
J N E R
JOURNAL OF NEUROENGINEERING
AND REHABILITATION

Jacobs and Ferris Journal of NeuroEngineering and Rehabilitation  (2015) 12:90 

DOI 10.1186/s12984-015-0081-x

RESEARCH Open Access

Estimation of ground reaction forces and
ankle moment with multiple, low-cost sensors
Daniel A. Jacobs * and Daniel P. Ferris

Abstract

Background: Wearable sensor systems can provide data for at-home gait analyses and input to controllers for
rehabilitation devices but they often have reduced estimation accuracy compared to laboratory systems. The goal of
this study is to evaluate a portable, low-cost system for measuring ground reaction forces and ankle joint torques in

treadmill walking and calf raises.

Methods: To estimate the ground reaction forces and ankle joint torques, we developed a custom instrumented
insole and a tissue force sensor. Six healthy subjects completed a collection of movements (calf raises, 1.0 m/s walking,

and 1.5 m/s walking) on two separate days. We trained artificial neural networks on the study data and compared the
estimates to a multi-camera motion system and an instrumented treadmill. We evaluated the relative strength of each
sensor by testing each sensor’s ability to predict the ankle joint torque calculated from a reference inverse kinematics

algorithm. We assessed model accuracy through root mean squared error and normalized root mean square error. We
hypothesized that the estimation of the models would have normalized root mean square error measures less than
10 %.

Results: For walking at 1.0 and walking at 1.5 m/s, the single-task, intra-day and multi-task, intra-day predictions had
normalized root mean square error less than 10 % for all three force components and both center of pressure
components. For the calf raise task, the single-task, intra-day and multi-task, intra-day predictions had normalized root

mean square error less than 10 % for only the anterior-posterior center of pressure. The multi-task, intra-day model
had similar predictions to the single-task, intra-day model. The normalized root mean square error of predictions from
the insole sensor alone were less than 10 % for walking at 1.0 m/s and 1.5 m/s. No sensor was sufficient for the calf

raise task. The combination of the insole sensor and the tendon sensor had lower normalized root mean square error
than the individual sensors for all three tasks.

Conclusions: The proposed sensor system provided accurate estimates for five of the six components of the ground

reaction kinetics during walking at 1.0 and 1.5 m/s and one of the six components during the calf raise task. The
normalized root mean square error of the predictions of the ground reaction forces were similar to published studies
using commercial devices. The proposed system of low-cost sensors can provide useful estimations of ankle joint

torque for both walking and calf raises for future studies in mobile gait analysis.
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Background

Increasing health care costs and the need for more con-

venient and cost-effective patient care are driving inves-

tigations into research and development of mobile health

monitoring systems. Advances in wearable technologies,

as one subgroup of mobile health monitoring technolo-

gies, can enable more affordable and accessible health

care by developing low-cost, unobtrusive measurement

devices that can provide real-time feedback to patients

and health care providers on the patient’s health in their

every day lives [1, 2]. The timely measurement and com-

munication between wearable technologies, patients, and

health care providers could have significant effects on the

quality of life of patients by helping drive health care from

treatment to prevention [3].

Estimating the ground reaction forces and joint

moments of humans in the real world could have sub-

stantial clinical impact by providing assessments of patho-

logical gait, fall detection in the elderly, and biofeedback

data for home interventions. Currently, the gold-standard

of clinical gait analysis using motion capture and force

plates can estimate ground reaction forces and joint

moments without invasive sensors. However, the viabil-

ity of gait analysis is restricted due to their size, cost,

and laboratory size. The aim of this study was to test

the ability of multiple sensors to provide low-cost mea-

surements of ground reaction forces and ankle joint

moments.

Many wearable sensors have difficulty providing robust

estimations in the presence of substantial movement vari-

ability. Studies on wearable sensors that only investigate

overground and treadmill walking do not deal with the

amount of variability that happens in daily life [4–8]. In

some cases, the investigated sensor is tested only on the

stance phase of walking [9, 10]. Investigating only walk-

ing leads to overestimation of sensor accuracy due to the

fact that the passive dynamics of walking lead to stereo-

typical patterns that are easier to predict. Not including

swing phase data in estimation also reduces variability in

the data set because it assumes that nonlinear transition

between stance and swing is predicted perfectly despite

sensor noise.

