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Abstract. We propose models for size-structured populations which allow growth
rates to vary with individuals (growth rate distribution across all possible individual
growth rates). A theoretical framework for the estimation of the growth rate distri-
bution from data of sized population densities is developed. Numerical examples are
presented to demonstrate feasibility of the ideas.

1. Introduction. In this paper we develop an inverse problem methodology for a
class of size-structured population models which allow for "stochastic dispersion"
in single cohort pulses of population. The models formulated and studied here are
based on ideas discussed in [BBKW] which entail models wherein growth rates may
vary across individuals of the population as well as with size and time. Simulation
studies were presented in [BBKW] to demonstrate that such ideas could lead to pop-
ulation densities that exhibit dispersion and bimodality. Here we give a rigorous
theoretical development of inverse problem methods and demonstrate the efficacy of
these methods with computational examples.

As noted in [BBKW], our efforts on such problems were initiated in collaboration
with biologists in studies related to the introduction of mosquito fish into rice fields,
in attempts to control mosquito populations without chemicals. For such control
problems, of course, it is very important to have models which predict the evolution
of the populations accurately. In the paper [BVWLKRC], the mosquitofish popu-
lation was modeled using the Sinko-Streifer (also called McKendrick-Von Foerster)
model for size structured population density evolution. The Sinko-Streifer model,
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hereafter referred to as (SS), is given by

dv d
Jt + dx^ = ~^V xo<x<xi, t>0, (1.1)

w(0, x) = $(x), (1.2)

g(t, x0)v(t, x0) = f k(t,£)v{t,Z)d£, (1.3)
Jx0

g{t,x j) = 0. (1.4)

The parameter g represents the growth rate of an individual, so that each individual
grows according to dx/dt = g(t, x). This individual growth equation defines the
characteristics of (1.1). Problems arise in applying the model (SS) to observed data,
however, because the data often exhibit features that the model cannot predict. One
such phenomenon is a dispersion in size as time progresses. Figure 1.1 illustrates this
dispersion in size for a particular mosquitofish population.

In fact, Figure 1.1 also shows another interesting phenomenon: the population
begins with a unimodal density and actually develops into a bimodal density. One
problem with (SS), as discussed in [B4], [BBKW], is that, for the model to achieve
dispersion, we must have dg/dx > 0 (i.e., the characteristics must spread apart).
This condition is unrealistic for many size structured biological systems of interest: it
seems unreasonable for all larger individuals to grow at a faster rate than any smaller
ones. Furthermore, even if the spread of the characteristics were biologically feasible,
the transition from a unimodal to a bimodal density is qualitatively inconsistent with
solutions of the Sinko-Streifer model.

It is our goal here to "modify" the model (SS) in order that it may exhibit features
present in the data, and, further, to develop approximation ideas to facilitate estima-
tion of model parameters from the data. In Sec. 2, we discuss a modeling approach
to achieving dispersion: "mixing" densities that obey (1.1)—(1.4), only with differing
growth rates. We use as the population density the function

u(t, x) = f v(t, X- g)dP(g),
JG

where G is a collection of growth rates and P is a probability measure on G, as
suggested in [BBKW], As shall be seen in Sec. 5, this model is rich enough to exhibit
the phenomena of interest, namely dispersion and development of two modes from
one. We discuss briefly this approach as it relates to some of the standard models
in current use. Sec. 3 recalls some of the pertinent background on abstract least
squares identification theory (with approximation), numerical solution and parame-
ter identification for the Sinko-Streifer model, and weak convergence of probability
measures. In Sec. 4, we bring the techniques of the previous section to bear on the
identification problem for the proposed model. The goal is to prove convergence of
parameter estimates for the approximate problems to those of the original problem.
Numerical examples are discussed in Sec. 5. It is demonstrated in this section that
our growth rate distribution model can predict the phenomena of interest in the data.
We illustrate our identification techniques with computer-generated examples.
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Fig. 1.1.

