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Abstract 

Background: Leaf biochemical composition corresponds to traits related to the plant state and its functioning. This 
study puts the emphasis on the main leaf absorbers: chlorophyll a and b (Cab), carotenoids (Cc), water (Cw) and dry 
mater (Cm) contents. Two main approaches were used to estimate [Cab, Cc, Cw, Cm] in a non-destructive way using 
spectral measurements. The first one consists in building empirical relationships from experimental datasets using 
either the raw reflectances or their combination into vegetation indices (VI). The second one relies on the inversion 
of physically based models of leaf optical properties. Although the first approach is commonly used, the calibration 
of the empirical relationships is generally conducted over a limited dataset. Consequently, poor predictions may be 
observed when applying them on cases that are not represented in the training dataset, i.e. when dealing with differ-
ent species, genotypes or under contrasted environmental conditions. The retrieval performances of the selected VIs 
were thus compared to the ones of four PROSPECT model versions based on reflectance data acquired at two pheno-
logical stages, over six wheat genotypes grown under three different nitrogen fertilizations and two sowing density 
modalities. Leaf reflectance was measured in the lab with a spectrophotometer equipped with an integrating sphere, 
the leaf being placed in front of a white Teflon background to increase the sensitivity to leaf biochemical composition. 
Destructive measurements of [Cab, Cc, Cw, Cm] were performed concurrently.

Results: The destructive measurements demonstrated that the carotenoid, Cc, and chlorophyll, Cab, contents were 
strongly correlated  (r2 = 0.91). The sum of Cab and Cc, i.e. the total chlorophyllian pigment content, Cabc, was therefore 
used in this study. When inverting the PROSPECT model, accounting for the brown pigment content, Cbp, was neces-
sary when leaves started to senesce. The values of Cabc and Cw were well estimated  (r2 = 0.81 and  r2 = 0.88 respec-
tively) while the dry matter content, Cm, was poorly estimated  (r2 = 0.00). Retrieval of Cw from PROSPECT versions was 
only slightly biased, while substantial overestimation of Cabc was observed. The ranking between estimated values of 
Cabc and Cw from the several PROSPECT versions and that derived using the VIs were similar to the ranking observed 
over the destructively measured values of Cabc and Cw.

Conclusions: PROSPECT model inversion and empirical VI approach provide similar retrieval performances and are 
useful methods to estimate leaf biochemical composition from spectral measurements. However, the PROSPECT 
model inversion gives potential access to additional traits on surface reflectivity and leaf internal structure. This study 
suggests that non-destructive estimation of leaf chlorophyll and water contents is a relevant method to provide leaf 
traits with relatively high throughput.
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Background
Plant phenotyping was recognized as one of the major 

bottleneck in the genetic improvement of crops [1]. It 

is currently a rapidly growing research domain that fol-

lows the continuous technical advances of sensors, robot-

ics and computer systems for data processing. It relies 

on non-destructive and high-throughput measurements 

used to assess functional traits repeatedly throughout the 

growing season [2]. Plant phenotyping is completed at 

three main scales [3]: (1) the plot scale, i.e. a collection 

of plants mostly sampled in field conditions, (2) the plant 

scale generally measured under controlled conditions in 

the greenhouse, and (3) the organ scale, i.e. an element of 

the plant (leaf, stem, reproductive or storage organs) that 

can be sampled either in the field or under controlled 

conditions. For phenotyping purposes, the leaf biochemi-

cal composition provides valuable information on the 

plant state regarding some key processes such as photo-

synthesis, respiration and transpiration. �e close rela-

tionship between chlorophyll and carotenoid pigments 

and nitrogen status of crops was indeed investigated by 

several studies [4–10] and depends on crop phenologi-

cal stages as well on the leaf light environment [11–14]. 

Variation of the leaf relative water content (water mass 

per unit leaf mass) is related to the water stress experi-

enced by the plant [15] or indicates the senescence level 

[16]. Green leaves show generally small deviations of the 

relative water content to keep the leaf turgescent while 

being compatible with biochemical processes [17]. �e 

dry matter content corresponds to the leaf mass per area. 

It is related to photosynthesis and respiration processes 

[18–20]. It also controls the transformation of the mass 

of assimilates produced and allocated to the leaf into a 

leaf area increment within many crop models [21–23].

Chlorophyll, carotenoid, water and dry matter con-

tents show strong and specific absorption features, which 

impact the leaf reflectance and transmittance spectra 

[24]. It is therefore possible to estimate the content of 

these constituents from the measurement of leaf opti-

cal properties [25–27]. Indeed, the actual quantity that 

drives light reflectance and transmittance is the con-

tent (mass of constituent per unit leaf area) rather than 

the concentration (mass of constituent per unit leaf dry 

mass): the biochemical content governs the effective path 

length of light through the leaf and controls thus the leaf 

reflectance and transmittance through scattering and 

absorption processes.

�e estimation of the leaf chlorophyll and carotenoid 

content from optical measurements [28, 29] became 

very popular with the rise of precision farming focusing 

on nitrogen applications [13]. Empirical relationships 

between leaf water content and leaf optical properties 

have also been calibrated over experimental datasets and 

were demonstrated to be efficient [30–34]. Fewer stud-

ies reported attempts to estimate dry matter content 

from reflectance measurements [26, 35, 36]. �ese stud-

ies are generally reporting results obtained over a wide 

range of contents due either to interspecific differences 

or to contrasted environmental conditions such as vari-

ation in salinity or in the illumination levels in relation to 

the position of the leaf in the canopy [35, 36]. However, 

quantifying the differences expected between genotypes 

grown under similar conditions is more challenging: the 

differences between genotypes in pigment, water and 

dry matter contents are generally limited. In these con-

ditions, a significant part of the variation in leaf optical 

properties is also due to variations in the leaf mesophyll 

structure, the distribution of pigments in the leaf volume 

as well as surface features. �is affects the relationships 

between vegetation indices and chlorophyll content while 

a physically based model of leaf optical properties should 

allow to explicitly account for these potentially confound-

ing effects. Furthermore, new genotypes grown under 

given environmental conditions may have characteristics 

not well represented in the VI-relationship training data-

base, making the biochemical content estimation uncer-

tain. A recent review of models of leaf optical properties 

[37] distinguishes three main approaches based either on 

radiative transfer [38–41], on stochastic processes [42, 

43], or on ray tracing [44, 45]. PROSPECT is one of the 

most widely used leaf radiative transfer models [24, 41, 

46, 47]. It has been successfully applied to retrieve leaf 

biochemical composition from reflectance and/or trans-

mittance measurements [26, 46, 48, 49]. Several versions 

of the PROSPECT model are available. �ey mostly dif-

fer by the increasing detail in the pigments used and the 

associated values of the specific absorption coefficients, 

water and dry matter, as well as by the value of the refrac-

tive index controlling the scattering processes in the leaf.