Investigating non-stereotypical tasks can lead to more

accuracy assessments of wearable technology. One non-

stereotypical task that could be included in perfor-

mance testing of wearable technologies is the calf raise.

Biomechanically, calf raises are interesting because the

major functional behavior is balancing rather than for-

ward propulsion like in walking. The profiles of ground

reaction force and center of pressure during a balancing

task have larger variance than a stereotypical task which

makes accurate prediction more challenging. Clinically,

calf-raises are often elements of lower limb rehabilita-

tion protocols following Achilles tendon and anterior

cruciate ligament injury [11, 12] and training protocols for

improving balance and gait stability [13].

We evaluated a system consisting of two custom, low-

cost sensors: a custom plantar pressure insole and a

non-invasive tendon load cell. By fusing multiple sen-

sors, the estimation accuracy of the sensor system could

be reduced enough to create an acceptable, generalizable

model that is robust and repeatable across different tasks.

Several groups have demonstrated that plantar pressure

insoles provide sufficient data to estimate ground reaction

forces (GRF), center of pressure (COP), and ankle joint

torques (AJT) [5, 6, 8] yet insole performance on non-

stereotypical tasks is unclear. Tendon sensors, such as ten-

don buckles [14, 15], non-invasive strain sensors [16], and

ultrasonic velocity measurements [17] have also provided

useful data on muscle and tendon state but most sen-

sors are bulky and require specialized equipment that is

not mobile.

In addition to task variability, sensor characteristics,

such as drift and creep, can negatively affect estimation

with insoles [18–20]. Studies on insole sensor variability

and repeatability have shown that current devices need

calibration in order to perform adequately [21, 22] and

that long term performance is still an issue [21, 23–26].

In this study, we quantified the predictive ability of

the sensors to estimate the ground reaction forces, cen-

ter of pressure, and ankle joint torques during nor-

mal walking and calf-raises in healthy young adults. We

collected steady state treadmill walking at two speeds

and a set of five self-paced calf raises. To evaluate

long-term performance, we collected trials on two dif-

ferent days without external calibration of the sensor

or fitting. We built artificial neural network regression

models to estimate the ground reaction forces, center

of pressure, and ankle joint torques from the proto-

type sensor data and compared the predictions to the

reference data from motion capture and instrumented

force plates. To assess model accuracy, we performed

a series of estimations on withheld data and calculated

the mean performance measures across intra-day, inter-

day, single-task, and multi-task groupings. We used the

root mean square error (RMSE) and the normalized

root mean square error (NRMSE) as measures of model

performance.

Methods

Subjects

Six healthy subjects (2 Female, 4 Male) participated

in this study: (mean± std) age 24.5± 3.6 years, height

1.78± 0.07 m, leg length 0.94± 0.05 m, and mass

69.9±12.64 kg. Each collection day, the subjects per-

formed three trials of walking at 1.0 m/s, walking at

1.5 m/s, and three sets of five calf raises. Each subject

performed two collections spaced 40± 15 days apart.
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Ethics, consent and permissions

All subjects gave written informed consent in accordance

with the Declaration of Helsinki. The Institutional Review

Board of the University of Michigan (FWA #00004969)

approved the study protocol.

Data collection

We recorded marker data at 100 Hz with a 10 camera

motion capture system (Vicon, Inc. USA). We collected

ground contact forces at 1 kHz with an instrumented

split-belt treadmill (Bertec Inc. USA). A data acquisition

system (dSPACE GmhB, Germany) running Real-Time

Workshop (Mathworks Inc., USA) captured the voltage

signals from the insole and tendon sensors at 1 kHz. We

filtered the ground contact forces and moments from the

instrumented force plates and the voltage signals from the

sensors with a low-pass, fourth order butterworth filter at

25 Hz. We synchronized the data acquisition system and

the motion capture system by co-recording a manually-

triggered square wave from a signal generator in both

systems. The data streams were aligned by edge detection

of the square wave in the post-processing routines.