2. Modeling considerations. One modeling approach which can achieve dispersion
is to treat the population under consideration as being composed of several subpopu-
lations, each with its own growth rate. We denote these growth rates by gx, ... , gM .
For each i between 1 and M, we let p( denote the proportion of individuals in
the total population with growth rate gi. These proportions are assumed to be in-
dependent of time. At time t = 0, we have an initial population density of O(jc) ,
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so that the subpopulations have initial densities p<I>(x), 1 < i < M . We denote the
subpopulation density by v(t, x \ gt), and we assume that, for each growth rate gt,
v satisfies (1.1)—(1.4), with initial condition p^{x). A scaled version of v(t, x ; g;)
is v(t, x ; g{), which, for each /, satisfies (1.1)—(1.4) with initial condition O(x).
To obtain the density u for the total population, we sum the subpopulation densities:

M

U(t, X) = X] gt) .
i=l

The density u can also be computed with respect to the functions v by

M
u(t,x) = Y^,v(t,x\ g.)pr

i= 1

This formula for u suggests a natural generalization, taking a population density of
the form

u(t, x\P)= f v(t, x\g)dP(g), (2.1)
Jg

where G is a collection of growth rates for the subpopulations, and P[A] is the
proportion of the entire population which has a growth rate lying in A c G. We
note that P is a probability measure, by virtue of the fact that P[G] = 1 , but
the model as derived is not a stochastic one. The fact that the total population is a
mixture of subpopulations with different growth rates is embodied in the distribution
P of growth rates. This model clearly differs from (SS) in that the individuals are
no longer assumed to be identical. We have assumed here that the measure P does
not depend on time. Thus, we have excluded some long term genetic effects. When
applying the model to populations over a small number of generations, though, this
lack of time dependence should not be a crucial feature.

It is interesting to note that one can also arrive at this type of model using stochas-
tic assumptions. In the following derivation we assume that there are initially N
individuals in the population. These individuals have initial sizes which are inde-
pendent random variables, having densities G> ■(.*), 1 < j < N, and growth rates
which are independent, identically distributed random functions with distribution
P(dg). Let ... , XN(t) be the sizes of the individuals at time t. We denote
by y(t, x, g) the solution of the initial value problem dy/dt = g , with >'(0) = x .
Suppose for the moment that individual j is known to have growth rate g . We
define F■ (a , b , t) by

F; g(a,b,t) = ?r[a<Xj(t)<b].

It is clear that

Fj.gtyC' a, g), y{t, b, g), t) = Fj<g{a, b, 0)

= [ <S>j(x)dx.
J a
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Hence, dFj g(y(t, a, g), y(t, b, g), t)/dt - 0. Denoting by Vj(t,x;g) the den-
sity of the distribution Fj g , we see that

a' 8)>y(1' b> g)'') = Tt J {t ) vj(t>x'8)dx
ry(t,b,g) q

= / — vAt, x; g)dx
Jy(t,a,g) al

+ g(t, y(t, b, g))Vj(t,y(t,b,g)\g)
- g(t ,y(t,a, g))Vj(t, y(t, a, g); g).

Put x = y(t, a, g) and Ax = y(t, b, g) - y(t, a, g), so that x + A x = y(t, b, g).
Rewriting the above equation, we have

rx+Ax q
J —Vj(t,Z\ g)d£ + g{t, x +Ax)Vj(t, x + Ax;g)-g{t, x)Vj(t, x; g) = 0.

Dividing by Ax, and then letting Ax —> 0 (b —> a), we see that v ■ satisfies the
equation

d d
a7"y + 5j(s"j) = °.

with initial data <J>.. As we have assumed so far that g is known, the function
Vj(t, x; g) is the conditional density for the size of individual j , given the growth
rate g . The density for the size of individual j is then given by

Uj{t, x) = JGvj(t, x; g) dP(g).

