
Article

Estimation of Ground Reaction Forces and Moments
During Gait Using Only Inertial Motion Capture

Angelos Karatsidis 1,4,*, Giovanni Bellusci 1, H. Martin Schepers 1, Mark de Zee 2,
Michael S. Andersen 3 and Peter H. Veltink 4

1 Xsens Technologies B.V., Enschede 7521 PR, The Netherlands; giovanni.bellusci@xsens.com (G.B.);

martin.schepers@xsens.com (H.M.S.)
2 Department of Health Science and Technology, Aalborg University, Aalborg 9220, Denmark;

mdz@hst.aau.dk
3 Department of Mechanical and Manufacturing Engineering, Aalborg University, Aalborg 9220, Denmark;

msa@m-tech.aau.dk
4 Institute for Biomedical Technology and Technical Medicine (MIRA), University of Twente,

Enschede 7500 AE, The Netherlands; p.h.veltink@utwente.nl

* Correspondence: angelos.karatsidis@xsens.com; Tel.: +31-53-489-3316

Academic Editor: Vittorio M. N. Passaro

Received: 29 September 2016; Accepted: 28 December 2016; Published: 31 December 2016

Abstract: Ground reaction forces and moments (GRF&M) are important measures used as

input in biomechanical analysis to estimate joint kinetics, which often are used to infer

information for many musculoskeletal diseases. Their assessment is conventionally achieved

using laboratory-based equipment that cannot be applied in daily life monitoring. In this

study, we propose a method to predict GRF&M during walking, using exclusively kinematic

information from fully-ambulatory inertial motion capture (IMC). From the equations of

motion, we derive the total external forces and moments. Then, we solve the indeterminacy

problem during double stance using a distribution algorithm based on a smooth transition

assumption. The agreement between the IMC-predicted and reference GRF&M was categorized

over normal walking speed as excellent for the vertical (ρ = 0.992, rRMSE = 5.3%), anterior

(ρ = 0.965, rRMSE = 9.4%) and sagittal (ρ = 0.933, rRMSE = 12.4%) GRF&M components and as

strong for the lateral (ρ = 0.862, rRMSE = 13.1%), frontal (ρ = 0.710, rRMSE = 29.6%), and transverse

GRF&M (ρ = 0.826, rRMSE = 18.2%). Sensitivity analysis was performed on the effect of the cut-off

frequency used in the filtering of the input kinematics, as well as the threshold velocities for the gait

event detection algorithm. This study was the first to use only inertial motion capture to estimate 3D

GRF&M during gait, providing comparable accuracy with optical motion capture prediction. This

approach enables applications that require estimation of the kinetics during walking outside the

gait laboratory.

Keywords: ground reaction force and moment; inertial motion capture; inverse dynamics;

gait analysis

1. Introduction

Assessment of ground reaction forces and moments (GRF&M) is an important stage in the

biomechanical analysis procedure. Conventionally, these measures are recorded using force plate (FP)

systems, which, despite their high accuracy, have several significant limitations [1]. Firstly, the fixed

position of the plates on the ground together with the requirement to step with the whole foot on the

plate for a successful measurement may cause subjects to alter their natural gait pattern. Moreover, due

to their high cost, most laboratories are equipped with one or a couple of FPs, which makes tracking

many successive steps during overground walking impossible. In addition, the measurements are
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bounded by the laboratory space and cannot be performed outside this area, for example during daily

life activities.

Towards ambulatory assessment of kinetics, previous studies have suggested the use of either

pressure insoles [2–4] or instrumented force shoes [5,6]. The main difference between these two systems

is that the former measures only a pressure distribution in the shoe, whereas the latter measures directly

three-dimensional forces applied beneath the shoe. Such devices have enabled ambulatory estimation

of ankle kinetics [7] and knee kinetics [8], in combination with inertial measurement units (IMUs)

and linked segment models. Although these methods are ambulatory and have estimated GRF&M

with relative RMS errors of (1.1 ± 0.1)% [9], they suffer from certain limitations. The low durability

and repeatability of the pressure insoles result in a drop in the reliability of the results [10]. As for

the instrumented force shoe, it has been suggested that optimization is needed to decrease the size

and weight of its wearable instrumentation and make it practical for recording sessions of extended

durations [11,12].

Recent advances in biomechanical analysis techniques are allowing the estimation of GRF&M

using only kinematic data [13–19]. When applied to gait analysis, a common problem that needs to

be addressed is the distribution of the total external force and moment during periods of double foot

support. Several methods have been previously proposed. Two studies proposed approaches based

on artificial neural networks to determine the distribution of forces and moments [14,15]. Recently,

another approach used a musculoskeletal model-based technique in which a dynamic contact model

is used to solve the indeterminacy problem, without using training data [16–18]. In another study,

Ren et al. introduced a distribution function called the smooth transition assumption, which is based on

the observation that the GRF&M on the trailing foot change smoothly towards zero during the double

stance phase of gait [19]. The latter assumption was further validated and adjusted to decompose the

right and left GRF&M measured from a single force plate [20]. That study pointed out a limitation of

the original smooth transition assumption, in which the center of pressure remains constant during the

double support due to the use of the same functions for both horizontal moments and vertical force.

To apply kinetics prediction methods to kinematic data, most of the existing research uses

optical motion capture (OMC). However, the increased accuracy and reduced size, power and cost of

IMUs have enabled the assessment of segment orientation [21] and later full-body motion capture in

laboratory-free settings. This technique delivers good accuracy in estimating human body kinematics,

such as joint angles [22], and has been previously validated versus optical motion capture estimates [23].

Only a few studies have attempted to assess kinetics from kinematics using such inertial motion capture

(IMC) systems. In a recent study, a top-down inverse dynamics approach was applied to estimate

GRF&M and L5/S1 joint moments during trunk bending [24]. Another study used IMUs to estimate

the joint forces and moments during ski jumping [25]. The common limitation of those studies is that

they examined only the total external loads applied on both feet and are, therefore, inapplicable to

gait analysis.

Therefore, the aim of this study was to develop a computational method to predict GRF&M, using

only IMC-derived kinematics during gait. The method was evaluated for three walking speeds, by

comparing the predicted GRF&M with the results of FP measurements. In addition, we performed

two sensitivity analyses to investigate the effect of cut-off frequency on the estimated GRF&M, as well

as to validate the choice of threshold velocities used in the gait event detection algorithm.

2. Methods

2.1. Experimental Protocol

Eleven (11) healthy male volunteers (age: 30.97 ± 7.15 years; height: 1.81 ± 0.06 m; weight:

77.34 ± 9.22 kg; body mass index (BMI): 23.60 ± 2.41 kg/m2) participated in the measurements

performed at the Human Performance Laboratory, at the Department of Health Science and Technology,

Aalborg University, Aalborg, Denmark. The experiment was performed in accordance with the ethical
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guidelines of The North Denmark Region Committee on Health Research Ethics, and participants

provided full written informed consent, prior to the experiment.

The core system used in this study is an IMC system (Xsens MVN Link, Xsens Technologies BV,

Enschede, The Netherlands [26]) powered by the matching software (Xsens MVN Studio version 4.2.4),

delivering data at 240 Hz. The 17 IMU modules were mounted on a tight-fitting Lycra suit on the

following segments: head, sternum, pelvis, upper legs, lower legs, feet, shoulders, upper arms,

forearms and hands [22,27] (Figure 1). In addition, an OMC system, including eight infrared

high-speed cameras (Oqus 300 series, Qualisys AB, Gothenburg, Sweden [28]), was used to capture

53 retro-reflective markers mounted on the body. The placement of the markers on the body is

shown in Figure A1 and described in Table A1 in the Appendix section. Furthermore, three FPs (AMTI,

Advanced Mechanical Technology, Inc., Watertown, MA, USA), embedded in the floor of the laboratory,

recorded GRF&Ms (Figure 2). A combination of the OMC and FP systems (lab-based system) was used

as a reference for comparison to the IMC-derived GRF&M predictions. To synchronize the IMC-based

and lab-based systems, the Xsens sync station was used. The sampling frequency of the camera-based

system was set to 240 Hz and that of FPs to 2400 Hz.