In a few trials, an intermittent break in the electrical

connection added artifact noise to the sensor data. The

noise did not strongly contaminate the data andwe did not

filter the artifact or exclude any data from our analysis.

Sensing hardware

During the study, each subject wore an orthopedic shoe

with a custom insole insert to measure localized changes

in plantar pressure. Each insole contained eight custom

neoprene bladders instrumented with miniature, ampli-

fied, temperature-compensated pressure sensors (Honey-

well, Inc. USA, SSCDANN030PGAA5). The pneumatic

bladders had a loading area of 25.4 × 25.4 × 6.35 mm

and a wall thickness of 1.58 mm. The total cost of a

pair of instrumented shoes was $800 (Sensors: $512, Blad-

ders: $144, PCB $132, insole foam, glue, and misc: $10).

The base weight of the shoe was 480.2 g and total weight

of the sensors was 257.8 g which accounted for an increase

of 54 percent over normal attire (Table 1).

Table 1 Mass values of a single side of sensor system. The total

weight of the insole sensors, Achilles tendon sensors, and

circuitry increased the base weight of the shoe by 54 %

Part Mass

Pressure Sensors and Circuitry 137 g

Achilles Tendon Sensor 44 g

Bladder 10 g

Sensor Subtotal 258 g

One Shoe (US Men’s 10) 480 g

Total Weight 738.0 g

Each subject also wore a miniature beam load cell

on the distal end of the tibia above the calcaneus

to measure localized tissue forces around the Achilles

tendon. The tendon sensor consisted of a thin film

load cell (Strain Measurement Devices, Inc. USA, S100)

connected to base aluminum block and a delrin ten-

don cup. The total cost for the pair of the tendon

sensors was $340 (Sensors $330, misc aluminum and

delrin $10).

Both devices are simple to manufacture with standard

laboratory tools and they can be adjusted for different

users easily. Figure 1 shows several photos of the indi-

vidual components and the full system worn by subject.

Figure 1a and b show the insole (without the top comfort

foam layer) with the bladders inserted. Figure 1e shows the

bladder and custom printed circuit board for the pressure

sensors. Figure 1c shows a tendon sensor along with two

acetal resin tendon cups to assist in fitting different sub-

jects. Figure 1d shows the complete system on a subject.

We affixed the tendon sensor to the subject with dou-

ble sided tape, then secured the entire sensor in flexible

athletic tape.

Analysis

We calculated the ground reaction forces (GRF), center

of pressure (COP) and vertical torque in the laboratory

coordinate system. The center of pressure and the vertical

torque components of the ground reaction forces were set

to zero when the vertical force measurement was less then

5 % of body weight.

We used a 23 degree of freedom musculoskeletal model

(gait2354) in the open-source software OpenSim [27] for

our analysis. Using the marker and treadmill data, we

scaled the model and ran inverse kinematics and inverse

dynamics algorithms to calculate the generalized coordi-

nates and generalized forces of the model in each trial. We

transformed the location of the center of pressure from

the laboratory coordinate system to a foot fixed coordi-

nate system with the origin in the calcaneus to normalize

the subjects steps and remove the effect of treadmill

position.

For the mean component profiles comparison, we nor-

malized each subject’s step to gait cycle phase or task

phase. We normalized the center of pressure locations as

a percentage of the leg length (%L), forces as a percentage

of body weight (%BW), and moments as a percentage of

the product of body weight and leg length (%BWL). We

estimated the leg length of the subject from the mean of

the left and right greater trochanter z markers during the

standing trials.

For the prediction of the GRF, we calculated the root

mean square error (RMSE) and the normalized root

mean square error (NRMSE). The NRMSE was calcu-

lated by dividing the RMSE by the range of the signal
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Fig. 1 Hardware photos. The collage shows photos of a the insole and inlaid pressure sensors (top foam layer missing) b the insole embedded in

the orthotic shoe, c a miniature beam load cell and the plastic tendon cups for the tendon sensor, d a subject wearing both of the sensors and

e the custom pressure sensor and amplifier unit. The total cost of a pair of insoles was $800 and the total cost of the pair of load cells was $420.

