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Abstract

Background: Runs of homozygosity (ROHs) are homozygous segments of the genome where the two haplotypes

inherited from the parents are identical. The current availability of genotypes for a very large number of single

nucleotide polymorphisms (SNPs) is leading to more accurate characterization of ROHs in the whole genome. Here,

we investigated the occurrence and distribution of ROHs in 3,692 Large White pigs and compared estimates of

inbreeding coefficients calculated based on ROHs (FROH), homozygosity (FHOM), genomic relationship matrix (FGRM)

and pedigree (FPED). Furthermore, we identified genomic regions with high ROH frequencies and annotated their

candidate genes.

Results: In total, 176,182 ROHs were identified from 3,569 animals, and all individuals displayed at least one ROH

longer than 1 Mb. The ROHs identified were unevenly distributed on the autosomes. The highest and lowest

coverages of Sus scrofa chromosomes (SSC) by ROH were on SSC14 and SSC13, respectively. The highest pairwise

correlation among the different inbreeding coefficient estimates was 0.95 between FROH_total and FHOM, while the

lowest was − 0.083 between FGRM and FPED. The correlations between FPED and FROH using four classes of ROH

lengths ranged from 0.18 to 0.37 and increased with increasing ROH length, except for ROH > 10 Mb. Twelve ROH

islands were located on four chromosomes (SSC1, 4, 6 and 14). These ROH islands harboured genes associated with

reproduction, muscular development, fat deposition and adaptation, such as SIRT1, MYPN, SETDB1 and PSMD4.

Conclusion: FROH can be used to accurately assess individual inbreeding levels compared to other inbreeding

coefficient estimators. In the absence of pedigree records, FROH can provide an alternative to inbreeding estimates.

Our findings can be used not only to effectively increase the response to selection by appropriately managing the

rate of inbreeding and minimizing the negative effects of inbreeding depression but also to help detect genomic

regions with an effect on traits under selection.
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Background
The inheritance of identical haplotypes from a common

ancestor creates long tracts of homozygous genotypes

known as runs of homozygosity (ROHs) [1, 2]. Longer

haplotypes are inherited from recent common ancestors,

and shorter haplotypes are inherited from distant ances-

tors [2]. Hence, ROHs can provide accurate predictions

of alleles at loci that are identical by descent (IBD) and

has been widely applied to accurately estimate levels of

autozygosity, which is the homozygous state of IBD alleles

in human and livestock populations [2, 3]. There are sev-

eral factors that increase ROH in a population, such as

genetic drift, population bottlenecks, mating of close rela-

tives, and natural and artificial selection [2, 3]. Therefore,

we can assess the ROH patterns in one population to

understand its demographic history and decipher the gen-

etic architecture of economically important traits.

On the basis of levels of autozygosity, ROHs can be

used to estimate the inbreeding coefficient of an individ-

ual (F), which is defined as the probability that both al-

leles at any locus within an individual are IBD [4].

Inbreeding leads to harmful effects, such as a reduction

in genetic variance and higher frequencies of homozy-

gosity for recessive detrimental mutations, reduction in

individual performance (inbreeding depression) and

lower population viability [5]. Since inbreeding has been

implicated in reduced fitness, there is growing interest in

characterizing and monitoring autozygosity to allow ac-

curate estimation of F. Traditionally, F has been esti-

mated based on pedigree information (FPED). Hence, the

estimation of FPED relied strongly on the accuracy and

amount of pedigree data available [6]. Currently, geno-

typing technology is no longer a limiting factor in

marker-based studies of inbreeding [7]. The inbreeding

estimates can be directly derived from the genomic rela-

tionship matrix (FGRM) using genome-wide single nu-

cleotide polymorphism (SNP) data [8]. Genomic F can

also measure homozygosity (FHOM) directly and, thus,

can accurately reflect the actual percentage of the gen-

ome that is homozygous. Furthermore, genomic F allows

us to estimate inbreeding and inbreeding depression for

specific genomic regions, which is not possible with

FPED. In addition, genomic F can be estimated in popula-

tions without pedigree information [9].