�e objective of this study was to evaluate the perfor-

mances of the several versions of the PROSPECT model 

to estimate leaf chlorophyll, Cab, carotenoid, Cc, water, Cw , 

and dry matter, Cm, contents from leaf reflectance meas-

urements in the context of phenotyping experiments. 

Keywords: Chlorophyll content, Carotenoid content, Water content, Dry matter content, Radiative transfer model, 
Reflectance, Transmittance, Leaf, Wheat, Phenotyping
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Performances were compared to those obtained using 

empirical relationships with vegetation indices. �e study 

is based on an experiment conducted over six wheat cul-

tivars grown under several nitrogen levels and sowing 

densities. Leaf reflectance spectra in the 450–2250  nm 

domain were acquired at two growing stages, concur-

rently with destructive measurements of chlorophyll, 

carotenoid, water and dry matter contents. Attention was 

paid both to the accuracy and precision of the biochemi-

cal content estimates as well as to the ranking capacity 

necessary to identify differences between genotypes.

Methods
The biological material

�e experiment took place near Toulouse at the INRA 

centre “Auzeville Tolosane” (43°33′N, 1°28′E) in France 

over a site presenting deep and homogenous soil condi-

tions. �e wheat plants from which the leaves were col-

lected were grown in field conditions described in [2]. 

�e crop was sown in October 2011 and harvested in 

June 2012. �ree factors were taken into account in the 

experimental design which resulted into 36 modalities: 

six cultivars (four winter wheat: Apache, Caphorn, Sois-

sons and Hysun (hybrid); two durum wheat: Isildur and 

Biensur), two sowing densities and three nitrogen levels.

The measurements

Leaves were collected in April 2012 at the “two nodes” 

stage and in June 2012 during grain filling. All the 36 

modalities were sampled in April, while only 26 of them 

were collected in June. For each of the resulting 62 sam-

ples, six top leaves were randomly collected. �ree of 

them were used for the destructive measurements of dry 

matter and water content and the remaining three for 

destructive measurements of chlorophyll and carotenoid. 

Reflectance measurements were conducted for each of 

the six leaves used for destructive measurements. All 

data for destructive and spectral measurements are pro-

vided in Additional file 1.

Destructive measurements

�e area (S) of each leaf was first measured by scanning 

each sample and processing the resulting image with the 

SCANAREA software [40]. �en, the three leaves used 

for the destructive measurements of Cm and Cw were 

weighed before (Mfresh), and after (Mdry) drying them out 

at 80 °C in an oven during 2 days. �e dry matter (Cm in 

mg/cm2) and water contents (Cw in mg/cm2) were then 

computed using the following equations:

(1)Cm =

Mdry

S

�e three leaves used for Cab and Cc leaves were lyophi-

lized and stored in the dark at −  20  °C after measuring 

their area. �e mass of Chlorophyll a and b and carote-

noid were then estimated according to [50] by extracting 

the pigments in acetone and measuring the optical den-

sity of the solution. �e corresponding content was com-

puted using the measured area of each leaf.

Spectral measurements

�e optical properties of the 372 leaves were acquired 

using an ASD Fieldspec-3 spectroradiometer (Analytical 

Spectral Devices Inc., Boulder, Colorado, USA) equipped 

with an integrating sphere Li-Cor 1800-12 (LI-COR Inc., 

Lincoln, NE). Data were sampled at intervals of 1.4  nm 

(350–1050 nm) and 2 nm (1000–2500 nm) with a spec-

tral resolution of 3 nm for the region 350–1000 nm and 

10  nm for the region 1000–2500  nm [51]. �e direc-

tion of the incoming light was almost normal to the 

leaf sample while the bare fiber of the spectroradiom-

eter viewed the integrating sphere wall under a 25° field 

of view (Fig. 1). �e original Li-Cor lamp system of the 

integrating sphere was replaced by a lamp connected to 

a stabilized power supply. �e original infrared filter was 

removed to increase the light available in this domain 

where the spectrophotometer has a lower sensitivity 

than in the shorter wavelengths. A Teflon white panel 

was used as the background of the leaf as proposed by 

[49] to increase the optical path in the leaf, thus enhanc-

ing the absorption features. Another Teflon white panel 

was used as a secondary reference to compute the direc-

tional-hemispherical reflectance factor (DHRF) of the 

leaf-white background system. �e absolute DHRFref  

of the secondary Teflon white reference was calibrated 

against a spectralon primary reference panel [52].

�ree spectrophotometer measurements were com-

pleted for each of the six leaves sampled per date, cultivar 

(2)Cw =

Mfresh − Mdry

S

Fig. 1 The experimental setup for leaf reflectance measurement with 
Teflon white panel
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and modality. �e average (Sleaf (�)) of the resulting 18 

individual spectra was computed and then transformed 

into the corresponding DHRF (DHRFleaf (�)) according to 

Eq. (3):

where Sref _bef (�) and Sref _aft(�) are the spectra of the sec-

ondary Teflon reference completed before and after the 

series of the 18 leaf spectrophotometer measurements. 

�e reflectance of the white background was measured 

systematically just after the Sref _aft(�) measurements to 

account for possible changes of its properties due to the 

contact with the leaf.

