of an arbitrary

graphlet Gi ∈ G, we consider the relative error

D( X i k Yi ) =
|X i − Yi |

Yi

(21)

where Yi is the actual statistic (e.g., frequency) of Gi . Thus,

this is a measure of how far the estimated statistic is from

the actual graphlet statistic. Note X i is the mean estimated

value across 100 independent runs. The relative error indicates

the quality of an estimated graphlet statistic relative to the

magnitude of the exact statistic. Results for the most difficult

graphlet (4-clique) are provided in Table IV for a wide range

of graphs from various domains. Note that the approach

provides even better estimates for the other graphlets. Overall,

the results demonstrate the effectiveness of the estimation

methods as they have excellent empirical accuracy. Further-

more, the estimation error for the disconnected graphlets is

considerably smaller than the error for connected graphlets.

We also estimated univariate graphlet statistics beyond

simple global counts such as the median, standard deviation,

variance, interquartile range, Q1, Q3, and others. Overall,

the methods are found to be accurate for many of the new

graphlet statistics as shown in Fig. 4. For estimating the

maximum # of 4-node cliques that any edge participates, we

TABLE IV

ESTIMATES OF EXPECTED VALUE AND RELATIVE ERROR

also observed that selecting edges via the k-core distribution

resulted in high accuracy at very low sample rates.

B. Confidence Bounds

Given an arbitrary graphlet Gi ∈ G, we compute X i using

the estimators from the framework derived in Section II and

construct confidence bounds for the unknown Yi . Using the

large sampling distribution, we derive lower and upper bounds

such that

βlb ≤ Yi ≤ βub (22)

where

βlb = X i − zα/2 ·
√

V[X i ] (23)

and

βub = X i + zα/2 ·
√

V[X i ]. (24)

The estimates X i and V(X i ) are computed using the equa-

tions of the unbiased estimators of counts and their variance.

Thus, α = 0.05 and zα/2 = z0.025 = 1.96 for a 95% confidence

interval for the unknown Yi . This gives

X i − 1.96
√

V[X i ] ≤ Yi ≤ X i + 1.96
√

V[X i ]. (25)

Furthermore, the sample size needed is K =

(zα/2 · (V[X i ])
1/2/α/2)2.

The 95% upper and lower bounds (i.e., βub and βlb) for

the 4-clique are given in Table IV (other graphlet results

were removed due to space). In all cases, the actual graphlet

statistics lie inside the error bounds, βlb ≤ Yi ≤ βub.

Fig. 3 investigates the properties of the sampling distribution

as the sample size increases. The circle (blue) in Fig. 3

represents the fraction X i/Yi . Furthermore, βlb/Yi and βub/Yi

are represented in Fig. 3 by △ and ▽, respectively. The key

findings are summarized as follows:

• The sampling distribution is centered and balanced over

the actual graph statistic (represented by the red line).

• Upper and lower bounds always contain the actual value.

• As the sample size increases, the bounds converge to

the actual value of the graphlet statistic. The estimated

variance decreases as k grows larger.
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Fig. 3. Confidence bounds for a variety of graphlets. We used graphs from a variety of domains and types. Note that 4-cliques is often the most difficult
to estimate, and thus, we have dedicated more results for these hard instances. The properties of the sampling distribution and convergence of the estimates
are investigated as the sample size increases. Circle (•): X/Y (y-axis). � and �: βlb/Y and βub/Y , respectively. Square (�): min/max X/Y . Gray dashed
vertical line: sample at 40K edges. Note that the method has excellent accuracy even at this small sample size.

• Confidence bounds are within 5% of the actual for all

graphs and subgraph patterns.

• Thus, the sampling distribution of the estimation frame-

work has many attractive properties including unbiased

estimates for all subgraph patterns and low variance even

for very small sample sizes (and variance decreases as a

function of the sample size).
Let P(βlb ≤ Y ≤ βub) be the exact coverage probability of

our bounds. We observe that the confidence bounds are tight

(for all subgraph patterns) and holds to a good approximation

that is within ±5% of the actual value for all 300+ graphs.