Figure 1. The definition of the 23 segments in the kinematic model of Xsens MVN. An inertial

measurement unit is mounted on each of the 17 segments indicated with bold text. The 5 new segments

(red italic font) are formed by the combination of MVN segments (within dashed-lined boxes) to match

the segment definitions of De Leva [29].

Before starting the recordings, the body dimensions of each subject were assessed and applied in

the Xsens MVN software. Particularly, the heights of the ankle, knee, hip and top of head from the

ground, the widths of the shoulder and pelvis, as well as the length of the foot were measured using

a conventional tape with the subject in an upright posture [30]. These measurements were used to

calibrate the IMC system using a steady upright posture, known as the neutral pose or n-pose [22].

The software classifies the quality of the calibration as “poor”, “fair”, “acceptable” or “good” based on

the steadiness of the subject and the homogeneity of magnetic field around the IMUs at the time of the

calibration. The calibration process was repeated before each set of walking speed trials and until the

indication “good” was achieved in all cases, to maximize the quality of IMC.
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Figure 2. The three AMTI force plate system used, denoting the coordinate system of the laboratory.

The vertical axis (z) points upwards, perpendicular to the anterior (x) and lateral (y) axes.

Between the completion of the instrumentation setup and the start of the measurements, the

subjects were given a five-minute acclimatisation period, to feel comfortable in the wearable equipment.

Throughout the whole experiment, subjects remained barefoot, without wearing any type of footwear,

apart from a thin strap wrapped around each foot to firmly mount the inertial measurement unit on

these segments.

Gait at a self-selected normal (NW), fast (FW) and slow (SW) speed were measured. FW and SW

speeds were instructed to the subjects as at least 20% higher or lower than their mean baseline NW

speed, respectively. Particularly, the actual mean walking speeds performed were 1.28 ± 0.14 m/s for

NW, 1.58 ± 0.09 m/s for FW (NW + 23%) and 0.86 ± 0.11 m/s for SW (NW − 33%). To prevent the

generation of additional external forces, the use of handrails or contact with any other external objects

was not allowed. Before each task was recorded, subjects were given oral instructions and practiced

the respective movement patterns. At least five successful trials per walking speed were obtained. A

trial was considered successful when the right (left) foot hit one of the FPs completely, followed by a

complete hit of the left (right) foot on the next FP. This definition ensures that FPs capture both right

and left feet successfully within a stride.

2.2. Data Processing: IMC System

Xsens MVN estimates the orientation of segments by combining the orientations of individual

IMUs with a biomechanical model of the human body. The orientation of each IMU is obtained by

fusing accelerometer, gyroscope and magnetometer signals using an extended Kalman filter [31].

To relate the sensor orientations to segment orientations, a sensor-to-segment calibration procedure is

performed. In this procedure, called n-pose, the subject is asked to stand in a known n-pose for a few

seconds. The estimated transformation is applied and considered constant during a recording session.

We developed a program in MATLAB to assess the kinetic values from IMC-derived kinematics.

By default, Xsens MVN Studio uses 17 IMU sensors to derive the kinematics of 23 segments as shown

in Figure 1. Due to lack of literature reporting inertial parameters and relative center of mass positions

for these exact segments, the original kinematic model has been adjusted to match the definitions

of the 16-segment model reported by De Leva, 1996. To achieve this adaptation, 5 new rigid body

segments were defined by merging specific given segments:

• Head-neck segment, formed by constraining the relative movement between head and neck

segments. Kinematics were derived from the orientation of the IMU mounted on the head.

• Upper trunk segment, formed by constraining the relative movement between T8 and T12, T8 and

right shoulder and T8 and left shoulder segments. Kinematics were derived from the orientation

of the IMU mounted on the sternum.

• Middle trunk segment, formed by constraining the relative movement between L3 and

L5 segments. Kinematics were derived from interpolation between the upper trunk and

pelvis segment.
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• Foot-toe, formed by constraining the relative movement between foot and toe segments.

Kinematics were derived from the orientation of the IMU mounted on the foot.

The segment definitions of the pelvis, upper legs, lower legs, hands, forearms and upper arms

remained unchanged (Figure 1; Table 1).

For the analysis, two coordinate systems were defined:

• the global coordinate system of the IMC system (ψg), in which the anterior axis points to the

magnetic north, the vertical axis matches the direction of the gravitational acceleration and the

lateral axis perpendicular to these axes, such that a right-handed coordinate frame is formed

• the walking coordinate system (ψw), which is defined by the same vertical, but has the anterior

axes pointing in the walking direction, which means the difference between the two systems is

only a rotation around the vertical; the walking direction was derived from known initial and

final positions of the pelvis segment and assuming that the subjects walked approximately in a

straight line throughout the trial

Table 1. Segments used in the 16-segment body biomechanical model, as described by De Leva [29],

and the corresponding segments derived from the kinematic model of Xsens MVN Studio. The table

includes the segment mass ratios (m), the longitudinal position of the center of mass in each segment

(CoMz), as well as the radii of gyration ratios (rx, ry, rz).

De Leva 1996 Xsens MVN
m (%) CoMz (%) rx (%) ry (%) rz (%)

Definition Equivalent

Head Head + Neck 6.94 50.02 30.3 31.5 26.1
Upper Trunk T8 + T12 + Shoulders 15.96 50.66 50.5 32 46.5
Middle Trunk L5 + L3 16.33 45.02 48.2 38.3 46.8

Pelvis Pelvis 11.17 61.15 61.5 55.1 58.7
Upper Arm Upper Arm 2.71 57.72 28.5 26.9 15.8

Forearm Forearm 1.62 45.74 27.6 26.5 12.1
Hand Hand 0.61 36.24 28.8 23.5 18.4

Upper Leg Upper Leg 14.16 40.95 32.9 32.9 14.9
Lower Leg Lower Leg 4.33 43.95 25.1 24.6 10.2

Foot Foot + Toe 1.37 44.15 25.7 24.5 12.4

Knowing the kinematics and inertial properties of the segments of the biomechanical model, we

estimated the total external force based on the Newton equations of motion:

Fext =
N

∑
i=1

mi(ai − g) (1)

where Fext denotes the total three-dimensional external force, N the total number of segments, mi the

mass of each segment, ai the linear acceleration in the center of mass of each segment and g.

In a similar way, we calculated the total external moment from Euler’s equation:

Mext =
N

∑
i=1

[Jiω̇i + ωi × (Jiωi)]−
N

∑
i=1

Ki

∑
j=1

(rij × Fij) (2)

where Mext denotes the total three-dimensional external moment, Ki the number of end points in each

segment (joints and external contact points), ωi and ω̇i the angular velocities and angular accelerations

of each segment, respectively. The inertia tensor around the center of mass of each segment is denoted

by Ji, the position vectors between the center of mass and the end points denoted by rij and the

resultant force in the end points of each segment described by Fij. All variables are expressed in the

global coordinate system of the IMC system (ψg).
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Segment linear accelerations exported from the Xsens MVN Studio software were expressed in

the origin of each segment as described in detail in the manual of the IMC system [22]. To apply these

variables in Equation (1), a translation to the segment’s center of mass was required, defined as:

ai = ai,o + ω̇i × roi + ωi × (ωi × roi) (3)

The position vectors between the center of mass and the origin of each segment (roi) and the

inertial parameters of the body segments mi and Ji were calculated through scaled anthropometric

data, based on adjustments to Zatsiorsky–Seluyanov’s inertial parameters reported by De Leva [29].