Both sensors were easily constructed, assembled, and disassembled without specialty tools

data in the reference signal from the motion capture and

instrumented force plate data. For the prediction of the

AJT, we also compared the relative strength of the individ-

ual sensors in the sensor set by calculating the accuracy

for combinations of sensors. As a feature set, we compared

the individual ankle angle estimated from the motion cap-

ture data, the voltage from the tendon sensor, and the

vertical force and fore-aft center of pressure estimated

from the insole sensor.

Although the true measure of accuracy for clini-

cal validity is unknown, we set the accuracy cutoff at

10 % for this study to match the reported accuracy

(5–28 %) of studies on walking that used commercial

pressure and insole mats as those devices are utilized in

clinics.

Regressionmodels

We created a series of single-hidden layer, 10 node, feed-

forward neural networks in Matlab. Each model was

tested on data withheld from the training phase. We used

a cross-fold validation scheme to create a series of models

for each subject and calculated the mean model accuracy

across the iterations [28].

Splitting data for regression models can be done super-

vised or unsupervised depending upon the experimental

data [29]. We chose a supervised method where we split

the training and test data into groups of intra-day and

inter-day sets in order to ask interpretable questions, e.g.,

how accurate is the model likely to be when tested on

subjects within a testing day or on a new testing day.

It is important to split the data into sections where

the regions of prediction are equivalent to avoid local

information and improve the bias properties of the pre-

dictors [29]. Splitting the data into intra-day and inter-day

sets creates equivalent prediction areas because each set

contains an equal number of cycles and the range and

variance of the signal is similar. Splitting the data into

randomized sections could result in an uneven split of

the gait cycle which would have different range and vari-

ance properties which could bias the estimate of model

accuracy.

From the data set, we created the following groups:

• Single-Task, Intra-Day
• Single-Task, Inter-Day
• Multi-Task, Intra-Day

Our training and testing groups are represented visually

in Fig. 2 in a grid representation. For the single-task sets,

each row represents a set of tests, where the green boxes

indicates the trial used for training and the blue boxes

represent the trials used for testing.

For example, the single-task, intra-day set consisted of

testing each trial on a set of withheld data consisting of

the remaining two trials in that day e.g the model trained

on the first trial was tested on the data from the second

and third trials on that day and the model trained on the

second trial was tested on the data from the first and third

trials on that day.

In the single-task, intra-day, the grid coloring in Fig. 2

indicates that for each of the 6 models (green boxes)
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Fig. 2 Analysis group illustration. On each collection day, we collected three trials of each task for a total of six trials. (TOP) In the single-task groups,

we formed a six-by-six grid of training and test data sets for each task. The top three grids show a graphical representation of the three single-task

groupings. The green squares represent the trial from which the training and cross validation data were taken and the blue squares represent the

test sets which were averaged for the results. Note that union of the blue squares represents the complete grid with each set used once. (BOTTOM)

For the multi-task group, we created a data set of eighteen trials from the three trials on both days for the three tasks. We created a training set

using the first trials on both days for all three tasks and a test set from the second and third trials on both days

we produced 12 test performance measures (blue boxes)

yielding a final performance metric that was the average

of 120 values (10 subjects, 12 tests) for each kinetic com-

ponent, task, and subject.

The multi-task, intra-day group, consisted of a single

model trained on the first trial of each task from day 1

and day 2 and tested on the remaining two trials from

each day (6 training trials and 12 testing trials). The

final performance metric for each component was also

the average of 120 values (10 subjects, 12 tests) for each

kinetic component.

The neural network training algorithms further divided

the input data into subgroups allocated as: 70 % train-

ing, 15 % validation, and 15 % test. To avoid over-

fitting the data, the Matlab training algorithm halted the

training when the performance decreased on the vali-

dation data set after an iteration. The output of each

individual training on the remaining 15 % test data

was discarded in favor of the output from the grid

tests.