When computing the more accurate genomic F using

genotypic data, there is a need to distinguish between al-

leles that are IBD or identical by state (IBS). This dis-

tinction is not easy to make when single markers are

analysed, but the use of ROH allows it. Hence, FGRM and

FHOM always overestimate inbreeding levels compared to

FPED [9], and an alternate approach is to use estimates

that are obtained from observed ROHs.

The objective of this study was to identify and

characterize ROH patterns in a Large White pig

population. We further computed the inbreeding coeffi-

cients based on the ROHs identified (FROH) and estimated

their correlations with those from other methods, includ-

ing genomic relationship matrix (FGRM), homozygous co-

efficients (FHOM) and pedigree-based coefficients (FPED).

Moreover, ROH islands may have occurred due to selec-

tion for functionally important traits.

Methods
Ethics statement

All animals were treated following the guidelines estab-

lished by the Council of China for Animal Welfare. The

experimental protocols were approved by the Science

Research Department of the Institute of Animal Sciences,

Chinese Academy of Agricultural Sciences (CAAS)

(Beijing, China).

Animals and genotyping data

In this study, ear tissue samples were collected from 3,692

Large White pigs from two commercial companies. In

these two companies, there were 1,466 and 2,226 pigs, re-

spectively. All samples were genotyped with the GeneSeek

GGP Porcine HD array. The SNP chip comprises 50,915

probes that are distributed across 18 autosomes and two

sex chromosomes according to the Sus scrofa 10.2 genome

version. To update the SNP positions, we reordered the

SNPs according to the newest version of the pig genome,

Sus scrofa 11.1. Following this, 34,689 autosomal SNPs

remained, with a mean distance of 67.052 kb between ad-

jacent SNPs.

Quality filtering

Quality control was performed using PLINK v1.90 soft-

ware [10] according to the following criteria: (1) the call

rate was higher than 0.9; (2) the minor allele frequency

(MAF) was higher than 0.01; and (3) SNPs were filtered

to exclude loci assigned to unmapped contigs and to sex

chromosomes. After quality control, 3,569 pigs and 33,

723 variants were retained.

Effective population size

The effective population size (Ne) was calculated from

linkage disequilibrium (LD) [11] using the following

equation:

NT tð Þ ¼
1

4 f ctð Þð Þ

1

E r2adj j ct

h i−α

0

@

1

A

where NT(t) is the effective population size estimated t

generations in the past, ct is the recombination rate de-

fined for a specific physical distance between SNP

markers t generations in the past, f(ct) is the Haldane
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mapping function of the genetic distance in Morgans be-

tween SNPs, r2adj is the linkage disequilibrium estimation

after adjusting for sampling bias, and α = {1, 2, 2.2} is a

correction for the occurrence of mutations [12].

In this study, Ne was computed by implementing SNeP

software [12]. Considering the relatively small number of

SNPs per chromosome [13], we used an α = 2 and esti-

mated the recombination rate between a pair of genetic

markers according to Sved and Feldman [14]. The mini-

mum and maximum distances used between SNPs for

Ne estimation were 0.05 and 5Mb, respectively. The

other parameters were set by default [12].

Runs of homozygosity detection and classification

ROHs were identified for each individual using PLINK

v1.90 software [10], which uses a sliding window ap-

proach to scan each individual’s genotype at each marker

position to detect homozygous segments [15]. To define

a ROH, the following criteria must be fulfilled: (1) a

minimum ROH length of 1Mb; (2) a minimum of 50

consecutive SNPs included in a ROH, which was calcu-

lated using the equation proposed by Lencz et al. [16]:

l ¼
loge

α

ns � ni
loge 1−het

� �

where α is the percentage of false positive ROHs (set

to 0.05 in the present study), ns is the number of SNPs

per individual, ni is the number of individuals, and het is

the heterozygosity across all SNPs; (3) a maximum gap

between consecutive SNPs of 1Mb; (4) a minimum

density of one SNP in 100 kb; (5) a sliding window of 50

SNPs across the genome that moves one SNP at a time;

(6) a maximum of five missing genotypes and one het-

erozygous genotype in a ROH to avoid underestimation

of long ROHs; and (7) a window threshold of 0.01.