The total body mass of the subjects includes their actual body mass plus the mass of the wearable

instrumentation. The added mass of the inertial motion capture system was in total 390 g (seventeen

IMUs of 10 g each, one wireless communication pack of 150 g and one battery of 70 g). These additional

masses were initially subtracted from the total measured mass before calculating the net mass of each

segment and then added individually to each of the corresponding body segments. The resulting

mass was input to the calculation of the moment of inertia from the radii of gyration. The effect of the

wearable equipment in the radii of gyration was assumed to be negligible.

Segment angular velocities (ωi), angular accelerations (ω̇i) and linear accelerations of the

origins (ai,o), provided by Xsens MVN software, were filtered using a second-order Butterworth

zero-phase low-pass filter with a cut-off frequency of 6 Hz.

Our major assumption was that the GRF&Ms are the only significant external loads present.

Thus, the total external force (moment) derived from Newton (Euler) equations of motion

(Equations (1) and (2)) balances the sum of forces (moments) applied on both left and right lower limbs:

FL + FR = Fext (4)

and

ML + MR = Mext (5)

where FL (ML) and FR (MR) are the ground reaction forces (moments) applied on the left and right

foot, respectively.

During the single support phase, the result of the computation is the GRF&M applied on the

foot, which is in contact with the ground. The resulting GRM is expressed about the external contact

point on that foot, which is chosen as the projection of the ankle joint on the ground. However,

during the phase of double support, the system of equations is indeterminate. To overcome this, we

applied a distribution algorithm based on a smooth transition assumption function (fSTA), which was

constructed from empirical data similarly to previous studies [19,20]. The curves of the measured

GRF&M during the second double support phase were averaged for all steps. Subsequently, a cubic

spline interpolation function was used to generate the fSTA. The generated function curves were

compared to the ones proposed by Ren et al. [19] and shown in Figure 3. A direct comparison to the

function of Villeger et al. [20] was not possible, because that study calculated the GRM about a fixed

point on the plate and not with respect to the body.

The distribution function fSTA was expressed in the coordinate system ψw. Since the input

variables of the Newton–Euler equations were expressed in ψg, the same applied to the calculated

vectors Fext and Mext. Therefore, before applying the distribution function, we rotated the force and

moment vectors from the coordinate system ψg to ψw, resulting in two new vectors Fw
ext and Mw

ext.

The GRF&Ms applied on the left and right lower limbs are shown in Table 2, where fF,STA and fM,STA

are the components of fSTA for the GRF and GRM, respectively. Both functions depend on time (t)

relative to the timing of gait events denoted by tHSR, tHSL for heel-strike and tTOR, tTOL for toe-off

events for the right or left lower limb, respectively. The behavior of the components of fF,STA and

fM,STA that was used in this implementation is illustrated in Figure 3.
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Figure 3. The curves of the smooth transition assumption function for the three GRF components

( fF,STA, three graphs on the top) and three GRM components ( fM,STA, three graphs on the bottom) used

to distribute the total external force and moment among the two feet. Figure illustrates the curve of the

GRF&Ms of the right foot between the events of left heel strike and right toe off (second double stance

phase) expressed in the coordinate system defined by the walking direction. Continuous lines indicate

the curves obtained from the average values across all subjects and trials of our dataset, whereas

dashed lines indicate the curves proposed by Ren et al. [19].

Table 2. The calculation of the left and right GRF&Ms for each phase of the gait cycle. During single

support, the GRF&M of the limb in contact with the ground is equal to the result of the Newton–Euler

calculation (Fw
ext,M

w
ext), whereas during the double support phase, this result is distributed among legs

based on the gait-event-dependent three-dimensional smooth transition assumption functions for the

forces (fF,STA(t)) and moments (fM,STA(t)).

Variable
First Double Stance Right Single Stance Second Double Stance Left Single Stance

tHSR ≤ t < tTOL tTOL ≤ t < tHSL tHSL ≤ t < tTOR tTOR ≤ t < tHSR

Fw
L (t) Fw

ext(tHSR)fF,STA(t) 0 Fw
ext(t)− Fw

R(t) Fw
ext(t)

Mw
L (t) Mw

ext(tHSR)fM,STA(t) 0 Mw
ext(t)− Mw

R(t) Mw
ext(t)

Fw
R(t) Fw

ext(t)− Fw
L (t) Fw

ext(t) Fw
ext(tHSL)fF,STA(t) 0

Mw
R(t) Mw

ext(t)− Mw
L (t) Mw

ext(t) Mw
ext(tHSL)fM,STA(t) 0

Figure 4. A state machine to detect the current state of the gait cycle, based on the previous state and a

condition on the velocity of the heel or toe. The velocity vth is equal to the norm of the average velocity

of the pelvis segment for each trial.
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To distinguish between the phases of single and double stance, we used a gait event detection

algorithm based on a threshold in the norm of the velocities of the heel (‖vheel‖) and the toe (‖vtoe‖). The

positions of the heel and toe points were provided by Xsens MVN Studio, and the velocity threshold

(vth) was set equal to the norm of the average velocity of the pelvis segment for each trial. The state of

the gait cycle at time t is shown in Figure 4.

An overview of the algorithmic steps used in our study is shown in Figure 5.

Figure 5. Block diagram of the algorithm used to estimate the GRF&M from anthropometry and

inertial motion capture. p = position, v = velocity, a = acceleration, ω = angular velocity, ω̇ = angular

acceleration, F = force, M = moment, t = time, d = anthropometric dimensions, m = mass, R = radius

of gyration, J = inertia tensor. Superscript “in” indicates quantities derived directly from the IMC

system, and w denotes quantities expressed in the coordinate system defined by the walking direction.

Subscript i indicates a variable of the i-th segment. Additional subscript o denotes that a linear variable

is expressed in the origin of the segment, whereas no additional subscript denotes that it is expressed

in the center of mass of the segment. Subscript ext = external, R = right, L = left.

2.3. Data Analysis: Reference Lab System

The Qualisys Track Manager 2.2 software package was used to process the three-dimensional

positions of the markers and the GRF&Ms recorded using the FPs [28]. For each subject, a model for

the automatic identification of markers was created, to assist the marker labeling across trials, and gaps

were filled in the missing marker trajectories using a visual preview option. The marker trajectories

were filtered using a second-order, zero-phase Butterworth low-pass filter with a cut-off frequency

of 6 Hz, following the recommendations of the literature [1]. A biomechanical model composed of
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16 segments, as described in Table 1, was constructed from the marker trajectories, with segment

coordinate frames based on recommendations of the International Society of Biomechanics [32,33].

A custom script was developed in MATLAB R2015a (The MathWorks Inc.; Natick, MA, USA) to

downsample the measured GRF&Ms by a factor of 10 to match the sampling rate of the OMC system.

Similarly to Ren et al. [19], no filtering was applied to the processed GRF&Ms.

To compare the OMC data with the IMC data, all quantities expressed in the OMC lab coordinate

frame (ψlab) were rotated to the coordinate frame based on the walking direction (ψw). Similar to the

transformation applied to the IMC, ψw is defined by a rotation around the vertical of ψlab, and the

walking direction was derived from known initial and final positions of the pelvis segment.

In addition, the timing of the reference gait events (heel strike and toe-off) was identified and

logged automatically, using a 5 N threshold on the vertical force measured by each FP. The steps

that were only partially captured by the FPs were recognized and excluded based on the horizontal

positions of the heel and toe markers during gait events. Due to the limited number of FPs, heel strike

events used to denote the end of the gait cycle were not always available directly from the force data.

