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Estimation of impulse-response signals through empirically derived digital 
matched filter smoothing 

Stephen Eo Bialkowski 

Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322-0300 

(Received 15 September 1986; accepted for publication 12 December 1986) 

A real-time digital filter is described which may be most useful for optimal determination of 

the magnitude of impulse-response functions found in pulsed, repetitive experiments of low 

duty cycle. This filter is based on a matched filter but employs an interference 

orthogonalization step. This results in a signal magnitude estimate which is independent of 

coherent interference. The filter updates the signal magnitude estimate upon each repetition of 

the experimental cycle. Comparisons to signal estimation using gated sampling devices are 

given. 

INTRODUCTION 

Of primary importance in modern chemical analysis is the 

estimation of analyte levels based on the magnitudes of in­

strumental responses. 1.2 The precision to which the analyte 

level can be reported is directly proportional to the precision 

to which the signal estimate can be obtained and repro­

duced.:; Signal estimation can be simple, for example when 

the signal is a smooth function of time and the signal1evel is 

much greater than that of the noise. There are, however, 

several instrumental methods where the analytical signal is a 

measured physical response to an often periodic impulse ex­

citation of the analyte system. In these cases, the analytical 

signal can be decomposed into two primary components. 

The first component is the temporal response to the excita­

tion. This component is the impulse-response function in 

cases where the excitation is an impulse, or is the convolu­

tion of the impulse-response with the excitation when the 

excitation is longer than the response time of the system. The 

impulse-response function typicaHy contains information 

relevant to the analyte system under study and the physics 

particular to the instrumental method being used. Thus the 

impulse-response function can be thought of as a qualitative 

description of the system. The second component of the sig­

nal is that of the magnitude of this impulse-response func­

tion. This component contains information on the amount of 

analyte in the system and is thus a quantitative estimate. It is 

often the case that the impulse-response function is known 

and only an estimate of the magnitude is desired. The latter 

occurs when the impUlse-response function is not a qualita­

tive description, but rather is due to the physics of the parti­

cular instrumentation. 

There are several instruments currently employed to 

sample and thereby estimate transient periodic data. The 

two most common are the gated integrator, or boxcar aver­

ager, and the transient recorder.4
.
5 For the most part, the 

gated integrator is used when the magnitUde of the signal is 

to be estimated. For example, it is common to find sample 

and hold circuits, a simple form ofthe gated integrator, used 

in the estimation of signal magnitudes in pulsed laser excited 

spectroscopic methods of analysis. 6--8 These circuits are used 

to smooth the low duty cycle periodic signals so that slow 

response time instrumentation can be used to record these 

data. The signal itself is a cyclostationary process in that the 

transient occurs periodically and is reproduced over each 

cycle of the experiment. 9 Each time an experimental cycle 

occurs, the signal is sampled at some fixed delay relative to 

the start of the cycle resulting in replicate measurement of 

the signal magnitude. For zero mean noise, independent of 

the signal, the accuracy of the signa! estimate increases as the 

square root of the number of replicate measurements ob­

tained. Estimation of the precision of the signal estimate also 

becomes more accurate as more and more replicate measure­

ments are taken. However, this increase in estimation accu­

racy is obtained only if the signal magnitude and impulse­

response change on time scales long compared to the 

experimental cycle time. If the signal magnitude is dynamic, 

averaging over several cycles is not valid. In this case postex­

perimental smoothing is often employed. 

The transient recorder acts as a number of sample and 

hold circuits, each sampling the transient signal at a different 

time delay relative to the start of the cycle. This instrument 

can be used for multichannel averaging if the appropriate 

software or hardware is used.5 In this case, the impulse-re­

sponse function and the magnitude of this function are both 

obtained. The accuracy of estimation of these parameters 

again increases as the square root of the number of averaged 

transients. As in the case of gated averaging, the multichan­

nel averaging procedure is valid only for samples that do not 

change over the analysis time. Signal estimation applications 

using the transient recorder to capture signal transients that 

change with the experimental cycle are not as common as 

that utilizing the sample and hold circuits. However, this 

type of estimation can be performed using more complex 

sampling functions. And there are, in fact, several advan­

tages to the latter method over that of the simple sample and 

hold. The advantages of this application are discussed below. 

In this laboratory, a transient recorder has been used to 

capture data for both multichannel averaging and to per­

form the mathematical equivalent of gated sampling. 10-14 

Recently, a correlation technique derived from a least­

squares analysis of the signal has been developed and utilized 

687 Rev. Sci. Instrum. 58 (4), April 1987 0034-6748/87/040681-09$01.30 @ 1987 American Institute of Physics 687 

.·.·.·.:·;·.·.·.·.~;·.v.~.:.:.:.:.: •...•• ·.v.·;:.:.:.;.: ..••.•.••.•.• :.:.:.;.;.; •.••••••••. .:.:.:.:.;.;.:.; .............. :.:.:.:.;O.o; •••••••• :.~.:-:.:.;.;.; •••••• r ••••• :-:.:.:.:.: •. ! .• ~ ........... :.:.:.: ..•..•• ~ ........ :.:.:.:.:.. .'.'.~ .·l .• · .• ·.-:.;·:·.·.·.·.;.~ .:.:.:.:.:.:.:.; ••• .'.~.;.:.~.:.:.:.: ... " .•••••••.•• :.:.:.:.;;;.:.;O;' •• ; •••• :':".~ .•••••••••••••••• ,'. •• ••• ••••••••• • ." '.', ,', ,',"> •• '.' ••• , ..... •• • ••••••••• ~. , •• "7, • • • •• ~ __ 