The vegetation indices

A vegetation index is a combination of spectral bands 

that captures some absorption characteristics of a given 

biochemical content. Several of them have been pro-

posed in the literature, mainly to assess water [33], and 

chlorophyll and carotenoid contents [48, 53, 54]. How-

ever, their associated performances are still a matter of 

discussion when the calibration and validation data-

sets differ in acquisition conditions, crop state and/or 

soil background [55, 56]. Two VIs (Dx4 and Clre) were 

selected among the most popular ones for chlorophyll 

content estimates (Table  1): Dx4 was developed for the 

Dualex Scientific+™ instrument (Force-A, Orsay, France) 

to estimate chlorophyll content from the transmittance in 

the red-edge (T710) and the near infrared (T850) [29]. CIre 

is the ratio between the reflectance in the near infrared 

(R760−800) and the red-edge (R690−710) [28, 57]. For water 

content, two popular indices were selected: SRw [31] is 

the ratio between reflectance in the short wave infrared 

(R1300; R1450) and NDw [27] is a normalized difference 

of bands in the short wave infrared (R1062,R1393 ). Since 

all the selected VIs are designed to enhance the absorp-

tion features of chlorophyllian pigments or water for leaf 

transmittance (Dx4) or reflectance over a black back-

ground (other VIs), they are also expected to work simi-

larly for leaf optical properties measured over a white 

background. Simple linear functions were considered 

to empirically relate the biochemical contents and Dx4, 

CIre and SRw. A second order polynomial function was 

used to relate NDw and Cw. A leave-one-out method was 

used to quantify the performances of the empirical cali-

bration using the  r2 (squared Pearson correlation coeffi-

cient) and RMSE (root mean square error) between the 

estimated and measured biochemical contents.

(3)

DHRFleaf (�) =
2Sleaf (�)

(

Sref _bef (�) + Sref _aft(�)
)DHRFref (�)

Inversion of the PROSPECT model

PROSPECT versions

�e PROSPECT model [41] extended to multiple layers 

(plates) the (single) plate model from Allen [58] using the 

Stokes system of equations [59]. �e mesophyll structure 

parameter, N , characterizes the number of homogenous 

elementary layers that constitute the leaf. Each elemen-

tary layer is described by the refractive index of the leaf 

material, n, and by an absorption coefficient computed 

as the sum of the specific absorption coefficients of each 

constituent weighted by their corresponding content. 

Several versions of the PROSPECT model have been pro-

posed in the literature. �ey differ mainly by the specific 

absorption coefficients and refractive index. �e origi-

nal version was first updated based on a dataset of 58 

leaves representing a broad range of species over which 

the specific absorption coefficients were recalibrated 

[26]. �is resulted into PROSPECT version 3 (P3) [24, 

41]. More recently, new values of the specific absorption 

coefficients and refractive index were proposed by [46] 

based on a larger set of leaf reflectance and transmittance 

measurements. It resulted into PROSPECT version 4 (P4) 

where chlorophyll and carotenoids were pooled together, 

and PROSPECT version 5 (P5) where chlorophyll and 

carotenoids were described separately. Finally, PROS-

PECT-D was proposed by [60], where anthocyanins were 

described explicitly in addition to chlorophyll a and b and 

carotenoids. Besides, the refractive index was also recali-

brated. Finally, the contribution of the brown pigment 

content (Cbp) to leaf absorption can be added to each of 

the 4 PROSPECT versions, leading to P3b, P4b, P5b and 

PDb versions (Table  2). Brown pigments correspond to 

polyphenols that appear during leaf senescence [46].

Adaptation of PROSPECT to the measurement configuration

�e reflectance measurements were achieved with the 

leaf placed over a white Teflon background to enhance 

the sensitivity to the leaf biochemical composition by 

increasing the optical path in the leaf [49]. PROSPECT 

simulates the directional hemispherical reflectance 

Table 1 Definition of the selected vegetation indices

Variables VIs Formula References

Cabc Dx4 T850

T710
− 1 [29]

Clre R760−800

R690−710
− 1 [28, 57]

Cw SRw R1300

R1450

[31]

NDw R1062−R1393

R1062+R1393

[27]
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(Rleaf  ) and transmittance (Tleaf ) of the leaf from the 

knowledge of the chlorophyll, carotenoid, water and dry 

matter contents, as well as brown pigments and the mes-

ophyll structure parameter, N  [41, 46]. In this study, the 

computation of the surface reflectivity was approximated 

by using the parameter Rsurf  conversely to the original 

PROSPECT version where the ‘α’ solid angle was used 

to mimic the leaf surface roughness. �is allows to get a 

wider range of variability of surface reflectivity in agree-

ment with observations [61]. Rsurf  was assumed to be 

independent from wavelength since the refractive index 

is very little spectrally dependent in the 350–2500  nm 

domain [61, 62]. Because wheat presents only small dif-

ferences between the upper and lower surface features, 

Rsurf  was assumed to be the same for both faces. Indeed, 

the possible small differences between the two faces have 

a marginal impact on leaf characteristics estimates since 

the value of the illuminated face will mainly control the 

optical properties of the system. Figure 2 showed the rep-

resentation of the system of layers used to compute leaf 

reflectance when the leaf was placed over the white Tef-

lon background. �e leaf volume layer was characterized 

by the reflectance and transmittance simulated by PROS-

PECT assuming no reflectivity at the top and the bottom, 

while the leaf upper and lower epidermis layers were 

characterized by Rsurf  with no absorption.