Now, we can compute the expected number of individuals who have sizes between
a and b at time t:

N

£[^0] = £pr[a <*/<)<*]
j=i
N_ rb

u At, x) dx
rO

j=\ Ja

rc N

= / J2uj(t>x)dx
Jb j= i

rd r N

= Jh JG12vj(t> x> g)dp(g)dx

-ffJb JG

where the function v satisfies the equation

vt + (Sv)x = °»

7=1

v(t, X- g) dP{g) dx,
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with initial data O = ■ We define the density for the total expected popula-
tion u{t, x) by

u(t, x) [ v{t,x\g)dP(g).
Jg

We have not yet, however, taken into account births or deaths. We model deaths
by a death rate which is proportional to the size of the population, a model which
leads to

x) = -nu(t,x).
This type of model is widely used: see, for example, [MD], We assume here that
this distribution of growth rates, P, does not vary in time, so that the proportion of
individuals with growth rate g is independent of time. This in turn implies that v
must satisfy the equation

^-v{t,x\ g) = -nv(t,x\ g).

Births into the population are modeled using a fecundity rate k. We consider
for a moment the case of P having finite support, which is small in number when
compared to the number of individuals in the population. Then v(t, x\ g)dx
can be thought of in a formal sense as the expected number of individuals with sizes
between a and b at time t, given they all have growth rate g. Now, the rate at
which "newborns" or "recruits" enter the population is commonly modeled as (see
[MD])

[x1

g(x0)v(t ,xQ;g)= k(t, £)v(t, Z; g) di.
Jxo

This model assumes recruits have the same growth rate as their parents. We now
have a conditional birth law, which gives us all the components of (1.1)—(1.4).

Of course, this is not the only differential equation model that exhibits dispersion.
One such model is the equation

Ut + (£")* = (^wx)x'

which contains a Fickian flux term. However, this type of model is based on gra-
dient driven movement, which does not make sense for size structured populations:
it seems unlikely that individuals would grow (or shrink) because there are fewer
individuals at larger (or smaller) sizes. Thus, this model is an unlikely choice for the
populations of interest.

Another model which is widely used in biological problems is the Fokker-Planck
equation:

u, + (gu)x = (3fu)xx.

The solution of this equation is known to be the density for a random process X(t)
which obeys the stochastic differential equation

dX = gdt + {23r)l,2dW,

where fV(t) is a standard Brownian motion. This model is also derived in [O] as
an approximation to the density of a random process Y(t) which obeys a Markov
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transition law. One feature of the process X(t) is that it is nowhere differentiable in
t. Of course, it is not clear that individuals grow according to a stochastic differential
equation or a Markov transition law. However, this model may be a reasonable
alternative for populations exhibiting dispersion in time. In future studies, we hope
to compare the Fokker-Planck model to the growth rate distribution model proposed
here.

3. Theoretical background. In the previous section, we discussed some motivation
for the use of the model (2.1) with (1.1)—(1.4). We now begin the study of the inverse
problem of determining the parameter P from observed data. In order to formulate
the estimation problem, we shall use the least squares cost functional

n ~x

J(P) = Y, [u(tk,x)-u(tk,x\P)]2dx, (3.1)
k= 1 Jxo

where u(t, x) is the observed density at time t and size x, and u(t, x; P) is the
( P-dependent) density from (2.1). To estimate P , we minimize J over an appro-
priate collection of probability measures. Solving this problem for a given set of data
requires approximation of the infinite-dimensional system (1.1)—(1.4), and, if the
collection of probability measures of interest is infinite dimensional, approximation
of this parameter space as well. Furthermore, to discuss convergence and continuous
dependence (on data) of the approximate parameters, we shall need a topology on the
space of probability measures. In this section, we recall relevant results on abstract
least squares found in [B2] and [BK], an approximation theory for the Sinko-Streifer
model from [Bl], [BBKW], and [BM], and finally the theory of weak convergence of
probability measures, as discussed in [B3] and [EK].