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitationnew.aip.org/termsconditions. Downloaded to IP:

129.123.125.251 On: Tue, 20 May 2014 17:40:18



to recover signal magnitude estimates from low signal-to~ 

noise ratio transients. 15 The latter is a matched filter tech­

nique in that the function used to filter the transient data is 

the expected signa1.9 Technically, it is a smoothing function 

in the sense that one value of the estimate is obtained for the 

entire experiment cycle. More recently, this type of smooth~ 

ing has been extended to include signal estimation in the 

presence of interference which is synchronous to the experi­

mental cycle. 16 The signal estimate obtained from this digital 

smoothing procedure can be independent of such interfer­

ence if this interference is reproduced on each cycle. The 

latter procedure is a Wiener filter with prior innovations 

filtering. 9 

In this paper the detailed mathematical foundation of 

the digital smoothing filters used in the experimental works 

mentioned above will be presented. A method for determin­

ing the signal to noise of the estimate based on the particular 

sampling function utilized is illustrated. This paper does not 

discuss smoothing in the sense of data being reduced after 

the signal estimates have been obtained. This type of 

smoothing has been performed by apodization of the trans­

formed data, as in frequency bandwidth limited processing,9 

procedures such as the Savitzky-Golay smoothing filter, \7 

or similar but adaptive filters, 18 by Kalman filtering 19.20 and 

by matched and adaptive filtering. 21 These postexperimental 

smoothing procedures are sensitive to data acquisition and 

processing errors. 20 But there is often no attempt to quantify 

or reduce these errors. In contrast to these postexperimental 

smoothing filters, this paper addresses the real-time optimal 

estimate of the transient signa! based on correlation filtering 

of the signal transient itself. This real-time matched filtering 

results in the optimum estimate of the signal by optimization 

of the signal-to-noise ratio of the predicted signals. 

I. THEORY 

A process is cyc1ostationary if its statistics are invariant 

to a shift in the time origin equal to integral multiples of the 

cycle time or period T. 9 The signal estimators described here 

are smoothing filters where the signal estimate is updated 

after each cycle. A schematic representation of the most gen­

eral filter is illustrated in Fig. 1. The real input xU) is com~ 

prised of two main components, 

xU) = s(t) + vCt), (1) 

with s(t) being the analytical signal and u(t) being the sum 

of uncorrelated noise and periodic coherent correlated noise 

or interference. The time t is that relative to the start of the 

current cycle nT. The time-dependent input has an associat­

ed finite transform X( w), which is also a sum of two terms 

S(w) and V(w). These transforms are, in general, complex 

being obtained from real functions. 22 The uncorrelated noise 

is stationary in that the noise statistics do not vary over the 

cycle. Coherent noise is cyclostationary in that the noise sta­

tistics vary over the cycle and are reproduced on each cycle. 

Coherent noise is, in general, correlated to the cycle and may 

vary in time within the experimental cycle. 

The first stage of smoothing is the whitening filter F( w), 

with an impulse-response of/U). The output of this stage is 

the innovations 
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x{t)=Slt)+v(I) 

la} 

lilt) r----i ... y(O) 

(hI 

FIG. \. A schematic representation of the real-time matched filter in both 

the frequency- and time-domain implementations. The filter (a) is com­

posed of three stages: the whitening filter FC II!) with impulse-responsejU), 

the matched filter H (II!) and j(t), and the low-pass or sample and hold 

output filter. The input xU) composed of signal s(t) and noise u(t) is first 

"whitened" resulting in the innovations i( t). i( t) is then filtered resulting in 

y(t). The output is sampled at the time of the maximum signal-to-noise 

ratio. The filter process (b) shows the implementation of (a) for a periodic 

input with prior knowledge of s(t) and n (t), The output is updated in units 

of T, the cycle period. 

(2) 

where i(t) is composed of mutually orthogonal signal i, (t) 

and noise iu (t) components. This stage of the filter is such 

that nonwhite noise statistics of xU) result in white noise in 

i(t). Due to the orthogonality of its components, the signal 

component of the innovations, can also be made independent 

of cyclostationary coherent noise in x (t) .23 In this case i, (t) 

may be made orthogonal to v( t). The orthogonal signal is (t) 

is then used to estimate the signal magnitude, independent of 

the coherent noise, by the matched filter discussed below. 

The second stage of the smoothing filter is the signal 

estimator H(w) with an associated transform impulse-re­

sponse function h(t). The output of this state is the time­

dependent signal estimate 

y(t) = Ys (t) + y" (f), (3) 

which, again, is made up of two components: that due to the 

signalys (t) and that due to the noiseyv (t). The output of 

this filter is a function of the time in the cycle. The signal 

magnitude estimate at a time in the cycle when the signal-to­

noise power ratio (SNR) is a maximum is desired. This esti­

mate is obtained by sampling the output of the first two 

stages of the filter at a time relative to the start of the cycle. In 

applications where the signal magnitude is expected to vary 

smoothly from cycle to cycle, a low-pass filter may be used in 

place of the sample and hold. 