�e system described in Fig.  2 was solved in three 

steps. First the reflectance of the lower leaf surface over 

the white Teflon background, Rwb
surf , was computed as:

where Rsurf  is the reflectivity of the lower surface, assum-

ing that the transmissivity of the interface is 1 − Rsurf  

and there is no absorption at the leaf surface. Rwb(�) is 

the hemispherical reflectance of the Teflon white back-

ground. �e reflectance at the bottom of the upper epi-

dermis, Rwb

bue
(�), was then computed as:

where Rleaf (�) is the leaf volume reflectance computed 

from the PROSPECT model for which the reflectiv-

ity of the surface of the leaf volume is set to 0; Tleaf (�) 

is the corresponding leaf volume transmittance. Note 

that Eq.  (5) assumes that the properties of the leaf are 

the same on both faces and that the directional hemi-

spherical reflectance and transmittance are equal to the 

bi-hemispherical corresponding quantities. �en, the 

reflectance of the leaf over the white background was 

computed using the upper surface reflectivity which was 

assumed to be identical to the lower surface:

Finally, since the incident light on the leaf may directly 

illuminate the white background in case of small leaves, 

an additional parameter, fwb, was introduced to describe 

this situation. fwb is the fraction of white Teflon back-

ground illuminated directly by the light source. �e cor-

responding reflectance of the system was finally written 

as:

(4)Rwb
surf (�) = Rsurf +

Rwb(�)
(

1 − Rsurf

)2

1 − Rsurf Rwb(�)

(5)Rwb
bue(�) = Rleaf (�) +

Rwb
surf (�)Tleaf (�)

2

1 − Rleaf (�)Rwb
surf (�)

(6)Rwb
leaf (�) = Rsurf (�) +

Rwb
bue(�)

(

1 − Rsurf (�)
)2

(

1 − Rsurf (�)Rwb
bue(�)

)

(7)R(�) = Rwb(�).fwb +
(

1 − fwb
)

.Rwb
leaf (�)

Table 2 Description of the different PROSPECT model versions considered in this study

Version name PROSPECT 3 PROSPECT 4 PROSPECT 5 PROSPECT D

Chlorophyllian pigment separation Cabc Cabc Cab and Cc Cab, Cc and CAnth

References [26] [46] [46] [60]

Brown pigments Cbp = 0 Cbp Cbp = 0 Cbp Cbp = 0 Cbp Cbp = 0 Cbp

Abbreviated name P3 P3b P4 P4b P5 P5b PD PDb

Fig. 2 Leaf model to measure reflectance over a white background: 
the reflectance and transmittance values of each layer are indi-
cated.Rsurf  is the surface reflectivity for both upper and lower leaf 
surfaces (independent of wavelength), Rleaf (�) and Tleaf (�) are the 
leaf reflectance and transmittance simulated by PROSPECT, assuming 
no reflectivity at the top and the bottom of the leaf volume. Rwb is the 
reflectance of the Teflon white background. All the reflectance and 
transmittance terms are bi-hemispherical except the upper and lower 
leaf surface reflectivity is directional-hemispherical
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Fitting the white background PROSPECT model variables

An iterative minimization of the cost function, J (V ) 

(Eq.  8), was applied to estimate the model variables, 

V  , where V  = [Cabc, Cw, Cm, N , Rsurf, fwb] for P3 and P4, 

V  = [Cab, Cc, Cw, Cm, N ,Rsurf , fwb] for P5 and V  = [Cab, Cc , 

CAnth,Cw, Cm, N ,Rsurf , fwb] for PD. �e brown pigments 

Cbp were also considered as an additional variable for 

each of the four models (P3b, P4b, P5b, PDb).

�e cost function J (V ) computed the distance between 

the PROSPECT simulated reflectance spectrum and the 

actual measurements over the 18 acquisitions performed 

on each date, cultivar and modality:

�e original 300–2500  nm spectral range of the ASD 

spectroradiometer was restricted to the 400–2200  nm 

domain because (1) the PROSPECT model was cali-

brated only for wavelengths higher than 400 nm and (2) 

the signal was dominated by noise for wavelengths longer 

than 2200  nm. Furthermore, the 400–2200  nm spectral 

domain contains a significant part of all the spectral fea-

tures of the biochemical components considered in this 

study.

�e interior point minimization algorithm [63] was 

used to minimize J (P) by keeping the variables within 

their bounds (Table  3). �ree initial guesses (Table  3) 

were used to avoid the algorithm to be trapped in a 

local minimum. �e estimated biochemical contents 

were then computed as the mean value over the three 

optimization results. Fortunately, in most situations the 

three initial guesses were providing almost the same 

solution.

Results
Relationships between biochemical contents

�e relationships between Cab, Cc, Cw and Cm were first 

investigated over the destructive measurements which 

(8)J (V ) =

√

√

√

√

1

1800

�=2200
∑

�=400

(

Rwb∗
prospect(�) − Rwb

leaf (�)

)2

were considered as the reference. Note that Cbp was not 

measured since polyphenols are difficult to extract.

�e results showed that dry matter content was inde-

pendent from the content of the other constituents with 

 r2 lower than 0.02 (Fig.  3). Chlorophyll and, in a lesser 

extent, carotenoid contents were correlated to water 

content  (r2 larger than 0.2 significant at α = 5%) since a 

loss of water is concomitant with a loss of chlorophyll 

and carotenoid pigments for the senescing leaves (Fig. 3). 

�e strongest correlation was observed between chloro-

phyll and carotenoid pigments  (r2 = 0.91 with a ratio of 

Cab/Cc5, when the offset is neglected Fig. 3), which was 

consistent with the results from [54] and [41]. However, 

while these studies found an offset of 5  µg/cm2 in this 

relationship over a large range of species, we observed a 

lower offset for the carotenoid content (≈1 µg/cm2) when 

all the chlorophyll had disappeared. Considering this 

strong relationship between chlorophyll and carotenoid 

contents, we did not consider them separately in the fol-

lowing of the study.

PROSPECT spectra simulation performances

�e performances of the inversion were first evaluated 

by considering the agreement between the simulated 

and the measured reflectance spectra. Figure  4 shows 

an example of a measured and simulated leaf reflectance 

spectrum, as well as the several terms used in Eqs. (4–7). 

�e reflectance was simulated using the estimated val-

ues of the variables V  after minimizing the cost func-

tion J (V ) (Eq. 8). �is result showed that the reflectance 

spectra simulated using the retrieved PROSPECT model 

variables closely matched the measurements. Indeed, 

when considering the whole dataset, the average RMSE 

between the measured and estimated spectra over all the 

samples and the different PROSPECT versions was 0.013 

(Fig.  5). PD and PDb provided the lowest RMSE. �e 

observed outliers corresponded to senescent leaves for 

which absorption features cannot be properly modeled 

with the present PROSPECT model versions.