In such cases, a velocity-based gait event detection, driven by the marker data, was used, similarly

to Figure 4. The method performed with an error of 12 ± 10 ms in heel strike detection across all

walking speeds.

The ground reaction force (GRF) was normalized to body weight and the ground reaction moment

(GRM) to body weight times body height. In addition, for each step, the time was normalized to 100%

of the gait cycle, defined by two consecutive heel contacts of the same foot. Finally, the six components

of the measured and predicted GRF&Ms were compared, per walking speed and in total. The GRM

was calculated about the projection of the ankle joint on the ground.

To evaluate the accuracy of our method, we used absolute (RMSE) and relative (rRMSE) root

mean square errors, as defined by Ren et al. [19]. The agreement between the measured and predicted

data normalized to the gait cycle was derived from Pearson’s correlation coefficients, which were

categorized as weak (ρ ≤ 0.35), moderate (0.35 < ρ ≤ 0.67), strong (0.67 < ρ ≤ 0.9) and excellent

(ρ > 0.9), according to previous studies [16,34].

Furthermore, we calculated the curve magnitude (M) and phase (P) percentage differences, based

on the technique proposed by Sprague and Geers [35]. Out of 525 measured steps in total, 432 valid

steps were included, and 93 steps were excluded due to incomplete stepping on the FPs.

In addition to the analysis over a whole gait cycle, we calculated the ρ, RMSE and rRMSE of the

GRF&M throughout three sub-phases:

• DS1: first double stance phase of the ipsilateral foot, between a heel strike of the ipsilateral foot

and a toe-off of the contralateral foot.

• DS2: second double stance phase of the ipsilateral foot, between a heel strike of the contralateral

foot and a toe-off of the ipsilateral foot.

• SS: single stance phase of the ipsilateral foot, between a toe-off of the contralateral foot and heel

strike of the contralateral foot.

Moreover, we analyzed the absolute and relative peak differences between the predicted and

measured curves. The stance phase has been divided into three phases: early stance (0% < t/Dstance ≤

33%), middle stance (33% < t/Dstance ≤ 66%) and late stance (66% < t/Dstance ≤ 100%), where

Dstance is the duration of the stance phase and t is the time initialized at the beginning of each

stance phase. Within these phases, the following peaks have been sought for both predicted and

measured values:

• In the early stance (ES) phase: the maximum values of lateral and vertical GRF and minimum

value of anterior GRF.

• In the middle stance (MS) phase: the minimum value of the vertical GRF.

• In the late stance (LS) phase: the maximum values of the GRF components and transverse GRM

and the minimum values of frontal and sagittal GRM components.
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Finally, we compared the center of pressure (COP) and frictional torque estimates to the FP

measurements. To derive these values for the right foot, we used the following equations:

COPw
R,x = −

Mw
R,y

Fw
R,z

(6)

COPw
R,y =

Mw
R,x

Fw
R,z

(7)

COPw
R,z = 0 (8)

Tw
R,F = Mw

R,z − COPw
R,xFw

R,y + COPw
R,yFw

R,x (9)

where COPw
R,x and COPw

R,y are the anterior and lateral positions of the center of pressure on the ground

with respect to the projection of the right ankle joint on the ground. Tw
R,F is the frictional torque, Fw

R,x,

Fw
R,y and Fw

R,z the anterior, lateral and vertical GRF, respectively, and Mw
R,x, Mw

R,y and Mw
R,z the frontal,

sagittal and transverse GRM, respectively, calculated about the projection of the right ankle joint on the

ground. The COP was calculated and analyzed per foot during stance phase, when Fw
R,z was greater

than 5 N. In the same way, the calculations for the left foot were performed. All variables are used in

the equations individually for both right and left foot and are expressed in the coordinate system ψw.

In our implementation, the estimates of GRF&M depend highly on the performance of the gait

event detection. Particularly, during the double support phase, the GRF&Ms applied on the ipsilateral

foot are driven by the smooth transition assumption function. This is represented by a curve, which is

based on the magnitude of each GRF&M component during the last single support frame and assumes

zero magnitude on the last frame of double support. Thus, we evaluated the sensitivity of the heel

strike and toe-off detection while using the original thresholds, compared to 10% higher and 10%

lower than that.

We additionally performed a sensitivity analysis to investigate the effect of the selection of the

cut-off frequency used in the second-order Butterworth low-pass filter. The change in the root mean

square errors of each component of the GRF&M was used to indicate the impact of the selection in the

final estimates.

3. Results

3.1. Accuracy Analysis

The curves of the GRF&M throughout a whole gait cycle during normal walking, estimated via

IMC and OMC, are depicted in Figures 6 and 7, respectively.

Table 3 shows the results of the GRF analyzed throughout a whole gait cycle for both the

IMC and OMC solutions. Overall, a similar performance by both systems can be observed for all

metrics. Small differences were found in the anterior GRF where OMC provided higher accuracy

(OMC: rRMSE = 7.4%, IMC: rRMSE = 9.4%). In contrast, similarly small differences were found in the

lateral GRF, where IMC performed better. Table 4 shows the GRF estimates during the first and second

double stance phase, as well as during the single support. Since the analysis is performed over a smaller

period, higher absolute and relative errors are observed. Excellent correlations were found in all phases

for both anterior and vertical GRF. The lateral GRF also presented excellent correlation during the

second double support phase and strong correlations in the first double support phase. However,

during the single support phase, the correlation is moderate and weak for IMC and OMC, respectively.

Similarly, the results for GRM are presented in Tables 5 and 6 for both IMC and OMC solutions.

For all walking speeds, the performance of IMC was comparable to OMC, except for the frontal plane

moment where the rRMSE for IMC was between 29.6% and 30.6% across walking speeds, whereas

for OMC, that was between 22.7% and 23.5%. In contrast, IMC provided higher correlations for the

frontal plane GRM (ρ ranging from 0.709 to 0.710), compared to OMC (ρ ranging from 0.652 to 0.684)
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in all walking speeds. Excellent correlations were observed in the sagittal plane GRM for both

normal walking (ρ = 0.933, rRMSE = 12.4%) and slow walking trials (ρ = 0.916, rRMSE = 13.3%).

The correlation and RMSE in the transverse plane moment were similar in both solutions

(IMC: ρ = 0.826, rRMSE = 18.2%, OMC: ρ = 0.825, rRMSE = 16.3%, for normal walking speed).
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Figure 6. Ground reaction forces and moments (GRF&M) estimated using IMC (mean (thin grey line)

±1 SD around mean (shaded area)), compared with measured FP data (mean (thick black line) (±1 SD

(thin black lines)) during normal walking. Curve magnitudes are normalized to body weight and body

weight times body height for the GRF and GRM, respectively. Averaged over right and left steps of all

11 subjects.
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Figure 7. Ground reaction forces and moments (GRF&M) estimated using OMC (mean (thin grey line)

±1 SD around mean (shaded area)), compared with measured FP data (mean (thick black line) (±1 SD

(thin black lines)) during normal walking. Curve magnitudes are normalized to body weight and body

weight times body height for the GRF and GRM, respectively. Averaged over right and left steps of all

11 subjects.
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Table 3. Comparison of ground reaction forces (GRF) estimated from inertial motion capture and optical

motion capture versus force plate measurements. ρ = Pearson’s correlation coefficient, RMSE = root

mean square error in N/BW, rRMSE = relative root mean square error (%), M = curve magnitude

difference (%) and P = phase difference (%). Results are analyzed during normal (NW), slow (SW) and

fast walking (FW) for the decomposed right and left GRF.