The simplest implementation of the filter occurs for 

nonperiodic, uncorrelated white noise. In this case the whit­

ening filter does not modify the input x(t). This is the 

matched filter. The frequency domain filter H(w) is, in gen­

eral, a complex function composed of a real magnitude and 

an imaginary phase since it is the transform of the real im­

pulse-response filter h (t) which is generally one sided, asym­

metric about the arbitrary time origin. Because H (w) is typi-
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cally complex, frequency domain matched filtering is limit­

ed. The time and frequency operations ofthe filter are relat­

ed by Parseval's theorem. The noise power at the output of 

the filter at some time t is 

y~ (t) = (211") -2 J~ oc lV(w)H(wWdw. (4) 

For white noise, V( w) 2/21l' is a constant c? and thus 

y~ (t) = (21l') 2(1'2 J: 00 iH(w) 1
2
dw. (5) 

The signal power at the output is the squared frequency fil­

tered signal 

y;(t) = (211")21 f"", S(w)H(w)e iW'dwI 2
. (6) 

The SNR is the ratio of the last two equations. If x (t) is 

either a current or a potential signal, 

SNR =y;(t)/y~(t) 

= if""", S(w)HCw)eiW'duf/211"cT J'" 00 IH(w) 1
2
dw. 

(7) 

The infinite integration limits are used for mathematical 

simplicity and are never realized. The frequency interval will 

be limited to that of the instrumental response or the Nyquist 

frequency in the case of sampled signals. In many cases it is 

easier to use time domain equivalent found from Parseval's 

theorem, thus avoiding this problem. 22 

The matched filter is formulated in such a fashion as to 

maximize the SNR of the resulting signal estimate. Using 

Eq. (6) and Schwartz' inequality yields 

y;(t) = (217) -21 I~ '" S(w)H(w)e
iW

'dwI
2 

«211") -2 f: = IS(wWdw Joo 00 IH(wWdw, (8) 

where the equality is the maximum value. Equation (8), and 

thus the SNR, is a maximum if and only if the filter function 

is to within an arbitrary constant of the complex conjugate of 
the signal, 9.21 

H(w) =kS*(w)e- iwt
", (9) 

where k is an arbitrary constant, S '" (w) is the complex con­

jugate of the signal transform and the exponent is an arbi­

trary phase constant. The exponential phase factor may be 

set equal to unity when the experimental cycle initiation time 

is known since to can be arbitrarily chosen to be zero. Fre­

quency-domain filtering has the corresponding time-domain 

process found from the inverse transform of the process 

y, (t) = k F'" 00 S *(w)X(w)dw 

= k roo set ')xCt + t ')dt I, 
.10 

( 10) 

whereys (t) is the signal estimate at time t. The fact that the 

optimum SNR is found for the correlation of the signal x (t) 
with the expected signal set) results in this filter process 

being known as matched filtering. The correlation integral 

over all retardation times t will result in the maximum corre­

lation at the synchronous experimental cycle start time and 
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subsequently the entire correlation is not required to obtain 

the optimum signal estimate. The time-dependent signal es­

timate obtained from the correlation in Eq. (10) can be sim­

plified when the experimental cycle is synchronous to some 

event indicating the cycle. In this case only one correlation 

integral need be calculated I5
•
16

; 

Ys = k i'" s(t)x(t)dt. 
o 

(11) 

Treatment of the filter in the event of nonwhite noise 

stationary statistics is straightforward in the systems ap­

proach.9
•
22 In this case the optimum SNR is obtained for the 

signal after the operation of the whitening filter, 

y, = k l"'o i, (t)i(t)dt, (12) 

where is (t) is the impulse-response of the frequency domain 

filter function H(w) given by9 

H(w) =kS*(w)e iW'OIS.,(w) (13) 

and Sv (w) is the noise power spectrum obtained from the 

transform of the noise autocorrelation. In this formulation 

the filter function includes both the whitening filter and the 

matched filter functions. Equation (13) is valid for station­

ary noise statistics since the noise power spectrum is a real 

function. However, for a cydostationary process, Sv (w) will 

be complex since noise statistics are time dependent. It is 

easier to treat the filter stages independently, thereby avoid­

ing the problem associated with the cydostationary noise 

statistics. In this case S .. (w) IS" (w) is replaced by the trans­

form of the innovations J:(w), Since i(t) is equivalent to 

xCt) in all respects except for the basis set used to construct 

the particular functions, xU) can be substituted for i(t) in 

Eq. (12). 

The above discussions are based upon continuous func­

tions. However, the recorded and subsequently digitized sig­

nals are a series of discrete estimations. Descriptions of con­

tinuous function statistics are related to the discrete 

functions through sampling theory.9.22,24 In general, the re­

sults obtained for discrete function statistics are the same as 

those of the continuous function with a few considerations. 

The main consideration is that of the Nyquist limited fre­

quency interval and the bandpass associated with the finite 

sampling time of the individual gates. With attention paid to 

these band-limiting processes, it can be shown that the re­

constructed sampled function is identical to that of the sam­

pled continuous function,22 and so mathematical treatment 

of discrete functions with continuous function mathematics 

is a valid endeavor. 

II. EXPERIMENTAL 

The data discussed in this paper were obtained using 

either a photothermal lens or a photothermal deflection 

spectroscopy apparatus. Both of these apparatuses have 

been previously described in detail elsewhere. 1
0-

16 In both 

apparatuses, a pulsed laser is used as the impulse source of 

sample excitation. The signal is derived from a deviation in 

the light path of a second continuous wave laser used to 

monitor the photothermal refractive index perturbation 
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caused by the impulse excitation laser. The excitation laser 

pulse widths used in these experiments ranged from 5 ns, for 

the molecular nitrogen laser, to 170 ns for the molecular 

carbon dioxide laser. A silicon photodiode in conjunction 

with appropriate spatial filters monitors the effect of the per­

turbation on the continuous laser beam intensity or position. 

Chemical samples are introduced into the apparatus using 

either a gas or liquid cell. The samples can be of either fixed 

composition or variable composition such as the effluent 

from a gas chromatograph. 