For each model, we calculated the root mean square

error (RMSE) and the normalized root mean square error

(NRMSE) on the withheld test data. For the final reported

model performance, we calculated the mean RMSE and

NRMSE across all subjects.

Results

For walking at 1.0 m/s, 1.5 m/s and calf raises, the differ-

ences between the mean ground reaction kinetics for the

reference (solid black line) and estimated (blue lines) were

small (Fig. 3). The differences between the reference and

estimated curves are greatest for the single-task, inter-day

subgroup.

The normalized root mean square error for the single-

task, inter-day group was than the single-task intra-

day group for all components and tasks (Fig. 4 and

Table 2). The multi-task, intra-day group had mean nor-

malized root mean square error lower than the single-

task, inter-day group for all components and tasks except

for the anterior-posterior force component of the calf

raise task.

For walking at 1.0 m/s, the single-task, intra-day, the

single-task, inter-day and the multi-task intra-day groups

has normalized root mean square values (mean± std)

of 6.8± 2.4, 13.2± 3.5, and 7.0± 2.3, respectively. For

walking at 1.5 m/s, the single-task, intra-day and

single-task, inter-day had normalized root mean square

error (NRMSE) values (mean± std) of 5.7± 2.1 % and

12.2± 2.3 % respectively and the multi-task, multi-day

group had a mean NRMSE value of 6.2± 2.3 %. For

the calf raises, the single-task, intra-day and single-task,
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Fig. 3 Ground reaction kinetics estimation. Mean normalized components of the ground reaction kinetics for walking at 1.5 m/s and calf raises for

four analysis groups and the instrumented treadmill. The mean walking prediction is very accurate for all of the groups except for the Single-Task,

Inter-day group which has an error around 40 % of the gait cycle. The error for the calf raise trial is noticeably larger than that of the walking trials.

The difference in mean predicted curve is also larger for the calf raise trials. The increase in error is likely due to having fewer sensors available

when subjects are on the balls of their feet. Component Names: Anterior-Posterior Force (Fap), Vertical Force (Fv ), Medial-Lateral Force (Fml),

Anterior-Posterior Center of Pressure (COPap), Medial-Lateral Center of Pressure (COPml), Vertical Torque (Tv )
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Fig. 4 Ground reaction kinetics estimation statistics. Normalized root mean square error (NRMSE) for the three analysis groups on each of the three

tasks. The quality of fit is stronger for the single-trial, intra-day groups than for the single-trial, inter-day group. The multi-trial, inter-day group shows

that training on a large multi-task and trial dataset can reduce the inter-day error. Component Names: Anterior-Posterior Force (Fap), Vertical Force

(Fv ), Medial-Lateral Force (Fml), Anterior-Posterior Center of Pressure (COPap), Medial-Lateral Center of Pressure (COPml), Vertical Torque (Tv )

inter-day had NRMSE values (mean± std) of 14.2± 5.4 %

and 33.3± 8.6 % respectively and the multi-task, multi-

day group had a mean NRMSE value of 21.7± 9.6 %.

Ground reaction kinetics for walking at 1.0m/s

For walking at 1.0 m/s, the single-task, intra-day model

had normalized root mean square error (NRMSE) val-

ues less than 10 % for all six components of the ground

reaction kinetics (Table 2). The single-task, inter-day

model had NRMSE values above 10 % for all six compo-

nents of the ground reaction kinetics but the three ground

reaction forces and the two center of pressure values have

NRMSE values (10.9–13.1 %) close to the accuracy crite-

rion. The multi-task, intra-day model has NRMSE values

less than 10 % for all of the kinetic components with the

exception of the vertical torque (Tv).
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Table 2 Fit metrics for the ground reaction kinetic estimation

Fap Fv Fml

Walking 1.0 m/s RMSE (% BW) NRMSE (%) RMSE (% BW) NRMSE (%) RMSE (% BW) NRMSE (%)