We consider the problem of minimizing

J(q) = \Cu(q)-z\2z (3.2)

over q £ Q, where z e Z is an observation, u(q) € is the parameter dependent
system state, and C is a mapping from / to Z. We also consider a sequence
of approximations and QM to and Q, respectively. The approximate
problem, then, is to minimize

JN(q) = \CuN(q) - z\2z (3.3)

over q e QM . Conditions which guarantee convergence of solutions qN'M of (3.3)
to solutions of q of (3.2) and their continuous dependence on observations are given
in [Bl] and [BK], We restate the convergence theorem here (for details of continuous
dependence on observations, see the discussions on "method stability" in [Bl], [BK]).

Theorem 3.1. Consider the following assumptions:

The sets
topology.

that qMk —> q* in the Q topology

(i) The sets Q, QM lie in a metric space Q, with Q, QM compact in the Q
>logy.

(ii) If qM e QM for each M, there exists q* e Q and a subsequence qMk such
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(iii) For any q e Q, there exists a sequence {qM} such that qM e QM and
qM —► q in the Q topology.

(iv) For any qk —> q in Q , we have CuN(qk) —> Cu(q) in Z as N, k —> oc .
(v) For each N, the mapping q —> JN(q) is continuous.

Then, under (i)-(v), we have that there exist minimizers qN'M of JN over QM.
Furthermore, any subsequence of {qN'M} has a convergent subsequence, and if q
is the limit of such a subsequence, then it is a minimizer of J over Q.

We now recall assumptions and results for the Sinko-Streifer model (1.1)—(1.4).
These are based on the work in [BM].

(HI) We are given a sequence, %?N, of finite-dimensional subspaces of
1 2H (x0, x^. We take = L (x0, x,) as the state space. The orthogonal projections

nN:J? satisfy

as N —> oc, V0 e Hl(x0, Xj).

Many commonly used approximating families (e.g., linear or cubic splines; see [S])
satisfy the hypothesis (HI).

(H2) The functions fx and k are known functions with

/iGL2(x0,x1)nlx(x0,x1), and k e L2([0, T] x [x0, x,]),

with |k(t, -)|l2 < v2 < oc for all t e [0, T].
Since the emphasis here is on the estimation of P, we shall treat ju and k as

known. This is for simplicity's sake, and our arguments can be readily modified to
accommodate estimation and approximation of ft and k (e.g., see [BM], [BBKW]
for details on estimation of fi and k ).

(H3) We have given an admissible set G c H\x0, x,) of growth rate functions.
This set G is a compact set (in H] ) of functions satisfying g(x) > 0 for x e
[x0, Xj), g(x{) = 0, g(x0) > v{ , for some positive constant .

We remark that assuming time independence is also merely for simplicity; the
arguments can be easily extended. It should furthermore be noted that we have not
included approximation of G: the reason for this will be apparent in the next section.

For numerical purposes, it is convenient to consider the weak form of the Sinko-
Streifer equation,

{vt, <j>) + {nv ,(/)}-(gv , D<f>) - <j>(x0)R{t,v) = 0, for all 4> £ , (3.4)

where the functional R is defined by

R(t, v)= [*'k(t,{MZ)d£.
Jx0

If v: [0, T] —> satisfies (3.4), with v(0) = $6/,we refer to u as a weak
solution of (1.1)—(1.4). The assumption (HI) provides an obvious approach to ap-
proximation by consideration of weak solutions vN in the space N :

{v", <j)) + ifivN , <t>) - {gvN, D(j>) - 4>{x0)R{t, VN) = 0, for all (p e . (3.5)
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The initial condition for the approximate problem is vN(0) = nA<]>.
Under the assumptions above, we have (e.g., see [BM]) that, for each t e [0, T],

vN{t, ■; gM) v{t, •; g) as M,N->oc,

whenever gM —> g in G, and that g —> v(t, •; g) is a continuous mapping from G
into L (x0, Xj), for each t. These facts will be of importance in the convergence
proofs, as we shall see in the next section.