Signals observed the silicon photodiode obtain maxi­

mum values during or shortly after (that is, within a few ns) 

the pulsed laser excitation. After the pulsed laser excitation, 

the signal decays with a functionality characteristic of ther­

mal diffusion. The signal can, in theory, be described by 

set) = soC 1 + 2t Ite )-2, where So is the maximum signal at 

zero time and te is the characteristic time constant depen­

dent on the thermal diffusivity and the optical beam waist 

radius. The maximum signal So is a function of the analyte 

absorbance and the excitation laser pulse energy. Thus, the 

functional characteristic of the signal is a product of a mag­

nitude term with that of an impulse-response function. For 

dilute samples of less than about 1 %, the impulse-response 

function is a characteristic of the apparatus and not the ana­

lyte. 
Scaling of the signal magnitude for variations in the 

pulsed excitation laser intensity is not performed as in con­

ventional spectrophotometry. The pulsed laser energy is 

monitored with a power meter and the output ofthis meter is 

recorded by the DEC LSI 11123 processor used in this labo­

ratory. These laser energy data are stored in a data array for 

future use in examining the correlation with the signal mag­

nitude estimate. The signal itself is a modulation of the con­

tinuous laser beam intensity. The analytical signal current 

from the silicon photodiode is generally followed with a 

transimpedance amplifier, and the subsequent time-depen­

dent voltage is recorded with a Physical Data Incorporated 

model 522A transient waveform recorder, This 20-MHz, 8-

bit transient recorder utilizes a TRW flash analog-to-digital 

converter, which in turn has an effective sampling aperture 

duration of a few ns. The bandwidth of this device is limited 

by the input amplifier set to 3 dB at 10 MHz. The transient 

recorder is interfaced to the processor with a parallel line 

interface unit which is operated under software control. 

A main program, run underDECRT-ll real-timeoper­

ating system, serves to sequence the operations of multichan­

nel averaging, innovations construction, and digital filter­

ing. The main program is written in FORTRAN to facilitate 

the interaction between user and apparatus, and also to faci­

litate the interface with the DEC SSP scientific software sub­

routine package used for regression and correlation analysis. 

The individual subroutines which access the data recording 

devices are written in MACRO. For example, multichannel 

averaging, and digital matched filtering routines are both 

written in MACRO. The MACRO language is preferred when 

speed is important. The main program first calls subroutines 

which obtain multichannel averaged coherent noise and sig­

nal plus coherent noise data vectors. A signal vector is ob­

tained from the difference of these two. The innovations vec-

690 Rev. Sci.lnstrum., Vol. 58, No.4, April 1987 

tor is then obtained with a modified, in place, Gram­

Schmidt orthonormalization routine. 23 Up to three basis set 

vectors are used. The first vector is a constant, base-line vec­

tor. and is always used. Inclusion ofthis vector ensures that 

the signal estimate will not be a function of baseline drift. 

The second vector may be the coherent noise or interference 

data. This vector is often omitted if the coherent noise is, for 

practical purposes, a constant baseline term. The last vector 

is always that of the expected signal. 

After the Gram-Schmidt computations are complete, 

the last vector is multiplied by the last term of the inverse 

factorization matrix, as discussed below. This vector is then 

the optimum filter for the expected signal as determined for 

the particular experiment being performed. 

Once the optimal filter has been formulated, the actual 

experiment is run. Experiments typically run in this labora­

tory include those where the pulsed laser energy dependence 

of the signal magnitude is sought and where the signal mag­

nitude will change on each experimental cycle initiated by 

the laser pulse, as in the case of chromatographic effluent 

analysis. In all cases, a signal magnitude estimate is obtained 

and stored in a data array. Each consecutive point in this 

array corresponds to a consecutive experiment cycle s(nT}. 

The start of the experimental cycle is synchronous to the 

power line. The repetition rate was 3.75 Hz. A pulse derived 

from the line frequency initiates the pulsed laser, pulsed laser 

energy recording, and triggers the transient digitizer. After a 

transient signal is recorded, the 8-bit data is transferred, 

word by word, to the processor. Each word is loaded into a 

floating point register, converted to floating point format, 

and multiplied by a floating point format filter element that 

is supplied from the main routine as a time-ordered array. 

The resulting product is summed into a floating point accu­

mulator. After all data have been transferred and the float­

ing point computations performed, the accumulator con­

tains the dot product of the filter function with the data. This 

value is the signal estimate and is returned to the main rou­

tine or stored in an array. At the end of an experiment con­

sisting of n cycles, all data are written to disk for later analy­

sis and archival storage. The results reported on below are 

from a collection of such data. 

iii. RESULTS 

A. Synchronous experimental cycles and 
multichannel averaging 

It is commonly believed that the experimental cycle fre­

quency should not be an integer multiple or subdivision of 

the power line frequency if accurate estimations are to be 

obtained with transient digitizers.4 This rule is based on the 

fact that for asynchronous cycle frequencies. line interfer­

ence will be effectively independent of the signal and thus 

will not'add coherently to the averaged signal. On the other 

hand, if the synchronous interferences are reproducible in 

their frequency distribution and phase, but not necessarily in 

magnitude, then more efficient signal estimation can be ob­

tained by innovations filtering. In this case the experimental 

cycle must be synchronous to the line frequency. The inter-

Filter smoothing 690 
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ference is eliminated by the orthogonalization, an effective 

notch filter. Often the synchronous coherent interference 

does not originate from an independent source such as power 

line radiation but is an intrinsic part of the experimental 

excitation itself. In this instance, the experimental cycle can­

not be made asynchronous with the interference and a cor­

rective process should be performed in order to obtain accu­

rate results. 