Single-Task, Intra-Day 2.13 6.21 3.33 2.93 1.00 5.82

Single-Task, Inter-Day 4.40 13.07 13.06 11.48 1.85 10.97

Multi-Task, Intra-Day 2.39 6.95 4.72 4.15 1.16 6.79

COPap COPml Tv

Walking 1.0 m/s RMSE (% L) NRMSE (%) RMSE (% L) NRMSE (%) RMSE (% BWL) NRMSE (%)

Single-Task, Intra-Day 2.72 5.90 0.80 7.15 0.15 9.67

Single-Task, Inter-Day 5.25 10.89 1.21 12.54 0.30 20.08

Multi-Task, Intra-Day 2.76 6.21 0.85 6.77 0.18 11.25

Fap Fv Fml

Walking 1.5 m/s (% BW) RMSE (%) NRMSE (% BW) RMSE (%) NRMSE (% BW) RMSE (%) NRMSE

Single-Task, Intra-Day 2.34 4.38 4.43 3.47 1.36 5.41

Single-Task, Inter-Day 6.19 11.76 14.59 11.36 2.61 10.24

Multi-Task, Intra-Day 2.53 4.74 5.37 4.19 1.44 5.69

COPap COPml Tv

Walking 1.5 m/s (% L) RMSE (%) NRMSE (% L) RMSE (%) NRMSE (% BWL) RMSE (%) NRMSE

Single-Task, Intra-Day 3.14 5.25 0.79 6.60 0.20 9.35

Single-Task, Inter-Day 6.10 10.57 1.37 12.84 0.34 16.50

Multi-Task, Intra-Day 3.55 5.46 0.84 6.80 0.22 10.56

Fap Fv Fml

Calf Raise RMSE (% BW) NRMSE (%) RMSE (% BW) NRMSE (%) RMSE (% BW) NRMSE (%)

Single-Task, Intra-Day 0.77 16.97 3.41 15.89 0.68 16.08

Single-Task, Inter-Day 1.39 32.46 7.58 39.63 1.45 34.92

Multi-Task, Intra-Day 1.57 37.22 5.33 24.98 0.91 22.48

COPap COPml Tv

Calf Raise RMSE (% L) NRMSE (%) RMSE (% L) NRMSE (%) RMSE (% BWL) NRMSE (%)

Single-Task, Intra-Day 1.11 5.83 0.35 9.86 0.13 20.70

Single-Task, Inter-Day 3.78 20.29 0.89 28.06 0.25 44.59

Multi-Task, Intra-Day 1.78 9.19 0.49 14.32 0.13 21.74

Root mean squared (RMSE) and Normalized root mean squared error (NRMSE) for the six ground reaction force components of the walking at 1.5 m/s trial, and three select

of the ground reaction kinetics of the calf raise task. The multi-task, intra-day model performs as well as the single-task, intra-day model which means that with sufficient

training data, the insole can be used to study multiple locomotion tasks. Component Names: Anterior-Posterior Force (Fap), Vertical Force (Fv ), Medial-Lateral Force (Fml ),

Anterior-Posterior Center of Pressure (COPap), Medial-Lateral Center of Pressure (COPml ), Vertical Torque (Tv )

Ground reaction kinetics for walking at 1.5m/s

For walking at 1.5 m/s, the single-task, intra-day model

had normalized root mean square error (NRMSE) val-

ues less than 10 % for all six components of the

ground reaction kinetics (Table 2). The single-task, inter-

day model had NRMSE values above 10 % for all

six components of the ground reaction kinetics but

the three ground reaction forces and the two center

of pressure values have NRMSE values (10.2–12.8 %)

close to the accuracy criterion. The multi-task, intra-

day model has NRMSE values less than 10 % for all

of the kinetic components with the exception of the

vertical torque.

Ground reaction kinetics for calf raises

For the calf raise task, the single-task, intra-day model

had normalized root mean square error (NRMSE) values

less than 10 % for the anterior-posterior center of pressure

and medial-lateral center of pressure positions (Table 2).

None of the predictions of the single-task, inter-daymodel

were less than 10 %. Only the prediction of the anterior-

posterior center of pressure was less than 10 % for the

multi-task, intra-day model.