C. Estimating Graphlet Frequency Distributions

We investigate the methods for estimating the GFDs from a

wide variety of networks with different structural characteris-

tics including real-world and synthetic graphs. Exact graphlet

counts are computed using PGD [13] for comparison. Strik-

ingly, the estimated GFD from our approach almost perfectly

Fig. 4. Estimation error for a variety of univariate statistics for the local
4-clique graphlet distribution. These results are from socfb–MIT, and thus,
even a sample size of 1% is small.

matches the actual GFD (Fig. 5). Observe that the methods

are evaluated by how well they estimate the entire exact GFD,

and thus, Fig. 5 indicates that the proposed methods estimate

all such induced subgraphs from Table I with an excellent

accuracy (matching the actual GFD in all cases). Results for a

variety of sparse real-world graphs from different domains are

given in Table V. Overall, most graphlet estimates in Table V

have relative error less than 10−4. In all cases, we find no

significant difference between the estimate and the actual

(Table V). In Table VI, we also report results on a standard

collection synthetic benchmark graphs from the DIMACS
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TABLE V

GFD ESTIMATES FOR A WIDE VARIETY OF SPARSE REAL-WORLD NETWORKS

TABLE VI

GFD ESTIMATES FOR DENSE SYNTHETIC GRAPHS FROM DIMACS

NP-Hard Problem Challenge [63]. These graphs are dense and

are used extensively for evaluating NP-hard problems such

as finding the largest clique as described in [64] and [65].

Nevertheless, the estimators that are given in Table VI are

to be highly accurate across all graphlets and graphs. Notably,

the Kolmogorov–Smirnov-Statistic is very small for all graphs

in both Tables V and VI.

In addition, we also studied the effectiveness of the

estimation methods on synthetic graphs from a variety of

well-known graph models including Erdős–Rényi (ER) [67]

graphs, the geomertic random graphs (GEO) [65], scale-free

Barabási–Albert (BA) [68] preferential attachment model,

and the Kronecker graph model [66]. Results are reported

in Table VII. The geometric random graph model networks

GEO-15 to GEO-20 in Table VII are from the popular

DIMACS 10 challenge [69], [70], whereas the Kronecker

graphs 16–18 are from the Graph 500 supercomputer bench-

mark [71] (see [69]–[71] for more details). We also included a

few other geometric random graphs (GEO 1–3) in Table VII;

these graphs all have the same number of nodes but a different

Fig. 5. Estimated GFD is indistinguishable from the actual (larger dotted
red line), even across a wide variety of graphs with fundamentally different
structural characteristics. The y-axis is the normalized 4-vertex graphlet counts
x0 = x − min(x)/ max(x) − min(x) where x is the vector of graphlet counts.
Nevertheless, similar results were found for other graphlet sizes and GFD

variants.

number of edges going from 100K to 200K in 50K increments.

Overall, the estimation methods have an excellent accuracy

(with very small relative error) across all synthetic graphs

from the various graph models as observed in Table VII.

Similar results were observed using other graph models such

as Chung-Lu and Block Erdos-Renyi, and therefore, were

removed for brevity. Many graphs and results were also

removed due to space.

D. Scalability Results

This section investigates the scalability of the parallel

graphlet estimation methods. We use speedup to evaluate the

effectiveness of the parallel algorithm. Speedup is simply

Sp = (T1/Tp), where T1 is the execution time of the sequential

algorithm and Tp is the execution time of the parallel algorithm

with p processing units. For the results in Fig. 6, we used a
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TABLE VII

GFD ESTIMATES OF SYNTHETIC GRAPHS FROM A VARIETY OF WELL-KNOWN SYNTHETIC GRAPH MODELS

TABLE VIII

LOCAL GRAPHLET ESTIMATION RESULTS

4-processor Intel Xeon E5-4627 v2 3.3 GHz CPU. Overall,

the methods show strong scaling (see Fig. 6). Similar results

were found for other graphs and sample sizes.

E. Local Graphlet Estimation Experiments

This section investigates the accuracy, runtime, and

scalability of the computational framework presented in

Section II-E for estimating local graphlet statistics and

distributions of individual graph elements such as an edge

(or node, path, or subgraph) as opposed to estimating global

graphlet statistics over the entire graph G. Results are given

in Table VIII. Note that for simplicity, nodes are selected

uniformly at random; thus, F in Algorithm 7 represents a

uniform distribution over the neighbors.

F. Extremal Graphlet Estimation

Given a graph G, and a graphlet G j of size k, the extremal

(max) graphlet estimation problem is to find

Z j = max
ei ∈{e1,...,em }

[X j (ei )] (26)

where Z j is the maximum number of times graphlet G j

occurs at any edge ei ∈ E in G. The aim is to compute

the maximum frequency that graphlet G j occurs at any edge

ei ∈ E in G. For this problem, we leverage the proposed LGE

framework from Section II and bias the estimation method

toward selecting a small set of edge J where G j is most

likely to appear at larger frequencies. The set of edges J are

sampled via a graph parameter/distribution that appropriately

biases selection of edges that are most likely to induce large

quantities of the graphlet G j . For relatively dense graphlets

such as the k-clique (or chordal-cycle/diamond, etc.), we inves-

tigated sampling edges from the largest k-core subgraphs.