A common method for obtaining interference indepen­

dence involves obtaining multichannel averaged signal and 

background transients, fonowed by subtraction of the back­

ground from the signal. 4,5 The measured signal is comprised 

of three independent terms, 

(14) 

where v(t) of Eg. (1) has been decomposed into tic (1), the 

coherent noise or interference, and Vi (t) is the independent 

stationary noise. The analytical signal s(t) will only be pres­

ent in the signal when an anaiyte is present in the measure­

ment apparatus and is being stimulated by the excitation 

source. Since Vi (0 is independent ofs(t) and Vc (t), multi­

channel signal averaging of the analyte signal will result in 

an increase in the SNR proportional to the number of tran­

sients averaged and ultimately resulting in the determination 

of x (t) = s (1) + v c (t). The important vector is that of the 

signal s (t). The latter is determined as the difference of the 

two averaged transients. 

Figure 2 illustrates a typical noise power spectrum ob­

tained for an experimental apparatus designed to measure 

photothermal deflection by an increase in the amount of 

light of a probe laser on a pin photodiode detector. 10,11,14 The 

main single source of noise in these data are the interference 

due to power line pickup at 60 Hz, Consider the case where 

the data are to be obtained with a Nyquist limit of 1 kHz. If 

upon each experimental cycle an estimate of the signal is 

obtained and summed into a composite estimate then the 

total signal estimate will increase proportional to the num­

ber of indi vidual estimates,25 

FREQUENr:y (kHz) 

FIG. 2. Curve A is a noise power spectrum obtained from one average of the 

experimental apparatus. The noise power is in squared volts. Curve B is the 

relative numerical integral of this liaise power. Notice that about half of the 

noise power over this limited band is due to the line interference at 60 Hz. 
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(15) 

where 111 is the number of signal estimates or experimental 

cycles, s is the signal, and Stot is the total estimate. On the 

other hand, the variance due to the zero mean incoherent 

noise, Vi (I) will increase proportional to M 9
,24 

(''''' 

0-;0' = M02 = M(2rrY I J 00 W; (wWdw, (16) 

where ~o, is the total noise power after signal averaging. c?­
is the noise power of one experimental cycle, and Vi Cw) is 

the transform of the independent noise, The variance for a 

single estimate is, in turn, proportional to the noise power. 

The SNR of the signal power estimate is 

(17) 

thereby resulting in the well-known fact that the SNR im­

provement of the voltage or current is proportional to the 

square root of the number of estimates. 

In the case of Line-synchronous signal averaging, the sig­

nal estimate is the difference between the signal plus interfer­

ence and the interference only data. The total variance is 

thus the sum of the variances of each of the two data. Thus 

070t = 2Mc?-. However, the interference is coherently aver­

aged and eliminated from the final signal estimate by the 

difference technique. From the slope of the noise power data 

illustrated in Fig. 2, the total noise power over the I-kHz 

band and independent of the interference is 5 nW in a I-Mn 

load. On the other hand, and assuming zero mean valued line 

interference, asynchronous signal averaging for 2M experi­

mental cycles with a 1-kHz Nyquist limit will also result in a 

total variance of 2Mc?-, but the total integrated noise power 

of Fig. 2 is 8.5 nW. Thus synchronous signal averaging re­

sults in an enhanced SNR over that of the asynchronous 

experimental method for an equivalent number of averages, 

in this case by a factor of about 1.3. In general, the SNR 

enhancement obtained by interference synchronous signal 

averaging is given by the ratio of the synchronous SNR to 

that of the asynchronous 

SNRsyndl/SNRasyndl = (if + oTnt ) / c?, ( 18) 

which is greater than or equal to one. In the latter equation, 

if is the white-noise component of the total noise and o-fnt is 

the interference component. Contrary to the belief that the 

experimental cycle should not be synchronous with the pow­

er line, Eq. 18 illustrates that there is in fact an advantage to 

performing synchronous multichannel signal averaging of 

periodic cyclostationary processes. 

B. Innovation filter for known signal components 

Background corrected multichannel averaging yields 

information of both the signal impUlse-response function 

and its magnitude. If the impulse-response function is 

known, then the time-dependent data are a redundant esti­

mation of the signal magnitude. However, these averaged 

data may be used to obtain the optimum SNR estimate of the 

signal magnitude. An optimal estimate of the magnitude can 

be obtained by matched filter smoothing of the averaged 

data using the expected signal [Eq. (11)]. It can be shown 

that this method is equivalent to least-squares fitting of the 

Filter smoothing 691 

..•.• ".'; •.• ; •.•.•.••• ,' ,'.' ··.~.·:·:·".·z·:·:'.·.·.·."'.'.~.~.:;.>:·:-:·:·:·:·:·.·.· ••• > ••• ~ ••• :.:>:.:.:.:.:.;.: ............ '.'.'.-••• :.:.:.;.:.:-; •.•.•.•• '.>: •• :.;.;.:.:.;.;.;.;.; •• ' ........... :.:;:.:.:.;,;.;.;.... • •••••••• ":.~.:.:.:.:.; •••••• .-••• -;>;~ ••• :.:.~.:.:.:;;;o:;;;.:.; .s·.·.·.· ..... ·.·.·.·.· ...... · , .-.. n ., •••• y •••• ~ • , •••• ',",-. .-•••••• ,T.·.·.'.·.· ... ·.·.:.:.;.:.7 .•••••••••••• ·.·.-·;,';<.~.:.~.; •.•.•...•.•••. ' .•.••••• ; .•.• " •.. :.:.: •.•.•.•.•. ,.' ..•.•.•. ;0 ••••• " •• .-.-.-...... ~. 