The final portion of review concerns the theory of weak convergence of probability
measures. We recall only the theorems and facts we need for our identification
problem; a complete account can be found in [B3] and [EK],

Suppose S is a complete metric space with metric d. We denote by £P{S) the
space of probability measures on the Borel subsets of S. For any closed set F in S
and e > 0, we define

Fe = {x € S : inf d(x, y) < e}.
y€F

Clearly F c Fe. Also, if P, P' 6 &(S), we put

p{P, P') = inf{e > 0 : P[F] < P'[F£] + e, for all closed F in S}.
It is known that p is a metric on 3°(S), and that, in fact, 3°(S) is a complete metric
space under p. Furthermore, if 5 is compact, then 3°(S) is also compact. Con-
vergence of probability measures with respect to p is characterized in the following
theorem.

Theorem 3.2. Let (S, d) be a complete metric space, and let {Pn} c 9°[S), P 6
S). The following are equivalent:
(a) p(Pn, P) —> 0 as n -+ oc .
(b) JsfdPn —> JsfdP for all bounded, uniformly continuous functions

(c) Pn[A] —> P[A] for all Borel sets A with P[dA] = 0.
This theorem tells us that the p topology is that of convergence in distribution. It

also coincides with the weak star topology on S) as a subset of the dual space of
the space of bounded, uniformly continuous functions on 5. Henceforth, we shall
denote convergence of Pn to P with respect to p by Pn -^1+ p.

In our subsequent discussions, we shall make use of the following theorem in
defining approximation spaces £PM(S) for £?(S).

Theorem 3.3. Suppose 5 is a complete, separable metric space. If S is a countable,
dense set in S, then the set

(mm
E»A,S,es\
1=1 1=1 J

in a dense subset of 3°(S).
With these abstract results and with an approximation scheme for (SS) at hand,

we now proceed to the problem of estimating the growth rate distribution P in (2.1)
by least squares techniques.
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4. Estimation and approximation of the growth rate distribution. Recall that we are
interested in minimizing the least squares cost functional (3.1):

J(P) = \ ' W* ' ~ U^k ' x'' p)f dx ■
k= 1 Jxo

The approach here is to use the approximation ideas for (SS) recalled above, to-
gether with the weak convergence theory for probability measures, to verify that the
assumptions of Theorem 3.1 hold for our problem. We begin with the following
theorem.

N L2Theorem 4.1. Suppose v (t, •; g) > v(t, •; g) for each t, uniformly in g in G,

and that, for each t,g->v(t,--,g) is a continuous mapping of G into L (x0,xj),
where G is as in assumption (H3). Suppose PM P in £?{G). Then

f vN(t, •; g)dPM(g) [ v(t, •; g)dP(g),
JG JG

as N, M —> oo, for each t.
Proof. For each fixed t we have

[ v\t,--g)dPM{g)~ [
JG JG

v(t, •; g)dP{g)

< [ {vN{t, •; g) - v(t, •; g))dPM(g)
JG

[ v(t,-\ g)dPM{g) - [ v(t, ■■ g)dP{g)
JG JG

+

= 1 + 11.

Then using Jensen's inequality and Tonelli's theorem for the first term, we find

x2r = [ ' f (vN{t, x; g) -v{t, x; g))dPM(g)
Jx0 Ug

< f [ [vN(t, x; g) - v{t, X - g)]2 dPM{g)dx
J.v0 J G

= J J \vN{t,x-, g)-v(t,x; g)f dxdPM{g).

Suppose e > 0. Choose 7Vn so that N > N0 implies

L
0 - 110

x< N 2
[v (t,x\g)-v(t,x\g)]dx<e forallgeG.