Table 3 Initial guesses and bounding limits required to perform the fitting of the PROSPECT models

List of the three initial guesses and bounding limits used to minimize the cost function for each variable. Min and Max are the minimum and maximum bounding 

values of each variable

Variables Cc

(µg/cm2)
Cab

(µg/cm2)
Cabc

(µg/cm2)
CAnth

(µg/cm2)
Cm

(mg/cm2)
Cw

(mg/cm2)
Cbp N Rsurf fwb

Initial guess

1 10 50 60 5 12 5 0.01 1.4 0.05 0.01

2 5 20 20 1 8 1.5 0.2 2 0.1 0.2

3 50 80 90 10 40 18 0.001 1.1 0.01 0.1

Bounds

Min 0 0 0 0 1 1 0 1.01 0 0.0

Max 80 140 140 20 50 30 1 3.5 0.5 1.0
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Performances for biochemical composition estimation

�e values of the retrieved Cab,  Cc, Cabc,  Cw and  Cm were 

compared to the destructive measurements. Results 

(Table  4) showed that when combining these pigments 

into chlorophyllian pigments, Cabc estimates were 

strongly correlated with the destructive measurements 

for all the PROSPECT versions  (r2 between 0.59 and 

0.79). �e addition of brown pigments (P3b, P4b, P5b 

and PDb) provided more accurate estimation of Cabc  (r
2 

between 0.79 and 0.81), particularly for the June meas-

urements after the beginning of the senescence (Fig. 6). 

When correcting the chlorophyll systematic overestima-

tion by a linear fit (Fig. A, dashed line), the RMSE values 

varied from 6 to 9 µg/cm2. However, part of the scattering 

might also be attributed to uncertainties in the destruc-

tive measurements of chlorophyllian pigments used as a 

reference, estimated to be around 10%, i.e. 3 µg/cm2.

Leaf water content was very well estimated regardless 

of the PROSPECT version (Table  4). However, a small 

bias was systematically observed (1.13 ≤ slope ≤ 1.24). 

Fig. 3 Relationships between the four biochemical leaf traits from destructive measurements. Green and red points correspond to measurements 
achieved at two nodes (April) and grain filling (June) stages respectively. The squared Pearson correlation coefficient  (r2) of each relationship is 
indicated

Fig. 4 Example of a measured leaf spectrum (red) and a correspond-
ing PROSPECT simulation (blue). The reflectance (Rleaf and Tleaf) and 
transmittance of the leaf volume are shown in green and magenta 
respectively. The reflectance computed at the top of the leaf volume 
(Rwb) considering measurements over a Teflon white background is 
shown in black
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�e estimation of the dry matter content showed very 

poor performances, with a  r2 = 0.00, a significant bias 

(between 2.18 and 2.88 mg/cm2) and RMSE values after 

bias correction around 1.8 mg/cm2.

�e mean value of the retrieved N parameter (mesophyll 

structure) differed according to the four PROSPECT ver-

sions: N < 1.5 for P3, P3b, PD and PDb while N > 1.6 for 

P4, P4b, P5 and P5b. �is behavior was partly linked to 

some compensation effects between Rsurf  and  fwb during 

the model inversion process. �e surface component of the 

leaf reflectance, Rsurf , also varied between the PROSPECT 

versions. It was found to be 0.05 with P3 and P3b which 

was in better agreement with the literature [2, 64], as com-

pared to the other PROSPECT versions (Rsurf   =  0.01). 

Estimates of fwb using P4, P4b, P5, and P5b, were higher 

( fwb ≈ 0.07) than for P3, P3b, PD and PDb ( fwb ≈ 0.03).

Comparison between Cabc and Cw estimates 

from PROSPECT and vegetation indices

�e comparison was first based on the Spearman corre-

lation coefficient that offered the advantage to be inde-

pendent from possible bias and little sensitive to the 

non-linearity between the biochemical contents and 

the VIs considered in this study. �e Spearman correla-

tion coefficient quantifies the consistency of the ranking 

between the biochemical content measurements used 

as reference and those estimated from non-destructive 

techniques. �e ranking capacity of phenotyping tech-

niques, i.e. the relative values of traits rather than their 

absolute values, is indeed probably the first property 

required by the breeders.

�e total chlorophyllian pigment content was here con-

sidered since it was difficult to estimate independently 

the chlorophyll a and b from the carotenoids (Table  5). 

Furthermore, Cab and Cc were strongly correlated (Fig. 3). 

�e PROSPECT versions using the brown pigments were 

considered here because of their better performances.

Results (Table  5) showed that, after bias correction, 

the performances of Cabc estimation were good for all the 

versions of PROSPECT and similar to the ones of Dx4. 

�ey were slightly degraded for CIre (ρ = 0.78; RMSE 

Corr = 7.08) as compared to PROSPECT and Dx4 esti-

mates (ρ > 0.8; RMSE Corr = 6.63).

Performances for water content estimation were very 

good, especially when considering the Spearman cor-

relation coefficient, which was higher than for Cabc. �e 

four versions of the PROSPECT model provided similar 

results after bias correction (Table  5). However, NDw 

slightly improved the estimation of water content both 

for ρ and RMSE.

Discussion
Accuracy of the PROSPECT versions to simulate reflectance 

spectra

�e performances (RMSE) in terms of the full spectrum 

reconstruction were decreasing from the first (P3) to the 

last (PD) version of PROSPECT (Fig.  5). �ese results 

did not match the model performances for biochemi-

cal content estimation (Table  4) because of three main 

reasons: (1) there were possible compensations between 

the several specific absorption coefficients during the 

PROSPECT calibration process. (2) A bias in the specific 

absorption coefficient results in a bias in the biochemical 

content estimates. (3) there might also be compensations 

between some parameter estimates during the PROS-

PECT model inversion implemented in this study.