Ankle joint torque estimation

Overall, the insole sensor individually was a stronger pre-

dictor of ankle joint torques than the tendon sensor or
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the ankle angle from inverse kinematics. In the multi-

task, intra-day model, the insole sensor data was sufficient

to predict the ankle joint torque for walking at 1.0 and

1.5 m/s tasks with normalized root mean square error

(NRMSE) values of 8.7 and 9.2 % respectively (Table 3).

The ankle angle and tendon features, both individually

and together, had high normalized root mean square error

(NRMSE) values and large deviations in the mean curves

(Fig. 5) for all three tasks. Combining the insole data

with the ankle angle data or the tendon data resulted

in a lower NRMSE on all three tasks. For all tasks, the

combination of insole and tendon data produced sim-

ilar NRMSE as the combination of insole and ankle

angle data.

Discussion

Wearable sensors for estimating the ground reaction

forces and the ankle joint moment can provide key biome-

chanical data for analyzing human motion. Our results

show that a low-cost pressure insole and tendon sensor

can produce estimates similar to the reported accuracy

of commercial devices. For walking, a model produced

by training both walking and calf raise data (multi-task,

intra-day) produced normalized root mean square error

(NRMSE) values for the ground reaction kinetics that

were under 10 % for all three components of the force

vector and both components of the location of the cen-

ter of pressure (NRMSE: 4.15–6.80 %). The predictions of

the vertical torque (NRMSE: 10.56 %, 11.25 %) exceeded

the cutoff by a small amount. For the calf raises, only

the prediction of the anterior-posterior center of pressure

met the accuracy criterion. The results of the prediction

of the AJT were similar to the GRF, where the sensor

set had accuracy less than 10 % for walking but not for

calf raises.

The results of the prototype sensors compare favorably

with previous research on walking in commercial sensors

[5, 6, 8]. Font et al. (2008) showed RMSE errors of 5 %

for the vertical force, 12 % for the anterior-posterior force,

and 28 % for the medial lateral force [6] for walking in the

Pedar insoles. Rouhani et al. (2010) also found errors of

4 % for the vertical force, 7.4 % for the anterior-posterior

force, 11.3 % for the medial-lateral force, and 14.7 % for

the vertical torque in Pedar insoles. In a laboratory pro-

totype, Howell et al. (2012) showed NRMSE of the ankle

torque of 5.9 % for their healthy patients and 9.8 % in

stroke subjects.

One advantage of the current insole prototype is that

the pressure sensors respond to changes in the volume of

the air bladder. The capacitive and resistive sensors found

in commercial devices are uniaxial only but our prototype

sensors produced a signal in response to three dimen-

sional axial or sheer stress. The disadvantage is that the

model between sensor voltage and a kinetic component

like vertical force is no longer simply linear but our results

show that the neural network training is sufficiently

accurate.

Our study goes further than previous studies by evalu-

ating our sensor system on a dataset that includes a non-

stereotypical motion and multiple testing days. Despite

the increased variability in the data set due to the inclu-

sion of inter-day testing and data from both tasks, the

multi-task, intra-day, and the single-task, intra-day mod-

els had similar accuracy which suggests that the current

prototype may be limited by sensor accuracy and not task

variability.

Recently Godi et al. (2014), suggested that plantar pres-

sure insoles are potentially more accurate for spatial vari-

ables (like peak force and center of pressure) and worse

for temporal variables like stance duration especially at

lower sampling frequencies [25]. Our high accuracy for

vertical force during walking suggests that our system

could be used to accuracy predict contact time and stance

duration.

Table 3 Fit metrics for the ankle moment estimation

Multi-task, Intra-day Calf raise Walking 1.0 m/s Walking 1.5 m/s

ankle joint torque RMSE NRMSE RMSE NRMSE RMSE NRMSE

features (% BWL) (%) (% BWL) (%) (% BWL) (%)

Angle 3.42 53.06 2.56 15.83 3.01 16.42

Tendon 3.01 46.02 3.33 20.47 4.34 23.54

Angle+Tendon 3.35 51.77 2.34 14.46 2.94 16.03

Insole 1.04 16.52 1.39 8.72 1.70 9.21

Insole+Tendon 0.90 13.78 1.17 7.42 1.30 7.04

Angle+Insole 0.98 15.57 1.27 8.04 1.36 7.29

Angle+Insole+Tendon 0.91 13.78 1.17 7.51 1.27 6.85

Root mean squared error (RMSE) and normalized root mean squared error (NRMSE) for the right ankle moment for the calf raise, walking at 1.0 m/s, and walking at 1.5 m/s trials.