Then for every M we have
rx

[ [ [vN{t,x\ g)-v{t,x\ g)f dxdPM{g)< [ edPM{g) = s.
J G J xn J GG J xL

Thus I —» 0 as N —> tx), uniformly in M
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Considering the second term we have

II2 = f [ v(t, x;g)dPM{g) - [ v(t, x;g)dP(g) dx.
Jx0 Ug Jg

We see as above, that

[ [ v(t, X] g)dP{g) dx < [ [ v{t, x; gf dP(g)dx,
J x0 IJ G J J x0 J G

2where v(t, ■; ■) e L ([x0, xj x G, dx x dP(g)). Hence, for each e > 0, there exists
ve e C([x0, x,]xG) such that (e.g., see Theorem 3.14 of [R])

[ [ [ue(x, g) - v(t, X; £)]2 dP(g) dx <e2.
Jxn Jg

Furthermore, we have

II

<

f v(t, •; g)dP{g) - f v(t, •; g)dPM{g)
Jg Jg

[ v(t, •; g) d P(g) — [ ve(-, g) dP{g)
Jg Jg l2

f v (■, g) dP(g) — f ve{-, g)dPM{g)
Jg Jg

[ (vE(-, g) - v{t, •; g))dPM(g)
Jg

+ ' 'G

= A + B + C.

Suppose S > 0 is given and put e = 3/4. By definition of ve, A < e = 3/4.
Also, vE is continuous on the compact set [x0, x,] x G, so there exists Me such that
\ve(x, g)\ < M . Since PM dlst > P , we have

^E(x, g)dPA'{g) -» JGVe(x, g)dP{g).

Hence, we may use the dominated convergence theorem to conclude that B —> 0 as
M —* oo . Choose M0 such that M > M0 implies B < e = 3/4 . For each M > M0
we have

rx, r r .. 1 2
c = /' JG{ve(x, g)-V{t, X-g))dPM{g)

< f f[ve{x, g) -v(t, x; g)fdPM{g)dx
Jx0 Jg

= Ig\ I s)-v{t,x- ^)]2Jxl dPM{g).
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n2Now, f'x' \v(x, g) - v(t, x ; g)]~ dx is a continuous function of <? , so we have thatJX0

for A/ —» oc

f [ \ve{x, g)-v{t,x-, g)fdxdPM{g)
Jg Jx0

— [ [ [vE(x, g) - v(t, X-, g)]2 dxdP(g) < £2.
JgJx0

Choose Afj > A/0 such that M > Mx implies

[ I [v (x,g)-v(t,x-g)fdxdPM(g)< 4e2.
•/G J Xq

Therefore M > implies C < 2s = 5/2, and hence M > M] implies II =
/4 + 5 + C <<5, so that II —> 0 as M —> oo , and the theorem is proved.

This theorem is, in essence, a verification of hypothesis (iv) of Theorem 3.1. We
now consider hypothesis (v).

Theorem 4.2. Suppose PSI d'st = P, and that for each N and each t, g —► v(t, •; g)

is a continuous map G L2(xQ, x,). Then, for each N, JN(PM) —> J A (P), where

/2 px

JN(P) = J2 \u{tk,x)-uN{tk,x-P)]2dx, (4.1)
k=i

and
v (.t,x;P)= f vN(t, x; g)dP{g).

JG

Proof. Fix N and fix with 1 < k < n . Then we have

\\u{tk , ■) - uN(tk , ■; PM)\2L2 - |u(tk , •) - uN{tk ,-\P)\2l}|
rx

< j \[u{tk , x) - (tk , x ■ PM)]2 - [u(tk , x) - uN{tk , x; P)f\dx
J Xn

< / |m (?fc, x; P ) - u (tk, x; P)|
Jxo

X |2m(^ , x) - MyV(rA., x; P*') - uN{tk , x; P) \ dx

<\uN(tk,.-PM)-uN(tk,-'P)\L2

x {2|u(tk , .)|i2 + \uN(tk , ■; PM)\L2 + \uN(tk , ■; P)\L>}.