�e inclusion of the brown pigments helped decreasing 

the number of outliers for all the model versions (Fig. 5), 

particularly for the June measurements when senescence 

was observed (results not shown). �e spectral variations 

of the RMSE between measured and simulated reflec-

tance clearly showed the advantage of including the 

brown pigments to get more accurate and precise reflec-

tance simulations in the 400–1000  nm domain (Fig.  7a, 

b). Between 1000 nm and 2200 nm (Fig. 7b, d), the effect 

of the brown pigments was negligible as expected since 

they do not absorb in these longer wavelengths.

Closer inspection (Fig.  7c) showed that P3b and P4b 

versions that did not account for the carotenoids showed 

larger RMSE values in the 400–570 nm domain. In the red 

edge (700–780 nm), all the PROSPECT versions showed 

artefacts as compared to the measurements, while the 

RMSE was much lower for P3b than for the other ver-

sions. �e separation of anthocyanin from chlorophyllian 

Fig. 5 Box plot of RMSE between the measured and simulated 
reflectance using the 8 PROSPECT versions (P3:PROSPECT 3, P3b: 
PROSPECT 3 considering the brown pigment content, P4:PROSPECT 
4, P4b: PROSPECT 4 considering the brown pigment content, 
P5:PROSPECT 5, P5b: PROSPECT 5 considering the brown pigment 
content, PD: PROSPECT D, PDb: PROSPECT D considering the brown 
pigment content)
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pigments in PDb further decreased the RMSE between 

500 to 600 nm where anthocyanin absorbs light. PDb that 

describes the biochemical content of more pigments than 

the other versions showed therefore the best agreement 

with the measured reflectance spectra.

In the 1000–2200  nm domain, P3 and P3b showed 

significant RMSE peaks on the lower wavelength shoul-

ders of the main water absorption features at 1150, 1400 

and 1900  nm although it performed best at 1300 and 

1600  nm. P4, P4b, P5 and P5b showed similar RMSE 

peaks around the water absorption features.

Comparison between PROSPECT versions for Cabc, Cw 

and Cm estimates

Taking into account the presence of brown pigments 

significantly improved the performances of all the 

PROSPECT model versions to estimate Cab and Cabc

, resulting in  r2 values between 0.79 and 0.81 instead of 

0.59 and 0.79 when brown pigments are not considered 

(Table  4). In the following, the discussion will therefore 

concentrate on the PROSPECT versions that include the 

brown pigments.

When distinguishing between chlorophyll and carot-

enoids using the P5b and PDb versions, the estimated 

chlorophyll content was strongly correlated with the 

destructive measurements with similar performances as 

those observed when chlorophyll and carotenoids were 

pooled together (Table  4). Conversely, carotenoids were 

poorly estimated although PDb performed much bet-

ter than P5b. A clear separation was observed between 

the April measurements corresponding to the greener 

leaves with more chlorophyllian pigments and the June 

Table 4 Performances of the inversion process over the 372 sampled leaves

The estimation performances of Cabc, Cab, Cc, Cw and Cdm were quantified using the squared Pearson correlation coefficient  (r2) and the RMSE computed between the 

measured and estimated biochemical contents over the 186 available data. The RMSE Corr was computed when correcting for possible systematic deviations using a 

linear model characterized by a slope as observed in Fig. 6. Bias value was the difference between the mean measured and mean estimated biochemical contents. The 

numbers in italic indicate the best result for each biochemical content and model version

Variables Metrics P3 P3b P4 P4b P5 P5b PD PDb

Cabc (µg/cm2) r2 0.65 0.81 0.59 0.79 0.63 0.80 0.79 0.80

RMSE 30.92 27.66 19.90 10.93 25.85 19.21 25.33 22.72

RMSE Corr 8.70 6.51 9.88 6.67 8.94 6.66 6.83 6.67

Slope 1.67 1.63 1.35 1.18 1.54 1.41 1.57 1.50

Bias − 27.70 − 25.09 − 14.99 − 8.11 − 23.29 − 17.56 − 23.22 − 20.69

Cab (µg/cm2) r2 – – – – 0.81 0.82 0.81 0.82

RMSE 24.60 18.71 19.39 17.29

RMSE Corr 5.60 5.29 5.52 5.45

Slope 1.67 1.50 1.52 1.45

Bias − 22.38 − 16.78 − 17.52 − 15.39

Cc (µg/cm2) r2 0.16 0.04 0.48 0.45

RMSE 9.00 3.91 6.18 5.75

RMSE Corr – – – – 5.63 3.42 1.56 1.58

slope 0.88 0.99 1.80 1.74

Bias − 0.91 − 0.78 − 5.70 − 5.30

Cw (mg/cm2) r2 0.88 0.87 0.85 0.85 0.86 0.86 0.85 0.85

RMSE 2.35 2.87 3.75 3.91 3.65 3.79 2.47 2.67

RMSE Corr 1.06 1.13 1.06 1.07 1.03 1.04 1.08 1.09

Slope 1.13 1.17 1.23 1.24 1.23 1.24 1.14 1.16

Bias − 1.96 − 2.47 − 3.54 − 3.68 − 3.48 − 3.59 − 2.14 − 2.34

Cm (mg/cm2) r2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

RMSE 2.45 2.82 2.82 3.07 2.83 3.06 2.59 2.87

RMSE Corr 1.67 1.80 1.80 1.90 1.80 1.89 1.75 1.84

slope 0.56 0.47 0.47 0.42 0.47 0.42 0.53 0.46

Bias 2.18 2.60 2.61 2.88 2.62 2.88 2.33 2.65

N Mean 1.45 1.47 1.64 1.63 1.64 1.62 1.43 1.41

Rsurf Mean 0.05 0.05 0.01 0.01 0.01 0.01 0.01 0.01

fwb Mean 0.01 0.02 0.07 0.07 0.07 0.07 0.04 0.04
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measurements with overall lower values for all the 

PROSPECT versions (illustrated for PDb in Fig.  6a, b). 