Inertial Motion Capture Optical Motion Capture

NW SW FW NW SW FW

ρ

Anterior 0.965 0.955 0.950 0.977 0.974 0.977
Lateral 0.862 0.853 0.821 0.814 0.814 0.757
Vertical 0.992 0.990 0.986 0.993 0.991 0.987

RMSE
Anterior 0.034 (0.007) 0.036 (0.012) 0.047 (0.011) 0.028 (0.005) 0.029 (0.007) 0.034 (0.006)
Lateral 0.017 (0.003) 0.018 (0.005) 0.022 (0.004) 0.017 (0.003) 0.018 (0.005) 0.022 (0.004)
Vertical 0.063 (0.035) 0.075 (0.039) 0.090 (0.040) 0.058 (0.031) 0.067 (0.027) 0.081 (0.025)

rRMSE
Anterior 9.4 (2.5) 10.4 (3.2) 10.9 (3.1) 7.4 (1.5) 8.0 (1.9) 7.5 (1.3)
Lateral 13.1 (2.8) 13.8 (3.3) 14.6 (3.1) 14.2 (2.9) 14.2 (3.3) 15.5 (4.0)
Vertical 5.3 (3.1) 6.3 (3.3) 6.9 (3.0) 4.8 (2.7) 5.5 (2.2) 6.1 (1.8)

M
Anterior −26.0 (10.5) −28.8 (10.5) −30.2 (9.9) 9.5 (3.2) 10.5 (3.5) 11.0 (3.1)
Lateral 23.1 (10.7) 24.6 (15.9) 28.8 (13.2) 14.1 (3.5) 14.7 (4.3) 16.1 (5.3)
Vertical −1.0 (2.4) −1.2 (1.9) −1.5 (1.6) 3.1 (2.0) 3.6 (2.0) 4.2 (1.9)

P
Anterior −22.0 (5.2) −23.4 (5.9) −22.5 (5.7) 7.2 (2.0) 7.7 (2.3) 7.1 (1.3)
Lateral 8.5 (9.6) 9.4 (11.0) 12.7 (12.6) 16.3 (3.7) 16.5 (4.7) 18.4 (5.7)
Vertical 0.3 (2.5) 0.3 (1.9) 0.6 (1.6) 2.8 (1.8) 3.2 (1.4) 3.7 (1.2)

Table 4. Comparison of ground reaction forces (GRF) estimated from inertial motion capture and optical

motion capture versus force plate measurements. ρ = Pearson’s correlation coefficient, RMSE = root

mean square error in N/BW, rRMSE = relative root mean square error (%). Results are analyzed for all

walking speeds during the gait cycle phases of first double stance (DS1), second double stance (DS2)

and single stance (SS) for the decomposed right and left GRF.

Inertial Motion Capture Optical Motion Capture

DS1 DS2 SS DS1 DS2 SS

ρ

Anterior 0.918 0.976 0.975 0.921 0.983 0.993
Lateral 0.792 0.946 0.605 0.791 0.959 0.325
Vertical 0.946 0.995 0.980 0.936 0.997 0.984

RMSE
Anterior 0.058 (0.023) 0.066 (0.025) 0.033 (0.013) 0.056 (0.018) 0.055 (0.014) 0.018 (0.007)
Lateral 0.030 (0.012) 0.013 (0.007) 0.022 (0.007) 0.029 (0.011) 0.013 (0.009) 0.022 (0.007)
Vertical 0.143 (0.077) 0.118 (0.075) 0.042 (0.030) 0.149 (0.058) 0.092 (0.060) 0.033 (0.018)

rRMSE
Anterior 33.3 (10.8) 38.3 (16.5) 10.0 (3.6) 32.1 (8.6) 29.3 (9.6) 5.2 (1.6)
Lateral 30.9 (11.7) 25.5 (16.3) 35.4 (8.9) 29.7 (9.7) 22.9 (19.0) 34.6 (7.5)
Vertical 14.4 (6.7) 12.1 (8.6) 9.0 (5.2) 14.2 (4.7) 8.9 (9.1) 6.5 (2.4)
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Table 5. Comparison of ground reaction moments (GRM) estimated from inertial motion capture and

optical motion capture versus force plate measurements. ρ = Pearson’s correlation coefficient, RMSE

= root mean square error in Nm/BW * BH, rRMSE = relative root mean square error (%), M = curve

magnitude difference (%) and P = phase difference (%). Results are analyzed during normal (NW),

slow (SW) and fast walking (FW) for the decomposed right and left GRM.

Inertial Motion Capture Optical Motion Capture

NW SW FW NW SW FW

ρ

Frontal 0.710 0.707 0.709 0.684 0.675 0.652
Sagittal 0.933 0.916 0.841 0.942 0.932 0.880

Transverse 0.826 0.811 0.749 0.825 0.817 0.768

RMSE
Frontal 0.010 (0.004) 0.010 (0.004) 0.012 (0.004) 0.008 (0.001) 0.008 (0.002) 0.009 (0.002)
Sagittal 0.013 (0.004) 0.015 (0.006) 0.020 (0.005) 0.016 (0.006) 0.019 (0.008) 0.026 (0.006)

Transverse 0.003 (0.001) 0.003 (0.001) 0.004 (0.001) 0.002 (0.001) 0.003 (0.001) 0.004 (0.001)

rRMSE
Frontal 29.6 (9.3) 30.2 (9.3) 30.6 (8.0) 22.7 (4.1) 23.0 (4.6) 23.5 (4.9)
Sagittal 12.4 (3.4) 13.3 (3.8) 16.1 (3.2) 12.7 (3.5) 13.7 (3.8) 16.9 (2.7)

Transverse 18.2 (4.7) 18.8 (4.8) 21.6 (4.2) 16.8 (4.5) 17.6 (4.8) 21.0 (4.3)

M
Frontal 110.3 (146.3) 116.6 (135.7) 140.4 (116.1) 63.0 (92.0) 71.1 (94.9) 77.0 (84.8)
Sagittal −0.7 (12.4) 5.3 (19.0) 22.5 (19.6) 36.1 (14.6) 41.2 (23.9) 63.9 (22.6)

Transverse 49.6 (28.3) 54.7 (33.7) 75.9 (33.8) 45.7 (27.5) 54.1 (37.1) 82.8 (40.9)

P
Frontal 19.7 (8.5) 21.5 (10.6) 21.0 (9.0) 23.8 (7.8) 24.7 (8.5) 25.2 (8.4)
Sagittal 13.1 (4.2) 13.8 (4.9) 16.9 (4.8) 10.1 (2.8) 11.2 (3.2) 13.9 (2.4)

Transverse 18.0 (5.8) 18.9 (6.2) 21.0 (6.7) 16.3 (3.9) 17.1 (4.7) 18.6 (5.0)

Table 6. Comparison of ground reaction moments (GRM) estimated from inertial motion capture

and optical motion capture versus force plate measurements. ρ = Pearson’s correlation coefficient,

RMSE = root mean square error in Nm/BW * BH, rRMSE = relative root mean square error (%). Results

are analyzed for all walking speeds during the gait cycle phases of first double stance (DS1), second

double stance (DS2) and single stance (SS) for the decomposed right and left GRM.