We shall show that the first factor goes to zero, while the second factor is bounded
above, for all M . Clearly the only term in the second factor of concern is the middle
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one. For this term we find

| uN(t k ' pM)\L2 = J' x> S)dPM{g)
2

dx

< f \ [vN{tk, X] g)Y dPM{g)dx
Jx0 JG

~// J G J xx

-IfJGJxn

[vN(t.,x\ g)]2dxdPM{g)
0

[v'\tk, x; g)]zdxdP(g),X> N , . x,2

since (*' [vN{t, , x; g)]2 dx is a continuous function on the compact set G. Hencex0 K

the second factor is bounded.
Furthermore, the first factor goes to zero as M —♦ oo, by virtue of the same

argument used in the proof of Theorem 4.1. Thus the proof is complete.
To verify hypotheses (i), (ii), and (iii) of Theorem 3.1 for our problem, we first

observe that since G is compact in Hl(x0,x{), Q = Q = 3°{G) is a compact
metric space. Furthermore, since G is separable, choosing G = {g,, g2, ...} dense
in G, we have the collections SPM(G) = {Ylf=\ a,dg '■ Ylai = 1 > ai ^ 0} dense in
Q = 9°(G). Hence (i), (ii), and (iii) of Theorem 3.1 are satisfied. We summarize
the results in the following theorem.

Theorem 4.3. Suppose the hypotheses (HI), (H2), and (H3) hold for the system
(1.1)—(1.4). Then there exist minimizers pN M of JA over (G). Moreover,
any subsequence of this sequence of minimizers has a subsequence which converges
to a minimizer of J over 3°{G).

5. Numerical experiments. In this section we report on our tests of the meth-
ods described above in estimating growth rate distributions P from size-structured
population density data. For these computational tests we used simulated data and
concentrated on estimation of P, letting n = k = 0 in (1.1)—(1.4) for simplicity
(conceptually, estimation of // and k in addition to P poses no added difficulties—
see [BM], [BBKW]; of course, computational complexity increases but not to a level
infeasible for currently available computing equipment and software). The exam-
ples discussed here in our presentation on inverse problem techniques are similar in
nature to those used in the simulation studies presented in [BBKW],

The simulated data used in our tests were prepared in the following way. We
are given an initial population density function <E> and we choose a "true" growth
rate distribution P* e 3P{G). We then generate a random sample of growth rates
g{, g2, ... , gL with distribution P*. For each growth rate gi, we compute the
solution v(t,x-,gt) of the (SS) system (1.1)—(1.4) with /u = k = 0. We then
define u(t, x) — £ v(t, x; gt). By the law of large numbers, we have that
for L sufficiently large, u(t, x) will be a good approximation for u{t,x\ P*) =
fGv(t, x; g)dP*(g). We thus use this "noisy" data as our "observed data" in the
inverse problems for J(P) and JN{P) discussed in Sec. 4, assuming, of course, in
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carrying out our tests that we do not know the distribution P* that was used in
generating the data.

In our tests we took L = 200 for our sample sizes and used "data" corresponding
to a grid of n = 50 time observations, uniformly spaced in [0, T] — [0, .2]. The
size range (x0,x,) was normalized to (0, 1) and in each example we used the initial
data

<D(x) = sin2(107rx) x < 0.1 ,
0 .1 < x,

which is depicted in Figure 5.1.
In all our examples, the sets G are defined by a parametrized family of growth

rates
G = {g(x) = b{ 1 -x) : .001 < b < 200}

which is a compact subset of //'(0, 1) and is easily seen to satisfy hypothesis (H3) of
Sec. 3. To define P* e ^°{G), we assume that the parameter b is stochastic, which
yields in a natural way a distribution P*. In our first example we choose for b a
Gaussian distribution with mean ju = 4.5 and a variance a2 = .25 (in actuality, we
used a Gaussian "truncated" to fit the restrictions b e [.001, 200]). The evolution
in time of the corresponding density u(t, x) is depicted in Figs. 5.2, 5.3, and 5.4 for
t = .06, .12, .18, respectively.