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitationnew.aip.org/termsconditions. Downloaded to IP:

129.123.125.251 On: Tue, 20 May 2014 17:40:18



data to the expected signa1 15 and to correlation between the 

data and the expected signal. 4 

The method of innovations construction utilizes the 

matched filter for signal estimation. In this method, an up­

dated signal magnitude estimate is obtained after each ex­

perimental cycle. Subsequently, the method is more applica­

ble to situations where either the analyte concentration is 

time dependent or the signal is nonlinear in its response to 

the excitation source. Innovations construction requires pri­

or knowledge of the signal impulse-response function and 

the coherent noise functions. These functions can, in turn, 

either be obtained from multichannel averaged data or can 

be those expected from a theoretical standpoint. 15
,16 In ei­

ther event, the innovations are obtained by orthonormaliza­

tion of the basis set of functions representing the expected 

signal and coherent noise contributions. 

Orthonormalization can be performed using a Gram­

Schmidt factorization procedure.7
,16.23 The square normal­

ized basis functions for the expected signal soU) and coher­

ent noise VcO (t) which may include more than one function, 

make up a column matrix X of rank m, where m is the num­

ber of basis vectors used to construct the matrix. The whiten­

ing filter is an m by m square, upper triangular, factorization 

matrix F used to form the innovations matrix I 

I=XF. (19) 

The product of an input xU) with the innovations matrix 

results in coefficient vector b with elements corresponding to 

the weights of the orthonormal innovations vectors used to 

reconstruct the input 

b=x(t)I. (20) 

The innovations filter L, defined as the inverse of the whiten­

ing filter L = F - I can be used to reconstruct the input in 

terms of the original basis set: 

xU) = Ll+b, (21) 

where + denotes the transpose. 

The signal impu}se-responses(t) is known and the mag­

nitude of this signal Ys is the only value of importance for 

signal estimation. Total reconstruction of the input x (t) by 

the innovations filter is not required. The Gram-Schmidt 

procedure is a step-wise orthogonalization and normaliza­

tion process. The first component of X is first normalized 

without changing the impulse-response function. Subse­

quent components of X are made orthonormal to the pre­

vious components. The basis set X is arranged such that the 

signal s(t) is the last component in this matrix. The last 

component in the orthogonormalized matrix will be is (t). 

is (t) is orthogonal to the coherent noise components. More 

importantly, since the innovations filter matrix is upper 

triangular, the last coefficient of this matrix, Lm,m is all that 

is required to scale the signal magnitude estimate to the cor­

rect value. Thus the coherent noise independent signal mag­

nitude estimate is 16 

Ys = Lm,m r= x(t)i, (t)dt, 
Jo 

(22) 

where Ys is the optimal estimate of the signal magnitude 

since it results from matched filter smoothing with a whiten­

ing filter as illustrated in Fig. 1. More precisely, the basis set 

692 Rev. ScI. Instrum., Vol. 58, No.4, April 1987 

orthogonalizing whitening filter has been combined with the 

matched filter resulting in a linear filter system which is in­

dependent of coherent 'noise. 

The implications of this filter method are important. 

First, the impulse-response function may be of any form. 

Determined experimentally, via multichannel averaging, the 

theoretical impulse-response function does not have to be 

known. Moreover, the theoretical impulse-response func­

tion may not be a useful filter basis because instrumental 

response times may significantly alter this function. The em­

pirical basis obtained from multichannel averaging will re­

sult in more exact expected signal in this case. Second, if the 

experimental cycle is synchronous to coherent noise, and 

because of the particular ordering of the basis set used to 

construct the innovations vector through Gram-Schmidt 

orthonormalization, only one vector dot product is calculat­

ed for signal magnitude estimation. This allows for rapid 

estimation of the signal magnitude. Neglecting the time re­

quired for calculation of the innovations, this particular fil­

ter must be among the fastest digital filter techniques since 

no Fourier transforms are required and the full time correla­

tion is not required because of the synchronous signal. And 

third, the signal estimate is independent of coherent interfer­

ence. This feature can be obtained in frequency-domain filter 

methods. It is, however, optimized in the innovations filter 

since both frequency and phase components of the signal and 

coherent noise are utilized. 

An example of the data obtained using the innovations 

filter is illustrated in Fig. 3. These data are of 22.8 ppmv 

chlorodifiuoromethane in 100 kPa of argon and being excit­

ed with a pulsed TEA-C02 laser. With each pulse of the laser 

both the laser energy and the signal estimate are recorded. 

The scatter plots are of the same experiment but with differ­

ent data-processing software. These data were not obtained 

simultaneously and therefore are of slightly different excita­

tion energy ranges. The first plot is of signal estimates ob­

tained with a pseudogated integrator. The gate was defined 

by summing a set range of channels in the digitized signal 

transient. The effective gate duration was 10 f1s and was 

located at the signal maximum. (The entire transient can be 

seen in Fig. 4.) The second scatter plot utilized the matched 

filter. In this particular case there was no significant coher­

ent interference and the innovations were made by ortho­

gonalization of s(t) to a constant valued base-line vector. 

Including this base line ensures that the filter will not re­

spond to long-term base-line drift. In fact, even in the event 

of noticeable coherent interference, inclusion of this base­

line offset function in the basis set results in better signal 

estimations using the innovations. The SNR of these data 

sets was calculated by using linear regression to a straight 

line and found from the squared average signal value to sig­

nal regression variance ratio. The SNR of the gated sampling 

data is 50 while that of the matched filter data is 6410. The 

SNR improvement of the matched filter over that of gated 

sampling is 128 for these data. 