Inertial Motion Capture Optical Motion Capture

DS1 DS2 SS DS1 DS2 SS

ρ

Frontal 0.556 0.803 0.431 0.515 0.951 0.472
Sagittal −0.262 0.994 0.940 −0.137 0.997 0.943
Transverse 0.379 0.958 0.913 0.528 0.966 0.858

RMSE
Frontal 0.010 (0.004) 0.005 (0.004) 0.014 (0.006) 0.012 (0.005) 0.004 (0.003) 0.010 (0.003)
Sagittal 0.016 (0.007) 0.019 (0.017) 0.017 (0.006) 0.027 (0.011) 0.031 (0.023) 0.017 (0.007)
Transverse 0.004 (0.002) 0.003 (0.002) 0.003 (0.001) 0.005 (0.002) 0.004 (0.003) 0.003 (0.001)

rRMSE
Frontal 60.3 (17.7) 46.4 (28.4) 54.8 (17.8) 72.0 (30.7) 37.2 (32.2) 37.4 (7.4)
Sagittal 68.4 (16.2) 22.2 (14.9) 17.7 (5.2) 95.4 (25.7) 29.4 (22.1) 15.1 (4.1)
Transverse 56.2 (16.7) 31.3 (18.8) 23.3 (7.1) 61.8 (16.4) 35.2 (30.8) 19.8 (7.1)

The center of pressure and frictional torque estimates are compared in Table 7. RMSE values were

similar in both IMC and OMC solutions. The average RMSE of the anterior COP position ranges from

4.5 cm to 6.6 cm for IMC and from 4.4 cm to 6.5 cm for OMC. The average RMSE of the lateral COP
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position was ranging from 2.9 cm to 3.6 cm for IMC and from 2.4 cm to 2.7 cm for OMC. The estimates

of the frictional torque were comparable for both solutions with rRMSE ranging from 23.5 to 27.6 for

IMC and from 25.8 to 29.8 for OMC.

Finally, Table 8 presents the differences in the peak values of the estimated and measured GRF&M.

As shown in the table, low relative errors have been extracted for the peaks of the vertical component for

both solutions. In contrast, the differences in peak values were higher for the horizontal components.

Table 7. Comparison of center of pressure (COP) and frictional torque estimated from inertial motion

capture and optical motion capture versus force plate measurements. ρ = Pearson’s correlation

coefficient, RMSE = root mean square error in m for COP and Nm/BW * BH for frictional torque,

rRMSE = relative root mean square error (%). Analysis performed over stance phase for normal (NW),

slow (SW) and fast walking (FW) trials for the decomposed right and left quantities.

Inertial Motion Capture Optical Motion Capture

NW SW FW NW SW FW

ρ

Anterior COP 0.803 0.777 0.526 0.884 0.818 0.702
Lateral COP 0.559 0.546 0.522 0.619 0.596 0.574
Frictional Torque 0.776 0.775 0.677 0.764 0.746 0.676

RMSE
Anterior COP 0.045 (0.013) 0.050 (0.018) 0.066 (0.016) 0.044 (0.010) 0.054 (0.016) 0.065 (0.012)
Lateral COP 0.029 (0.012) 0.031 (0.011) 0.036 (0.011) 0.024 (0.004) 0.025 (0.006) 0.027 (0.006)
Frictional Torque 0.004 (0.001) 0.004 (0.002) 0.005 (0.002) 0.005 (0.002) 0.005 (0.002) 0.006 (0.002)

rRMSE
Anterior COP 21.3 (5.3) 22.5 (6.9) 28.5 (5.7) 19.9 (3.4) 22.2 (5.0) 25.4 (4.0)
Lateral COP 32.4 (10.9) 34.5 (11.0) 37.2 (9.8) 28.3 (5.9) 28.6 (5.4) 29.2 (5.1)
Frictional Torque 23.5 (5.1) 23.9 (6.1) 27.6 (5.5) 25.8 (7.1) 26.5 (7.4) 29.8 (5.9)

Table 8. Differences in the peak values of the ground reaction forces and moments estimated using

inertial motion capture and optical motion capture versus measured using force plates. Analysis

performed for normal (NW), slow (SW) and fast walking (FW) trials for the decomposed right and

left quantities. The subscripts ES, MS and LS indicate the phase of stance where each peak was found

(early, middle and late stance phase, respectively).

Inertial Motion Capture Optical Motion Capture

NW SW FW NW SW FW

Absolute (N/BW)
Anterior GRF MinES 0.051 (0.027) 0.055 (0.032) 0.086 (0.024) 0.049 (0.019) 0.051 (0.023) 0.071 (0.017)
Anterior GRF MaxLS −0.072 (0.024) −0.073 (0.032) −0.100 (0.027) −0.057 (0.016) −0.058 (0.020) −0.073 (0.020)
Lateral GRF MaxES 0.026 (0.018) 0.024 (0.016) 0.023 (0.016) 0.000 (0.018) 0.001 (0.020) 0.002 (0.026)
Lateral GRF MaxLS 0.007 (0.014) 0.012 (0.020) 0.027 (0.024) 0.010 (0.015) 0.015 (0.022) 0.035 (0.024)
Vertical GRF MaxES −0.031 (0.016) −0.031 (0.024) −0.047 (0.023) −0.018 (0.021) −0.019 (0.025) −0.036 (0.026)
Vertical GRF MinMS 0.019 (0.011) 0.018 (0.012) 0.022 (0.012) 0.008 (0.008) 0.007 (0.007) 0.005 (0.009)
Vertical GRF MaxLS −0.003 (0.035) 0.004 (0.046) 0.003 (0.055) 0.044 (0.047) 0.053 (0.064) 0.073 (0.078)
Frontal GRM MinLS −0.001 (0.013) −0.005 (0.015) −0.014 (0.016) −0.002 (0.006) −0.003 (0.008) −0.007 (0.010)
Sagittal GRM MinLS −0.027 (0.020) −0.033 (0.029) −0.062 (0.025) −0.053 (0.023) −0.063 (0.035) −0.098 (0.029)

Transverse GRM MaxLS 0.003 (0.003) 0.004 (0.004) 0.006 (0.005) 0.006 (0.003) 0.007 (0.006) 0.013 (0.005)

Relative (%)
Anterior GRF MinES 25.1 (11.8) 26.9 (15.8) 34.5 (11.9) 24.2 (7.7) 25.3 (8.0) 28.3 (7.1)
Anterior GRF MaxLS −32.2 (12.6) −32.5 (12.9) −36.4 (9.4) −25.0 (7.4) −26.0 (7.6) −26.5 (6.4)
Lateral GRF MaxES 65.9 (70.4) 55.9 (59.4) 50.7 (65.7) 3.7 (38.4) 8.5 (43.0) 14.2 (54.2)
Lateral GRF MaxLS 15.5 (36.9) 32.5 (78.9) 79.6 (124.5) 19.8 (29.3) 42.5 (104.6) 111.2 (167.7)
Vertical GRF MaxES −2.8 (1.5) −2.7 (2.0) −3.8 (1.9) −1.5 (2.0) −1.6 (2.2) −2.9 (2.0)
Vertical GRF MinMS 2.7 (1.6) 2.8 (2.2) 4.2 (2.6) 1.1 (1.1) 1.0 (1.2) 1.0 (1.8)
Vertical GRF MaxLS −0.2 (3.0) 0.4 (4.1) 0.4 (4.6) 3.8 (4.1) 4.7 (5.6) 6.2 (6.7)
Frontal GRM MinLS −10.9 (71.0) −42.5 (134.5) −115.8 (195.8) −22.3 (52.6) −36.8 (120.2) −82.1 (194.1)
Sagittal GRM MinLS −34.3 (25.0) −41.8 (36.6) −76.2 (33.3) −66.8 (28.4) −79.5 (44.1) −120.8 (39.3)

Transverse GRM MaxLS 46.2 (51.9) 49.9 (57.2) 72.5 (68.7) 80.6 (60.2) 102.3 (89.1) 169.0 (109.2)
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3.2. Sensitivity Analysis

The sensitivity analysis on threshold velocities for the gait event detection algorithm is shown

in Table 9. The gait events were detected using the inertial motion capture system with an error of

14.02 ± 13.91 ms for heel strike and 16.09 ± 15.68 ms for toe-off. A 10% increase or decrease in the

threshold velocity would only result in a small additional error on the detection of both gait events

(16.09 ± 15.68 ms for 10% increase and 16.09 ± 15.68 ms for a 10% decrease).