In this study, the ROHs identified were further divided

into three classes: 1~5, 5~10 and > 10Mb.

Inbreeding coefficient estimation

Different estimates of inbreeding coefficients (F) were

used for all animals:

(1) The genealogical inbreeding coefficients (FPED)

were computed for 3,569 pigs using pedigree

information recorded between 2011 and 2019.

For all individuals who passed quality control,

complete pedigree records were available for 3 to

10 generations with an average depth of 6.86.

Pedigree information on a total of 7,572 animals

between 2011 and 2019 was available. The FPED
was estimated for datasets (n = 3,569) according

to Wright’s coefficient [17] with the R package

pedigreemm [18].

(2) Genomic inbreeding based on homozygous SNPs

was determined using PLINK v1.90 software [10].

The inbreeding coefficient for an individual (FHOM)

was computed as FHOM = (O − E)/(L − E), where O

is the number of observed homozygotes, E is the

number expected by chance, and L is the number

of genotyped autosomal SNPs.

(3) Genomic SNP-by-SNP inbreeding coefficient

(FGRM) estimates were calculated by GCTA soft-

ware [19]. The FGRM was calculated as FGRM

¼
Pm

i¼1ð½xi−EðxiÞ�
2=½2pi ð1−piÞ�−1Þ=m, where xi is

the number of copies of the reference allele for the

ith SNP, m is the number of SNPs, and pi is the

frequency of the reference allele.

(4) Genomic inbreeding coefficients were also

estimated based on ROHs (FROH). The FROH for

each animal was calculated as FROH ¼

P

i
LROHi

Lauto
,

where LROHi
is the length of ROHi of individual i,

and Lauto is the autosomal genome length covered

by the SNPs included in the chip.

The inbreeding coefficients estimated by these four

methods were compared using Pearson’s correlation.

Detection of common runs of homozygosity and gene

annotation

To identify the genomic regions that were most com-

monly associated with ROHs, the percentage of occur-

rences of SNPs in ROHs was calculated by counting the

number of times a SNP was detected in those ROHs

across individuals. The genomic regions most commonly

associated with ROHs were identified by selecting the

top 1% of SNPs observed in ROHs. Adjacent SNPs over

this threshold were merged into genomic regions called

ROH islands [20, 21].

The gene content of the ROH islands was annotated

using the annotation database provided by NCBI (ftp://

ftp.ncbi.nlm.nih.gov/genomes/refseq/vertebrate_mam-

malian/Sus_scrofa/latest_assembly_versions/GCF_

000003025.6_Sscrofa11.1). The biological function of

each annotated gene within the ROH islands was deter-

mined through an extensive accurate literature search.

Results
Effective population size

The tendency of effective population sizes (Ne) esti-

mated based on linkage disequilibrium (LD) is illustrated

in Fig. 1. The historical Ne from 197 generations to 10

generations ago of each breed was estimated based on

the LD decay. An increasing Ne as a function of the
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number of generations was observed, with a Ne of 99 es-

timated at 10 generations ago and 288 estimated at 197

generations ago.

Summary of runs of homozygosity

In total, 176,182 ROHs were identified from 3,569 ani-

mals. All of the Large White individuals exhibited at least

one ROH longer than 1Mb. Table 1 summarizes the basic

statistics of the three classes of ROH. As seen in Table 1,

the different classes of ROH length for the genotyped ani-

mals revealed that ROHs shorter than 10Mb predomi-

nated. The segments shorter than 10Mb account for

approximately 86.27% of ROHs. Although the number of

ROHs 1 ~ 5Mb was the largest, the proportion of the gen-

ome covered by them was relatively small compared with

that of ROH segments longer than 10Mb.