Although PDb accounts for the anthocyanin pigments 

(Canth), the corresponding estimates were very low with 

Canth < 0.5  µg/cm2 (Fig.  8) while larger values (0.5  µg/

cm2 < Canth < 5  µg/cm2) were observed for the senescent 

leaves when the carotenoid (and thus chlorophyll) con-

tent was very low. For senescent leaves, the estimated 

anthocyanin content appeared to be correlated with the 

estimated carotenoid (and chlorophyll) pigment content 

(Fig.  8) although such a correlation was not reported 

from measured contents in previous studies [65]. �is 

Fig. 6 Scatter plots between measured and estimated biochemical contents from PROSPECT PDb (PROSPECT D considering the brown pigment 
content). The solid line corresponds to the 1:1 line. a Chlorophyll and carotenoid content (Cabc); b chlorophyll content (Cab); c water content (Cw); d 
dry matter content (Cm). The dashed line is the best linear fit corrected from the offset. Green and red points correspond to measurements achieved 
at two nodes (April) and grain filling (June) stages respectively

Table 5 Comparison between destructive measurements of Cabc and Cw and PROSPECT or vegetation indices estimates

The estimation performances from the four PROSPECT versions (including brown pigments) and vegetation indices against destructive measurements: spearman 

correlation coefficient (ρ), squared Pearson correlation coefficient  (r2) and RMSE Corr as provided in Table 4. RMSE Corr for VIs was computed from the fitted empirical 

model between the biochemical contents and the VIs: linear functions for Dx4, CIre and SRw, a second order polynomial function for NDw. The numbers in italic 

indicate the best result for each biochemical content

Variables Metrics PROSPECT VIs

P3b P4b P5b PDb Dx4 CIre SRw NDw

Cabc

(µg/cm2)
ρ 0.81 0.80 0.82 0.80 0.80 0.78 – –

r2 0.81 0.79 0.80 0.80 0.80 0.77 – –

RMSE Corr 6.54 6.72 6.70 6.71 6.63 7.08 – –

Cw

(mg/cm2)
ρ 0.93 0.93 0.92 0.91 – – 0.89 0.94

r2 0.87 0.85 0.86 0.85 – – 0.80 0.88

RMSE Corr 1.14 1.08 1.05 1.11 – – 1.28 1.29
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may be due to possible compensations between brown 

pigment, carotenoid and chlorophyll contents during 

the PROSPECT inversion process. In any case, results 

showed that accounting for the anthocyanin pigments 

for wheat leaves was not mandatory since these pig-

ments were generally present only in very small quanti-

ties and anthocyanins present relatively weak absorption 

features. �us, it appeared more efficient to estimate the 

content of pooled chlorophyllian pigments, Cabc, without 

considering the anthocyanin for wheat leaves. Further-

more, after bias correction all the PROSPECT versions 

performed similarly for Cabc estimation in wheat leaves 

(Tables 4, 5).

However, absolute estimates of Cab and Cabc from the 

PROSPECT model were significantly biased when com-

pared to destructive measurements. Indeed, the spe-

cific absorption coefficients of the PROSPECT models 

were calibrated over a large range of species, includ-

ing dicotyledonous and monocotyledonous leaves. �e 

structure of dicotyledonous leaves is characterized by a 

Fig. 7 Spectral variation of RMSE between measured and PROSPECT-simulated reflectance. a RMSE for the 400–1000 nm domain without brown 
pigments; b RMSE for the 1000–2200 nm domain without brown pigments; c RMSE for the 400–1000 nm domain with brown pigments; d RMSE for 
the 1000–2200 nm domain with brown pigments. Different versions of PROSPECT are presented

Fig. 8 Scatter plots between estimated anthocyanins and measured 
carotenoid from PROSPECT PDb (PROSPECT D considering the brown 
pigment content). Green and red points correspond to measure-
ments achieved at two nodes (April) and grain filling (June) stages 
respectively
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well-developed spongy mesophyll that increases the aver-

age optical path while monocotyledonous leaves such 

as wheat have only a palisadic parenchyma where chlo-

roplasts are concentrated [37]. �erefore, the values of 

the PROSPECT specific absorption coefficient calibrated 

over a large range of species might not represent accu-

rately the actual individual values for each species. �e 

distribution of the chlorophyllian pigments (e.g. pigment 

clumping) may also explain the different bias observed 

(Fig.  8) for yellow (June) and green leaves (April). For 

high values of chlorophyll content, e.g. green leaves, chlo-

rophyll is concentrated within the chloroplasts and the 

chloroplasts themselves are organized in a clumped way 

in the cells. Conversely, the distribution of chlorophyllian 

pigments within yellow leaves is more uniform. As the 

specific absorption coefficients of PROSPECT were cali-

brated mostly over medium to high values of chlorophyll 

content, the estimated Cabc for yellow leaves led to over-

estimate the chlorophyll content due to the lower reflec-

tance value expected for uniform pigment distribution as 

compared to a clumped situation.

All the PROSPECT versions provided very precise esti-

mates of leaf water content (Tables 4, 5). �is is mainly 

explained by the strong and specific absorption features 

of water. Conversely to what was observed for the chlo-

rophyllian pigments, including the brown pigments did 

not improve the fitting process: actually, brown pig-

ments are mainly absorbing in the visible domain where 

water shows only marginal absorption features. �e bias 

observed between estimated and measured values of Cw, 

although significant, was much lower than that observed 

previously for Cabc. Some differences were noticed 

between PROSPECT versions, with P3 providing the 

lowest bias (Table 4). �e smaller bias observed for Cw as 

compared to that of Cabc is mainly explained by the more 

even distribution of water within the leaf volume as com-

pared to chlorophyll. Furthermore, the relative rRMSE 

(= 6%) obtained after bias correction was much lower 

than the one observed for Cabc (rRMSE = 20%). �is may 

be explained by the errors associated to the destructive 

measurements. For water content, the measurements 

were relatively accurate and precise because only few 

simple steps are required: measurements of the area and 

the fresh and dry weights. Conversely, the accuracy and 

precision associated to pigment content were expected 

to be degraded because of the several additional steps 

needed (leaf storage in the cold, extraction in a solution, 

spectrophotometer calibration…). Nevertheless, errors 

were also associated to the reflectance measurements, 

including the stability of the light source and that of the 

spectrophotometer, the characterization of the white 

references and the spectrophotometer calibration. Addi-

tional investigation should thus be conducted to quan-

tify the repeatability of the destructive measurements as 

compared to the proposed method based on reflectance 

measurements. Furthermore, the interest of using a white 

background should also be investigated.