Innovations construction does not require the magni­

tude of Vc (t) to be reproducible. The orthonormaHzation 

procedure is not dependent on the magnitude of the basis set 

functions. In cases where the magnitudes of s(t) and Vc (t) 
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FiG. 3. Scatter plot indicating the photothermal signal-to-noise ratio for 

22.8 ppm (u/v) of chlorodifluoromethanc in argon at lOO-kPa total pres­

sure. The sample is excited at 1083.47 cm - I using a TEA-C02 laser. The 

data of (a) used gated integration, while that illustrated in (b) used 

matched filtering for signal magnitude estimlltion. 

vary substantially from cycle to cycle, the base-line subtrac­

tion technique described first may not work correctly since 

the accumulated estimate of Vc (t) may not be the same as 

that found in the accumulated estimate of x (t). Subsequent 

subtraction of v, (t) from x (t) may not result in an accurate 

estimate of s(t) in this instance. However, so long as the 

impulse-response function of s(t) and Vc (t) do not change 

with time, the innovations filter estimation of the signal mag­

nitude will not vary with the magnitude of v c (t) since is (t) is 

orthogonal to that component. Further, the accumulated es­

timate ofvc (t) can be of arbitrary magnitude when used to 

construct the innovations filter. This relaxes the magnitude 

reproducibility criteria required for background subtraction 

method. The impulse-response oLs(t) must be known accu­

rately for optimum magnitude estimation. One way to ob­

tain an accurate estimation of s(t) is to obtain the accumu­

lated estimate under conditions where the SNR is very high 

and Vc (t) is insignificant. 

C, Some effects of coherent noise 

The signal power obtained with the innovations filter 

must be less than or equal to that of the matched filter de-
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FIG. 4. An example of an empirically derived matched filter. Shown in (a) is 

the signal and the background obtained by multichannel averaging. Each 

averaged transient is a sum of 500 experimental cycles. The illustrated sig­

na! has been corrected for background interference. (b) shows the match 

filter correlation vector obtained by Gram-Schmidt orthogoualization. The 

apparent noise is due to the low signal-to-noise ratio in the averaged back­

ground. 

fined in Eq. (9) because of Sch wartz' inequality [Eq. (8)]. 

The signal powers are equal only when there is no coherent 

interference in the expected input. In other words, the SNR 

obtained using the innovations filter will be less than that of 

the matched filter when no coherent interference is present, 

but was expected. In fact, using ihe signal innovations com­

ponent defined by the Gram-Schmidt process, 

is (t) = k [soU) - (1 00 

so(t)v,;() (t)dt )v(o() (t)]. (23) 

where soU) and Vco (t) are the square normalized expected 

signal and coherent impUlse-response functions and k is the 

normalization constant, it is straightforward to show that 

the SNR ratio of the innovations to that of the matched filter 

is 

SNRinn/SNRmatch = [1 - (100 

so(t)vcQ (t)dt rr (24) 

when no coherent noise is present in the input. There is some 

consideration as to when to use the orthogonal filter method. 

If the coherent noise power is low relative to that of the 
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signal, and the overlap integral between the expected signal 

and coherent noise is large, then the SNR of the resulting 

innovations filter may actually be less than that of the 

matched filter method which does not account for the coher­

ent noise. However, both a decrease in SNR and an increase 

in signal estimate bias will occur if the matched filter is used 

and coherent interference is present. The bias is due to the 

finite overlap between the expected signal and coherent in­

terference components of xU). Thus the signal estimate in 

Eq. (11) will be a sum of signal and coherent noise terms. If 

it is more important to reduce signal estimate bias, then the 

innovations filter should be used. 

This is illustrated in the innovations filter construction 

shown in Fig. 4. Figure 4 (a) shows the coherent background 

and signal vectors used to construct the innovation. As men­

tioned above, the signal was obtained by subtracting the sig­

nal averaged background Vc (t) from the averaged signal 

plus coherent noise x (t). In Fig. 4 (b) the innovations filter 

vector is shown. The noise of the background is increased 

and manifested in this vector. This increase in noise is due to 

the orthogonalization process resulting in the innovations 

vector. One way to ensure that this type of noise amplifica­

tion does not occur is to average the background data to the 

Same SNR as that of the signal. 

D. Advantage over gated sampling 

The theoretical advantage to matched filter signal mag­

nitude estimation over that of the sample and hold or gated 

integration methods can be formulated only for specific 

fu~ctions. A gated integrator of a sampling duration t~ sam­

plmg a system with stationary white noise statistics, will ac­

cumulate a total signal power proportional to the square of 

the integral of the signal and a noise power proportional to 

the gate time. The SNR enhancement for matched filter esti­

mation over that of the gated integrator can be illustrated 

using the normalized exponential signal function, 

s(t) = exp( - t). For the matched filter, the corresponding 

signal and noise quantities are found by performing the inte­

grations over the squared exponential function. The SNR of 

the matched filter estimation for a unit of signal magnitude is 

(25) 

It is interesting to note that the SNR increases with increas­

ing time. The longer the time of the filter, the better the SNR. 

This is interesting because the same is not true with the gated 

integration filter. In the latter, the SNR will decrease with 

increasing gate time. The SNR ratio of the matched filter to 

that of the gated integrator is found to be 

In deriving this equation, the integration time was taken to 

be from zero to tg for both filters. Although it is not easily 

seen, the SNR ratio steadily increases with time. 26 Further, 

this equation exhibits the intuitively correct behavior in the 

limit of an infinitely short sample time. For very short times, 

the SNR ratio is unity. 
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E. Considerations for discrete sampling devices 

The transient digitizer is a discrete sampling device. The 

sampling function imposed on the signal by the digitizer may 

be characterized by three parameters: the sampling rate, the 

sampling aperture duration, and the total time sampled 

equal to the number of samples divided by the sampling rate. 