More specifically, instead of selecting edge neighborhoods via

a uniform distribution F, our approach replaces F in Line 2

of Algorithm 1 with a weighted distribution that biases the

selection of edge neighborhoods toward those in large k-core

subgraphs (i.e., edge neighborhoods centered at edges with

large k-core numbers). Similarly, one may also use the triangle

core subgraphs if computed to obtain an estimate with lower

error. Results demonstrate the effectiveness of this approach

in Table IX. Strikingly, the earlier approach finds the optimal

solution (while taking only a fraction of the time) for many

graphs as well as many of the k-vertex graphlets.

G. Comparison to Previous Work

To compare with the previous estimation methods, we

measure the time required by each method to obtain an

estimate with relative error less than 0.01 (accuracy greater

than 0.99). This ensures the estimation methods are compared

fairly. Notice that it does not make sense to compare the
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Fig. 6. Strong scaling results are observed across various sample sizes (see
text for discussion).

TABLE IX

RESULTS FOR EXTREMAL GRAPHLET ESTIMATION

accuracy of an estimation method without taking into account

runtime, since the accuracy (relative error) of an estimation

method increases (decreases) as a function of time (or work

performed). Obviously, if time is not considered, then one

could simply use an exact method to achieve perfect accuracy.

We also note that fixing the number of samples used by

each method and measuring accuracy often leads to incorrect

and misleading results since the accuracy depends on what

each method calls a sample, and thus, a method may use

significantly more work than another.

In Table X, we report the time each method takes to obtain

an estimate with relative error less than 0.01 (accuracy greater

than 0.99). As an aside, it is worth mentioning that the existing

work is fundamentally different than ours, both in techniques,

as well as in the estimation problems themselves. For instance,

these methods estimate only simple global counts of graphlets,

whereas the proposed class of LGE methods accurately esti-

mates a wide variety of global and local statistics (including

simple counts) and distributions (see Table II for a summary

of the differences). Note that the 3-path sampling heuristic

by Jha et al. [49] requires a lot more samples to obtain

estimates with similar accuracy. In addition, that approach

TABLE X

RESULTS COMPARING LGE TO OTHER METHODS

Fig. 7. Application of the estimation methods for real-time interactive graph
mining and learning. Edges and nodes from a power-grid network [62] are
colored/weighted by the estimated local 4-path count (left). (a) Estimated
global graphlet counts and other statistics. (b) Summary statistics of the
selected subgraph (rectangular region). (c) Local graphlet statistics (includ-
ing frequency, mean, max, standard deviation, …) of the selected edge.
Edges/nodes from tech-routers [62] are colored/weighted by the local 4-clique
count (right). We observe that the visualizations using the exact and estimated
graphlet features are strikingly similar, with trivial differences.

requires two different methods for estimating graphlet counts

of size 4, and thus, requires 2× the samples. In particular,

we find that 3-path sampling, GUISE [47], and GRAFT [48]

are unable to obtain accurate estimates within a reasonable

amount of time. Furthermore, GUISE and GRAFT did not

converge, even despite using millions of samples, which is

consistent with recent findings [49], and especially true for the

massive networks used in this paper (see Table X). In some

cases, the runtime of these methods even exceeded an exact

graphlet algorithm, and thus these methods are not very useful

in practice. Notably, our method is not only more accurate

at lower sampling rates, but significantly faster than these

methods. For instance, on soc–flickr we are 8047× faster

than the path sampling heuristic. In some cases, we even

find that our exact method is significantly faster than the

3-path heuristic (for instance, on wiki–talk and others). We

also investigated selecting node-centric neighborhoods and

other methods based on sampling graphlets directly, though

the accuracy was worse in all cases, and thus removed for

brevity.

H. Applications

This section uses the novel statistics and estimators for

real-time interactive graph visualization and exploratory analy-

sis. Graphlet estimators are implemented in a web-based

interactive visual graph mining platform [72] called
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GraphVis (Fig. 7). Across all experiments, the graphlet meth-

ods are fast and scalable taking <1 ms for 99% of the

interactive queries and graphs, while also accurate (with no

observable difference). Thus, the graphlet estimation methods

are able to support real-time interactive queries for visual

graph mining, exploration, and predictive modeling tasks (such

as relational classification).

V. CONCLUSION

This paper proposed a general unbiased estimation frame-

work called LGE for estimation of global and local graphlet

properties (such as counts) in massive networks with billions

of edges. The methods are shown to be accurate, fast, and scal-

able for both sparse and dense real-world and synthetic graphs

of arbitrary size. Moreover, LGE has many interchangeable

components and is effective for a wide variety of networks,

applications, and domains, which have fundamentally different

structural properties. We have shown that even for large

networks with over a billion edges, one can compute graphlets

fast and with low error. The newly introduced family of

graphlet estimators greatly improves the scalability, flexibility,

and utility of graphlets. Finally, the methods give rise to

new opportunities and applications for graphlets (as shown

in Section IV-H).
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