The angle and tendon sensors individually have low accuracy (NRMSE > 10 %) in all three tasks. The insole sensor has high accuracy for the walking tasks but not for the calf

raise tasks. Combining redundant measurements from the insole sensor and the tendon sensor improves accuracy on all three tasks. Units: Body Weight * Leg Length (BWL)
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Fig. 5 (Top) Mean normalized right ankle moments as calculated by Inverse Dynamics and estimated by the multi-task, multi-day model for each

of the seven sensor combinations on the three tasks. The angle and tendon sensors are not sufficient to predict moment for all of the tasks by

themselves. (Bottom) Normalized root mean squared error (NRMSE) for the seven sensor combinations on the three different tasks. The insole sensor

alone outperforms the all of the other sensors individually. Combining the angle and tendon sensor with the insole has a small benefit for the NRMSE

For the ankle joint torque estimations, we found that

generally the insole data was the more accurate than

the ankle angle from inverse kinematics or the tendon

sensor. The insole data alone were accurate for walking

(RMSE ≤ 10 %) but insufficient for the calf raise task.

Including, the tendon sensor, which had a lower individual

NRMSE value than the insole sensor, lowered the NRMSE

value for both the calf raise and the walking tasks. With

both the insole and tendon sensor as features, the addi-

tion of the ankle angle calculated from inverse kinematics

did not substantially improve theNRMSE value. The ankle

joint torque predictions show the beneficial strategy of

including sensor redundancy in estimation.

Our results demonstrate that estimating the calf raise

task was particularly difficult for the prototype sensors.

The plantar pressure insole predicted the majority of the
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ground reaction forces data for walking and but only very

little for calf raises. One limitation of the prototype insole

sensor is that the spatial resolution is low. During the calf

raise task, the majority of the motion is spent balancing

on the forefoot where only 5 of the 8 sensors are active

which further decreases the spatial resolution of the sig-

nals. One way to improve the estimation algorithms across

these dissimilar tasks would be to include knowledge of

foot state in order to trigger different stored models.

Most subjects did not report any major comfort issues

during the performance of the tasks. A few of the shorter

subjects did complain that the tendon sensor was uncom-

fortable around the moment of peak calf raise height. An

important consideration for at-home health monitoring

systems is the burden of the system on the the likelihood

of adoption and continued use by patients. Future work

on the prototype sensors will focus on further reducing

the weight and increasing the comfort of the sensors. Our

prototype is also currently limited by the wired connec-

tion to the data acquisition system. However, the sensors

all return voltage signals whichmeans that an off-the-shelf

microcontroller with an analog to digital converter com-

ponent and a wireless emitter could readily be used to read

in the sensor data.

Another point of future work will be to develop a proper

set of stereotypical and non-stereotypical tasks to act as

a calibration set for true at home monitoring. While calf-

raises are an interesting balancing task, movements that

are part of the activities of daily living such as reaching

for items, turning and sit-to-stand transfers are important

elements of future research.

Conclusion

We developed a sensing system of two low-cost sensors

for estimating the ground reaction forces and ankle joint

torque of a data set which include walking at 1.0m/s, walk-

ing at 1.5 m/s, and calf raises on multiple collection days.

A multi-task, intra-day model was able to accurately pre-

dict the ground reaction forces and ankle joint torque at

both walking speeds. The combination of the insole and

the tendon sensor produced more accurate predictions

than the individual sensors in both the walking and the

calf raise tasks. Estimates of the ground reaction kinetics

and ankle joint torque on the calf raise task were worse

thanwalking which suggests task-specific deficiencies that

should be further studied.
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