As seen in Fig. 2, the numbers of ROHs on autosomes

varied, which indicates that the ROHs identified were

unevenly distributed on autosomes. The numbers of

ROH per chromosome tended to increase with chromo-

some length. The smallest number of ROHs per

chromosome was found on SSC 12, while the largest

number of ROHs was on SSC 6. The highest ROH

coverage was observed on SSC14, whereas the lowest

was on SSC13 (Fig. 2).

The relationship between the number of ROHs and

the length of the genome covered by ROHs per

individual varied considerably among animals (Fig. 3).

As the number of ROHs increased, the cumulative

length of the ROHs also increased. In this population,

one animal with extremely long ROHs had a length of ~

900Mb (925.603Mb), and one animal with extremely

short ROHs had a length of ~ 20Mb (18.868Mb).

Inbreeding coefficient estimates based on pedigree and

genomic data

In the present study, seven kinds of inbreeding coeffi-

cients were estimated based on the pedigree or genomic

data of all individuals. The pedigree-based inbreeding es-

timates (FPED) obtained using all pedigree data available

ranged from 0 to 0.156 with an average of 0.011. The

four kinds of FROH were calculated based on three clas-

ses of ROH and the total ROH lengths. The average gen-

omic inbreeding based on the total observed ROHs

(FROH_total) was 0.140 with a range from 0.008 to 0.409

in this population. The estimated FGRM inbreeding coef-

ficients ranged from −0.168 to 1.359 (mean = 0.099), and

the estimated FHOM inbreeding coefficients ranged from

−0.177 to 0.431 (mean = 0.103).

Figure 4 depicts the pairwise correlations among seven

kinds of inbreeding coefficients. Among all pairwise cor-

relations, the highest correlation was 0.95 between

FROH_total and FHOM, while the lowest correlation was −

0.083 between FGRM and FPED. The correlations between

Fig. 1 Effective population size (Ne) of the Large White pig population

Table 1 Descriptive statistics of three classes of runs of homozygosity

Type of ROH n Number percentage, % Mean ± SD,
Mb

Total length, Mb Length percentage, %

ROH 1~5 Mb 102,341 58.09 3.24 ± 0.93 331,612.8 29.34

ROH 5~10 Mb 49,645 28.18 6.85 ± 1.35 340,110.2 30.09

ROH > 10 Mb 24,196 13.73 18.95 ± 12.00 458,605.3 40.57
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Fig. 2 The frequency distribution of the average number of ROHs per chromosome (bars) and average percentage of each chromosome covered

by ROHs (lines)

Fig. 3 Total number of runs of homozygosity (ROHs) longer than 1 Mb and total length of genome (Mb) covered by ROH segments

per individual
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the inbreeding coefficients calculated by different classes

of ROH with FPED ranged from 0.18 to 0.37, and the

highest correlation was found between FROH > 10 Mb and

FPED (0.37).

Functional annotation of genes

The percentage of SNPs in ROHs was plotted against

the positions of the SNPs along the chromosomes in

Fig. 5. In this study, the threshold used to define a ROH

hotspot in the genome was 38.19%, above which the top

1% of SNPs most commonly observed in ROHs could be

selected. The SNP with the highest proportion (63.27%

of occurrences) was INRA0044866 on SSC14, which was

annotated as within the SIRT1 gene. SIRT1 is related to

porcine ovarian cell function, suppresses adipogenesis

[4, 22], and affects preadipocytes [23]. The region on

SSC14 with the second strongest signal harboured one

gene: MYPN (63.21% of occurrences). The MYPN gene

has been documented to be associated with meat and

carcass traits in Italian Large White pigs [24]. Twelve

ROH islands located on four chromosomes (SSC1, 4, 6

and 14) ranged in sizes from 3 SNPs on SSC4 and

SSC14 to 107 SNPs on SSC4 (Table 2). These ROH

islands harboured important candidate genes, which are

shown in Table S1.