Table 9. Sensitivity analysis on the threshold velocities used for the gait event detection.

Heel Strike Detection
Threshold velocity 0.6vth − 10% 0.6vth 0.6vth + 10%

Mean error (ms) 18.87 ± 15.44 14.02 ± 13.91 15.37 ± 14.35

Toe Off Detection
Threshold velocity 1.9vth − 10% 1.9vth 1.9vth + 10%

Mean error (ms) 16.21 ± 17.22 16.09 ± 15.68 17.80 ± 14.60

Table 10 shows the results of the sensitivity analysis performed to evaluate the selection of the

cut-off frequency used in the low-pass filtering. Particularly, it indicates the change in the RMSE per

component for six different cut-off frequencies. A low cut-off frequency selection leads to a decrease

in the errors in the components with a small magnitude, such as the lateral GRF and the frontal and

transverse GRM. In contrast, in the components with larger magnitudes, such as the vertical GRF

and sagittal GRM, the accuracy increases with a higher cut-off frequency selection. To solve this

inconsistency, the norms of the RMSE changes of the GRF and GRM 3D vectors were also compared.

The norm of GRF RMSE is minimized for approximately 7 Hz and the norm of GRM RMSE for 6 Hz.

Table 10. Percentage change in the root mean square error (RMSE) of the three components and norms

of the ground reaction force and moment, versus selected cut-off frequency for the second-order,

zero-phase Butterworth low-pass filter. Negative values indicate improvement in the accuracy

(decreased RMSE). The selected cut-off frequency (6 Hz) was used as a baseline for the comparison.

Frequency (Hz) 3 4 5 6 7 8 9

RMSE change (%)

Anterior 48.56 23.30 7.45 0.00 −1.48 0.57 4.41
Lateral −13.78 −10.59 −5.39 0.00 7.72 18.07 29.89
Vertical 17.61 6.93 2.26 0.00 −1.02 −1.26 −0.96

Norm GRF 43.56 20.34 6.23 0.00 −0.52 2.45 7.23
Frontal −14.94 −12.27 −6.51 0.00 7.78 15.76 24.79
Sagittal 61.80 29.54 8.58 0.00 −1.24 0.74 4.55

Transverse −19.04 −11.35 −6.62 0.00 8.71 18.37 29.22
Norm GRM 40.75 17.22 3.76 0.00 1.90 6.09 11.88

4. Discussion

In this study, we have developed a method to estimate 3D GRF&Ms during walking, using

only kinematics from an IMC system. We evaluated the method for three different walking speeds

performed by eleven healthy subjects. The accuracy of our estimates was assessed through comparison

with force plate measurements, as well as with comparison to OMC-based estimates.

4.1. Comparison with Reported Optical-Based Estimation

In Table 11, we compare the performance of the IMC-based and OMC-based GRF&M estimation

results during normal walking performed in the dataset of this study, with results previously reported

in other optical-based studies using ρ and rRMSE.
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In both the inertial and optical implementation of this study, we found higher correlation

coefficients compared to the ones extracted from the 10-fold cross-validation method performed

by Oh et al. [14] when they reimplemented the method of Ren et al. [19] for all components apart from

the sagittal and transverse plane moments. Regarding rRMSE values, these followed a similar pattern,

with the sagittal GRM providing slightly worse accuracy, whereas the transverse plane moment was

better estimated in our method.

Compared to the dynamic contact model developed by Fluit et al. [16], we found similar

correlation coefficients in all components, apart from the transverse plane, which was much higher

in our case (IMC: ρ = 0.826; OMC: ρ = 0.825; Fluit et al.: ρ = 0.704). As for the rRMSE values, our

technique performed similarly for four components (anterior, lateral, vertical, sagittal). The rRMSE in

the transverse plane was lower in our findings (IMC: rRMSE = 18.2%; OMC: rRMSE = 16.8%; Fluit et al.:

rRMSE = 40.60%). Fluit et al. explained that the cause of the inaccuracy in the transverse plane was the

one-degree-of-freedom knee joint used. In contrast, the IMC method provided lower accuracy in the

frontal plane GRM (IMC: rRMSE = 29.6%; OMC: rRMSE = 22.7%; Fluit et al.: rRMSE = 22.9%).

In the comparison with the results reported by the machine-learning-based method of

Oh et al. [14], we noted similar correlations for the anterior (IMC: ρ = 0.965; OMC: ρ = 0.977; Oh et al.

ρ = 0.985) and vertical (IMC: ρ = 0.992; OMC: ρ = 0.993; Oh et al. ρ = 0.991). The remaining components

provided lower correlations and higher rRMSE in our findings.

The number of subjects included in our study was 11, higher than the previous optical-based

studies, which included 3 [19], 5 [14] and 9 subjects [16]. This factor may have contributed to the larger

standard deviations found in our RMSE values in anterior and vertical GRF.

In all four studies, regardless of the distribution technique used, the anterior and vertical GRF, as

well as the sagittal GRM estimates performed better than the lateral GRF and frontal and transverse

GRM. This behavior can be explained by the smaller magnitude of the lateral measures, which

causes small accumulated errors in the input to have a relatively large impact on the final estimates.

The majority of our results were in good agreement with the OMC-based literature.

This performance comparison demonstrates that IMC can be used in applications such as

GRF&M prediction, performing similarly to OMC while exempting the restrictions of OMC mentioned

previously in the Introduction.

Table 11. Pearson’s correlation coefficients (ρ) and relative root mean square errors (rRMSE) found in

our IMC-based and OMC-based results and reported by previous studies based on optical prediction

for normal walking [14,16,19]. The values marked with (*) are sourced from the 10-fold cross-validation

performed by Oh et al. [14]. The number of subjects used in each study is denoted by n.

Ground Reaction Force Ground Reaction Moment

n Anterior Lateral Vertical Frontal Sagittal Transverse

ρ

This study (IMC) 11 0.965 0.862 0.992 0.710 0.933 0.826
This study (OMC) 11 0.977 0.814 0.993 0.684 0.942 0.825
Ren et al., 2008 * 3 0.878 0.704 0.913 0.677 0.978 0.829
Oh et al., 2013 5 0.985 0.918 0.991 0.841 0.987 0.868

Fluit et al., 2014 9 0.957 0.818 0.957 0.684 0.922 0.704

rRMSE

This study (IMC) 11 9.4 (2.5) 13.1 (2.8) 5.3 (3.1) 29.6 (9.3) 12.4 (3.4) 18.2 (4.7)
This study (OMC) 11 7.4 (1.5) 14.2 (2.9) 4.8 (2.7) 22.7 (4.1) 12.7(3.5) 16.8 (4.5)

Ren et al., 2008 3 10.9 (0.8) 20.0 (2.7) 5.6 (1.5) 32.5 (4.3) 12.2 (4.8) 26.2 (9.4)
Oh et al., 2013 5 7.3 (0.8) 10.9 (1.8) 5.8 (1.0) 22.8 (4.9) 9.9 (1.1) 25.5 (4.5)

Fluit et al., 2014 9 9.3 (2.0) 14.9 (3.4) 6.6 (1.1) 22.9 (5.9) 12.4 (3.5) 40.6 (11.3)
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4.2. Limitations and Sources of Error

In this study, we solved the indeterminacy problem during the double support phases of the gait

cycle by utilizing a concept known as the smooth transition assumption. A function was generated

from the average values of the force plate data during the second double support phase, similarly to

Ren et al. [19]. Since these curves were obtained from the gait of 11 healthy subjects of this study, they

may not be suitable for other groups, especially for populations with movement disorders. In addition,

the differences found for various walking speeds indicate that a more sophisticated force distribution

model is required. Therefore, methods based on either machine learning or dynamic contact models

could be incorporated to improve the accuracy, repeatability and range of movements to which the

method can be applied.