It has been stated that the SNR of the signal magnitude esti­

mate does not change with the number of discrete recorder 

channels used to record a single transient.24 The latter was 

found to be true only if the signal is band limited by a low­

pass filter process prior to being recorded. If the low-pass 

filter frequency is the Nyquist frequency, then no increase in 

SNR can be obtained by sampling at faster rates. However, 

the limiting argument is one where a filter is utilized to pass 

only those frequency components that are synchronous with 

the experiment period. As a general rule, the error in this 

argument is that while reduction of the measurement band­

width does reduce the sampled noise power, it can reduce the 

signal power as well. This error is illustrated particularly 

well in low duty cycle experiments where the signal power 

spectrum is primarily composed of high-frequency compo­

nents which are greater than that ofthe experimental repeti­

tion frequency. In this instance, bandwidth-limited detec­

tion can all but eliminate the signal power since the majority 

of the signal power frequency distribution is beyond the cy­

cle repetition frequency and this will result in a decrease in 

the SNR. Inspection ofEq. (26) in the limit as tg approaches 

infinity will quickly dismiss this notion. 

Consider an experiment where the total sampling time is 

fixed at ts and the signal is sampled with N equally spaced 

gates or channels, with an interval of t . The gate duration t c g 

is assumed to be very small relative to tc and thus can be 

considered to be a delta function. This is typical of transient 

digitizers using flash analog-to-digital converters of sample 

and hold circuits followed by a successive approximation 

converter. Also, after recording, the data are multiplied by 

the matched filter which, in this case, is assumed to be the 

expected signal. From the transform of Eq. (5), the noise 

power for stationary white noise ll-sing the expected signal at 

one phase or experimental time is 

N 

y~ = e? I s2(ntc ), (27) 
;~ =.,-,::: 0 

the signal power at the same experimental time is from Eqs. 

(8) and (9), 

y; = keto s2(ntc ) r (28) 

and thus the SNR is, 

N 

SNR = (k Ie?) I .. p(nte )· (29) 
n=-O 

It is not possible to estimate the SNR improvement as a 

function of N without knowledge of the expected signal. 

However, the ratio of two SNR at different N can be used to 

infer the predicted enhancement upon increasing N. Consid­

er the case where N is doubled with a corresponding decrease 

in te , 
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SNR2N = (klif) "to {s2(nu + s2([n + ~ ]tc )}. (30) 

Here, SNR2N is the SNR with twice as many channels as in 

Eq. (29). All other definitions are the same. If N is large 

enough that the signal is well reproduced without aliasing, 

but still with a Nyquist frequency well below the instrumen­

tal frequency limit, then on the average, 

and the SNR improvement upon doubling N is 

which for large N is approximately 2. Thus there is a SNR 

improvement in the power ratio on the order of N, corre­

sponding to the usuai square root law for SNR improve­

ments in signal energy estimates, 

Experimental verification that the SNR does increase as 

the number of data channels used per transient has been 

reported previously. IS There is another improvement that 

will occur when more channels are used for signal recording. 

There is a constant quantization error in each digitized word 

due to the finite number of bits in the digital format. An 

improvement in the SNR will occur when severa! channels 

are used to record the same signal if the quantization error is 

random in the least-significant bit. This improvement will 

not be examined in this work. It is sufficient to point out this 

improvement and to recognize that the maximum number of 

channels should be used for digital matched filter processing 

such as the one described here. 

IV. DISCUSSION 

The time-domain matched filter is sensitive to both the 

frequency and phase of the signal being estimated and can be 

made independent of coherent noise interferences. This re­

sults in an enhancement of the signal estimate over filters 

operating in the frequency domain alone or those obtained 

with gated integration and sampled signal methods. This 

filter is not equivalent to frequency apodization of the trans­

formed time-dependent data. Equivalent frequency-domain 

filtering can only be accomplished if the apodization func­

tion is time periodic. Further, because the filtering is per­

formed \vith the time domain data, transformation to fre­

quency domain is not required, and the signal magnitude 

estimate can be obtained rapidly in comparison to transform 

filter techniques, 

The filter described above is not intended to be the final 

filter for a cyclostationary periodic process. Advanced adap­

tive filters such as the Kalman, adaptive Savitzky-Golay, 

and adaptive matched filters can be used after the optimal 

signal magnitude estimation of the real-time filter described 

here. 17-21 In fact, application of these postexperimental 

filters should be more valid when the signal estimate is ab-
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tained with this real-time filter since the innovations reduce, 

ifnot eliminate, in theory, measurement bias due to coherent 

noise. The resulting signal estimates should be characterized 

by stationary noise statistics from which the abovemen­

tioned advanced filters were derived. 

Finally, it is interesting to note that this filter does not 

require a predictive estimate of the expected signal impulse­

response. The phenomenological signal itself can be used to 

obtain the optimal estimate of the signal magnitUde, The 

filter is thus adaptive in the sense that it may be changed on 

an experiment by experiment basis. This updating process 

requires little more effort than is normally required for mul­

tichannel averaging. However, unlike multichannel averag­

ing, the advantage of this filter is that it can be used for 

optimal estimation of signals that vary in magnitude over 

time scales longer than the experimental cycle time and may 

be used to estimate correlations of nonlinear system excita­

tion responses. 
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