Discussion
Traditionally, the inbreeding coefficient was estimated

based on pedigree data. In reality, pedigree information

might be erroneous, such as having a missing parent or

incorrect parent information. Furthermore, Large White

pigs in the base population could be hypothesized to be

unrelated. Moreover, the FPED value is the statistical ex-

pectation of the probable IBD genomic proportion [25],

and FPED does not take into account the stochastic

events of recombination during meiosis [26]. Thus, FPED
could not completely show the actual relatedness among

individuals in the population. With the development of

high-throughput genotyping technologies and the reduc-

tion in genotyping costs, the inbreeding coefficient can

be computed based on molecular information [27–29].

Genetic markers can provide a more accurate relation-

ship estimate than pedigree [30]. Since FHOM cannot

distinguish IBD alleles from IBS alleles, it might overesti-

mate inbreeding levels [31]. In addition, FHOM and FGRM
values can be negative for some individuals. Therefore,

using the above three methods to estimate the

Fig. 4 Scatterplots (lower panel) and Pearson’s correlations (upper panel) of the genomic inbreeding coefficients FROH (FROH_total, FROH 1~5 Mb, FROH

5~10 Mb, FROH > 10 Mb), FGRM and FHOM, and pedigree-based inbreeding coefficient (FPED)
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inbreeding coefficient is not sufficiently accurate. FROH

can alleviate the issues mentioned above, and thus, FROH

might be a more effective and accurate alternative for

quantifying animal relatedness and inbreeding levels in

theory [9, 15, 32].

In the present study, the level of inbreeding based on

pedigree was expected to be lower than FROH in the

Large White pig population. The correlation between

the FPED and FROH estimates was low (0.18–0.37) (Table

1). These results are consistent with previous studies in

other pig populations [33, 34] and Nellore cattle [35].

Pearson’s correlation between FROH > 10 Mb and FPED was

the highest (0.37) among those between different classes

of ROH and FPED in the Large White pig population,

while the correlation between FPED and FROH_total was

slightly lower (0.35) (Fig. 4). Compared to the other two

classes of ROH, the percentage of ROHs with a length >

10Mb among ROHs of all lengths was the highest at

40.57%. These results suggested that ROH > 10Mb was

the major contribution to FROH_total.

ROHs can reveal the time that inbreeding occurred

given the approximate correlation between the length of

a ROH and the distance to the common ancestor due to

the occurrence of recombination events over time.

Fisher [36] reported that the expected length of a DNA

segment that is IBD follows an exponential distribution

with a mean equal to 1/2 g Morgans, where g is the

number of generations since the common ancestor. Re-

combination events can interrupt long chromosome seg-

ments, so long ROHs (~ 10Mb) arise as a result of

recent inbreeding (up to five generations ago), and short

ROHs (~ 1Mb) are produced by IBD genomic regions

from old ancestors [15], which are frequently un-

accounted for in the recorded pedigree of an individual.

ROHs can be used to improve the accuracies of gen-

omic breeding values (GEBV). EBVs estimated by the

traditional BLUP method are based on pedigrees, which

are used to construct a numerator relationship matrix

(A matrix). If the A matrix is replaced by a relationship

Table 2 List of genomic regions of extended homozygosity

detected in the Large White pig population within each ROH

island

Chr. Start, bp End, bp Length, bp No. SNPs No. Genes

1 45,159,055 45,580,780 421,725 4 3

1 46,051,365 46,251,692 200,327 4 1

1 47,215,836 49,995,943 2,780,107 50 3

1 66,162,636 67,278,674 1,116,038 18 9

4 96,116,417 102,143,358 6,026,941 107 158

4 102,523,866 102,618,589 94,723 3 1

4 104,299,568 104,397,592 98,024 3 2

4 106,857,958 107,236,227 378,269 12 2

6 26,918,929 31,001,440 4,082,511 71 86

14 44,919,089 45,412,495 493,406 13 3

14 47,355,668 47,467,063 111,395 3 5

14 68,649,520 73,203,453 4,553,933 70 35

Chr. chromosome

Fig. 5 Manhattan plot of occurrences (%) of a SNP in ROHs across individuals
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matrix based on genotype data (G matrix), GEBV can be

obtained with BLUP. Based on the genotype matrix, it is

not possible to identify whether IBS marker alleles are

IBD or not. ROHs can identify alleles in the same or dif-

ferent individual(s), which indicates IBD [37]. Luan et al.