Filtering the input kinematics was necessary to obtain the best fit and reduce the errors in the

GRF&M estimates. We translated the linear accelerations expressed in the origin to the center of mass

of each segment. However, these accelerations were already translated from the sensor to the origin of

the segment in Xsens MVN and include assumptions about the sensor location on the segment [36].

Moreover, angular accelerations were calculated through differentiation of angular velocities. This

differentiation introduced high frequency signals, which require filtering before being used to translate

accelerations. Nevertheless, it was demonstrated in the sensitivity analysis (Table 10) that any cut-off

frequency between 5 Hz and 7 Hz would result in minor differences in the RMSEs.

The sensitivity analysis on the gait event detection, using the kinematics of the IMC system,

proved that the algorithm is valid for the walking speeds included in this study. The algorithm resulted

in an error of 14.05 ±13.91 ms, which for a sampling frequency of 240 Hz corresponds to 3.36 ± 3.33

samples. However, this algorithm may not be accurate for considerably slower or faster walking

speeds or in cases of lower sampling frequencies. Gait misdetections could lead to considerable errors

in the final estimates, so the method should be treated with caution.

In addition, mass ratios and radii of gyration of the body segments were estimated based on

anthropometric tables found in the literature [29]. However, these parameters are averages and might

not be suitable for all body types, for example for the elderly [37] or obese populations [38]. Therefore,

inertia parameter approximations could have contributed to accumulative errors in the total external

load estimation.

The IMC system uses a rigid-body linked-segment model in which the positions of the end

points and joints were estimated through predefined measured lengths and IMU-derived segment

orientations. The segment lengths were measured manually using a conventional measuring tape.

Moreover, calibration limitations, such as a mismatch between the neutral pose practiced by the

subject and the pose that the computational model is assuming, can cause errors. This limitation

may explain the higher errors found in the frontal plane GRM in our solution, since it affects the

estimates of the lever arms. Optical motion capture or photogrammetry could be used as an initial

input to improve such offsets. Nevertheless, this implementation aimed to propose and investigate a

completely laboratory-independent system.

Soft tissue artifacts are another common problem causing inaccuracies in both IMC and OMC

kinematics [39,40]. The IMUs measure acceleration and angular velocity on the soft tissue, which

moves relative to the bone [22]. This motion may have negative influence on our final estimates,

especially in the case of fast walking. On the other hand, the fact that eight of the participants had a

normal BMI (18.5 < BMI < 24.9), three were overweight (25 < BMI < 29.9) and no obese participants

were included in the experiment probably limits the soft tissue effects in our study.

Finally, the IMC is susceptible to magnetic interferences. Particularly, it has been shown that the

magnetic field varies considerably inside gait laboratories [41]. This factor may have influenced the

sensor orientations used to derive the segment kinematics in Xsens MVN Studio software. Any input

errors in the segment orientations could lead to accumulated errors in the estimated joint positions

and, therefore, in the distance vectors between the center of mass and the joint of each segment. The

latter are used in important stages of the proposed method, firstly in the translation of each segment’s
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linear kinematics from its origin to the center of mass (Equation (3)) and secondly in Euler’s equation

of motion (Equation (2)). A magnetometer-free approach to inertial motion capture could be adopted

to reduce these sources of error [42].

4.3. Future Work

In our experiment, we only included male subjects without any musculoskeletal or neuromuscular

disorders. However, we did not evaluate the applicability to patients with motor-related clinical

conditions. Several challenges could be encountered in the clinical application of the system. For

example, in the case of knee osteoarthritis, the increased static knee misalignment of the patients might

lead to difficulty achieving a proper neutral pose to calibrate the IMC system [43]. Moreover, obesity,

which is quite common in patients with musculoskeletal problems, could impose practical barriers in

the optical and inertial motion capture.

The smooth transition assumption we incorporated can only be applied to gait movements. On top

of this, the distribution algorithm allows the real-time estimation only during the single support phase.

During double support, the algorithm needs information over the duration of this phase to estimate

the kinetics. A real-time solution to distribute the forces could be explored in the future.

In this study, we assume that the GRF&Ms are the only significant external forces applied to

the human body. This assumption could be valid for activities such as walking; however, in a wider

spectrum of daily life activities, secondary external loads are introduced. Such activities include

walking using a cane or stair climbing using handrails. In such cases, direct measurement or modeling

of the additional forces and moments would be required. Future work could examine the types

and biomechanical importance of forces and moments generated in free-living environments, when

performing daily life activities.

Finally, our proposed method is dependent on a full-body motion capture suit, which requires

17 IMUs. In future studies, minimizing the number of sensing modules [44] to make the system more

practical for clinical and free-living applications could be investigated. Moreover, our system could

be exploited in driving near real-time biofeedback, the popularity of which recently increased in gait

training interventions [45].

5. Conclusions

In this paper, we have demonstrated that estimation of 3D GRF&Ms during walking using

only kinematic information from inertial motion capture is achievable. Overall, strong and excellent

correlations were found for all six estimated components compared to force plate measurements.

The results were comparable to the ones reported by studies using OMC input.

The proposed system has high potential in monitoring critical biomechanical parameters in

free-living conditions, outside the laboratory. Future work should validate and adapt the system to

clinical and daily life applications.
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Abbreviations

The following abbreviations are used in this manuscript:

BMI body mass index

COP center of pressure

FP force plate

FW fast walking

GRF ground reaction force

GRM ground reaction moment

GRF&M ground reaction force and moment

IMC inertial motion capture

IMU inertial measurement unit

NW self-selected normal walking

OMC optical motion capture

rRMSE relative root mean square error

RMSE root mean square error

SW slow walking

Appendix A. Retroreflective Marker Protocol

Figure A1. A subject in the wearable instrumentation, indicating the placement of the 53 retroreflective

markers on the human body segments. All markers apart from clavicle, sternum and C7 are placed on

the left side in a mirrored way.
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Table A1. Marker protocol, indicating the marker labels and placement locations on the human body.

Label
Placement

Label
Placement

Right Left Right Left Center

RHDA LHDA Head Anterior RKNL LKNL Knee Lateral Epicondyle
RHDP LHDP Head Posterior RKNM LKNM Knee Medial Epicondyle
RSHO LSHO Acromio-clavicular Joint RSHS LSHS Shank Superior
RUPA LUPA Triceps Brachii RSHI LSHI Shank Inferior
RELB LELB Elbow Lateral Epicondyle RSHL LSHL Shank Lateral
RWRL LWRL Radial Styloid RANL LANL Lateral malleolus
RWRM LWRM Ulnar Styloid RANM LANM Medial malleolus

RFIL LFIL Second Metacarpal Head RTOM LTOM First Metatarsal
RFIM LFIM Fifth Metacarpal Head RTOE LTOE Third Metatarsal
RASI LASI Anterior Superior Iliac Spine RTOL LTOL Fifth Metatarsal
RPSI LPSI Posterior Superior Iliac Spine RHEE LHEE Calcaneus
RTHS LTHS Thigh Superior C7 Seventh Cervical Vertebrae
RTHI LTHI Thigh Inferior CLAV Jugular Notch
RTHL LTHL Thigh Lateral STRN Xiphoid Process of the Sternum
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