In the approximate inverse problem for (4.1) with (3.5), for the state approxima-
tion spaces %fN we chose spaces generated by standard piecewise linear splines (we
used N = 32 in our computations) so that hypothesis (HI) is readily verified. To
approximate G), we chose G = {g £ G : b is rational in [.001 , 200]} . We then
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defined subsets of rationals BM = {bf, , b1^} of [.001 , 200] and took
( M,s, „m ? m .3P (G) = < P = ^2 atdgM : g] is a point mass at
I i= 1

bf G Bm , aj> 0 and y] a, = 11 .

In our tests we used M — 9 and M — 21 and for the sets BM we chose B9 =
{b■ = 4.5 + .3(j - 5) : z = 1, 2, ... , 9} and B2X = {b]x = 4.5 + . 15(; -11):/ =
1,2, ... , 21}.

We note that for these problems the cost functional (4.1) is given by

JN{PM) = ^2 f [u(tk , x) - UN\tk , u ; pu)f dx
k=l xo

n px M

= 1 ["('*'*) - aiyN^k'x; sf1)]' dx,
k= 1 Jx0 i= 1

where the {a] , ... , aM) satisfy a(. > 0, and £;=1 a, — 1 • Observe then that /N
is a quadratic function of the a(. Hence, we can easily solve this minimization
problem using Lagrange multipliers. All that is required is to solve the linear system
dJN/dam = 1, m = \, M, and then scale to obtain = 1 . Of course, we
must also check the positivity constraint. The fact that we have reduced a nonlinear
least squares problem in g to a linear problem in P is a very nice computational
feature of this model.

In Figs. 5.5 and 5.6, we compare the "true" distribution P" with the minimizing
distributions pN M of Theorem 4.3 for n = 32, M = 9, M = 21 , respectively.
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We also carried out numerical tests with simulated data exhibiting the bimodality
observed in the mosquito fish data shown in Fig. 1.1. For these tests, data was
generated as described above except in this case we assumed that the "true" growth
rate distribution P* was bimodal in nature. The set G was taken as above but now
we assumed that b was a truncated bimodal Gaussian obtained by averaging two
truncated Gaussians with means p.t = 3.3 , fl2 = 5.7 , and variances a] = a\ = .25 .
Using the same initial population density O given in Fig. 5.1, we generated "noisy"
data using samples as described above. Graphs of the resulting data u(t, x) are
shown in Fig. 5.7-5.9 (corresponding to t = .06, .12, .18, respectively) where the
bimodal features of the population density can be clearly seen. The sets P (G) and
Bm were defined as above for these computations. In Fig. 5.10 we compare the
resulting PN 'M for N = 32 , M = 21 with the "true" distribution P* .

6. Concluding remarks. The growth rate distribution added to the Sinko-Streifer
model provides a new mechanism to capture features present in field data. We
have seen through numerical experiments for inverse problems that dispersion and
bimodality can be modeled accurately with this approach. Furthermore, the inverse
problem can be solved quite simply by Lagrange multipliers. We have yet, however,
to study field data with these methods, as this task will require more computational
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effort since we must incorporate the estimation of fi and k . Our presentation here
was to demonstrate feasibility of our approach. We believe that these ideas afford
promising alternatives to current approaches.

As we mentioned above, another question of interest involves comparing this
growth rate distribution model to the Fokker-Planck diffusion model. In our contin-
uing efforts to understand mechanisms as represented by features of field data, we
are currently pursuing investigations related to the use of the statistical techniques of
[BF] to compare these two models.

Extensions of our ideas must be considered: some involve the use of more general
collections of growth rates (a one parameter family of growth rates makes for easy im-
plementation, but at the expense of a highly simplified model of individual growth).
Others entail the use of higher-order approximating elements for the distribution.
We are currently studying the possibility of using linear spline approximations for
the growth rate distribution. In the case of a smooth "true" distribution, one would
expect faster convergence for piecewise linear functions over piecewise constant ones.
The implementation of linear splines would not seem to introduce many more diffi-
culties, but associated theoretical problems are currently under investigation.
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