[38] proposed a novel method to predict GEBV based on

ROHs. The results showed that the accuracy of GEBV

determination was higher with GROH than with GGRM by

simulation study.

Here, the ROH islands harboured many candidate genes

controlling economically important traits of Large White

pigs (Table S1). We identified several candidate genes as-

sociated with reproduction. SIRT1 may regulate granulosa

cell apoptosis during follicular atresia in porcine ovaries

[39] and can reduce ovarian cell viability in rats [40].

SETDB1 plays an essential role in the maintenance of

gonocyte survival in pigs, and knockdown of SETDB1 can

induce gonocyte apoptosis [41]. PSMD4 effectively inhibits

sperm-oocyte binding [42]. GNRHR2 is involved in regu-

lating reproductive behaviour in pigs [43]. CES5A,

GAL3ST1 and SPAG17 are essential for spermatogenesis

and male fertility [44–46]. Some of the candidate genes

have been documented as important candidate genes for

muscular development and fat deposition. MYPN showed

an association with traits related to muscularity in Pie-

train×(Landrace×Large White) and Duroc × Pietrain, par-

ticularly association with ham weight and lean content in

Duroc × Pietrain [47]. SLC12A4 is differentially expressed

between the white and red skeletal muscle of Chinese

Meishan pigs [48]. SIRT1 may downregulate pig preadipo-

cyte proliferation and differentiation [23]. FMO5 plays a

role in increasing glucose metabolism and insulin sensitiv-

ity in brown adipose tissue [49]. SIM1 is involved in the

regulation of energy homeostasis [50], and KIF1BP and

MCHR2 are involved in the regulation of food intake [51,

52], which in turn affects obesity risk [53]. HORMAD1,

TBX15 and WARS2 are also associated with obesity [54,

55]. In addition, ADGRB3 is related to environmental in-

formation processing and environmental adaptation in do-

mestic yak [56].

All the candidate genes residing in ROH islands were

further analysed using the DAVID v6.8 tool [57] and the

Sus scrofa annotation file as background to identify sig-

nificant (P < 0.05) GO terms and KEGG pathways. Sev-

eral GO terms (12 biological process, 5 molecular

function and 2 cellular component) were significant, and

two were significant for KEGG (Additional file: Table

S2). The GO term spermatogenesis (0007283) was of

particular note, where there were 6 genes. These results

reflected that most quantitative phenotypic traits are

likely to be influenced by multiple genes. The enrich-

ment results provide novel insights into the genetic

architecture of traits under selection. However, the in-

formation provided by GO analysis is limited.

Conclusions
In this study, we investigated the occurrence and distri-

bution of ROHs on the autosomes of Large White pigs.

The number of ROHs shorter than 10Mb was the high-

est, while the genome sequence length covered by ROHs

was the longest for ROHs longer than 10Mb. Among

the correlations between the genomic inbreeding coeffi-

cients calculated by different methods and the correl-

ation coefficient based on pedigree calculation, the

correlation between FPED and FROH > 10 Mb was the high-

est. FROH might be an effective and accurate alternative

for assessing animal relatedness and inbreeding levels.

ROH islands harboured many candidate genes control-

ling reproductive, muscular development, fat deposition

and adaptation. Our findings contribute to an under-

standing of inbreeding effects when assessing ROHs at

the genome level and how selection can shape the distri-

bution of ROH islands in the swine genome.
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