Table 6 Minimum, maximum of observed dry matter content, corresponding RMSE and relative RMSE (rRMSE) values 

of estimates from PROSPECT model inversion as reported in previous studies

* Indicates that better performances were obtained by modified PROSPECT model inversion methods

** Transmittance was not available for part of the data

Data set Reference PROSPECT
versions

Reflectance/
transmittance

Species Min (mg/cm2) Max (mg/cm2) RMSE (mg/cm2) rRMSE

Baret and Fourty 
(1997)

[26] P3 Reflec-
tance + trans-
mittance

Temperate spe-
cies and crops

2.2 8.3 1.4–1.6 0.23–0.26

Feret et al. (2008):
LOPEX (Hosgood 

et al. 1994)
ANGERS (Feret 

2008)
HAWAII (Feret 

2008)

[46, 66] P4, P5 Reflec-
tance + trans-
mittance

Temperate 1.7 15.2 3.5 0.26

Temperate 1.7 33.1 2.6 0.08

Tropical 6.4 22.9 4.9 0.30

Feret et al. (2011) [27] P5 Reflec-
tance + (trans-
mittance)**

Temperate and 
Tropical

0.8 33.1 3.1 0.09

Li and Wang 
(2011)

[67] P4 Reflectance Temperate spe-
cies

2.6 11.9 2.7* 0.29

Ali et al. (2016) [68] P4 Reflectance +  
transmittance

Broadleaf 3.4 13.6 3.7* 0.36

Conifer 1.1 29.1 8.6* 0.31

Present study P3, P4, P5, PD Reflectance Wheat 4.0 6.0 2.5–3.1 1.25–1.55
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All the PROSPECT versions showed no correla-

tion between the estimated Cm and the corresponding 

destructive measurements with a systematic underes-

timation. However, the RMSE values were of the same 

order as those reported in previous studies generally con-

ducted over larger range of Cm values based on a similar 

inversion process (Table 6). However, the relative RMSE 

(rRMSE) was larger than for the other studies [26, 27, 46, 

66–68]. �ose latter, conversely to the present study, con-

sider a large range of species where broadleaf and conif-

erous trees were often mixed with herbaceous plants. 

�erefore, the poor correlation observed was mainly 

explained by the very small variability of Cm measured 

in this wheat experiment. Existing modified PROSPECT 

inversion methods that include the design of a specific 

merit function for Cm [67] or the use of prior information 

[55, 68] and provided improved results over mixed trees 

could also be tested for Cm estimation in wheat experi-

ment in the future.

Comparison between VI and PROSPECT based methods 

for Cabc and Cw estimates

�e ranking capacity between cultivars appeared to 

be very similar using either the VI or the PROSPECT 

based methods. It should be noticed that ranking did 

not require any calibration for VIs or bias correction for 

PROSPECT model inversion. However, in the context 

of phenotyping, the ranking between genotypes is not 

always sufficient. Estimates of the absolute values of the 

biochemical contents will allow using crop models to 

access functional traits. �e results showed that biases 

were observed for estimates from PROSPECT inversion. 

�is problem could be solved properly at least in two 

different ways: (1) by recalibrating the specific absorp-

tion coefficients for wheat leaves; (2) by changing the 

formalism of PROSPECT and including heterogeneous 

distribution of absorbers in the leaf. �is will require a 

recalibration of the specific absorption coefficients over 

a large range of leaf types. Because of the limited amount 

of data available, as well as the fact that the only meas-

ured optical property was the reflectance over a white 

background, we did not perform a recalibration of the 

PROSPECT specific absorption coefficients. �erefore, 

a simple empirical recalibration of the raw estimates of 

PROSPECT using the destructive measurements was 

proposed. Results show that the performances of the veg-

etation indices were comparable to those of PROSPECT 

after this bias correction (Table 5). However, the PROS-

PECT model had the capacity to account for the effect 

of variation in the leaf surface and leaf mesophyll struc-

ture. Even though the relationship between Cm and the 

leaf mesophyll structure was reported in previous stud-

ies [41, 69] when considering mixed species including 

both monocotyledons and dicotyledons, this relationship 

might not be so strong for a single species like wheat. 

�erefore, this may be important in the context of pheno-

typing experiments where new genotypes with particular 

surface or mesophyll features may be encountered.

Conclusion
�e ability of the PROSPECT model and vegetation 

indices to estimate wheat leaf biochemical content was 

evaluated. Reflectance measurements were collected over 

detached leaves using a spectrophotometer equipped 

with an integrating sphere. Leaves were put over a white 

Teflon background to enhance the absorption features 

and the PROSPECT model was adapted to account for 

this specific measurement configuration. Estimates from 

the inversion of several PROSPECT model versions were 

compared with destructive measurements. �e consid-

ered versions differed by the explicit description of the 

absorption of some pigments (chlorophyll ab, carotenoid, 

anthocyanin, brown pigments) and the dataset used to 

calibrate the corresponding specific absorption coeffi-

cients and the refractive index. Results demonstrated that 

all the PROSPECT versions provided reasonable esti-

mates of water and chlorophyll contents when the brown 

pigment content was used as an additional variable. �is 

was particularly important when considering senescing 

leaves. Consideration of the anthocyanin did not offer 

major interest since wheat leaves did not show high val-

ues of anthocyanin content. �e separation between 

chlorophyll and carotenoid contents did not bring sig-

nificant improvement since they are strongly corre-

lated. Consequently, the pooled chlorophyllian pigments 

(chlorophyll + carotenoids) should be used as a leaf trait. 

However, significant bias was observed for chlorophyl-

lian pigments, probably due to the non-even distribution 

of chlorophyll in the leaf volume as well as some possi-

ble clumping of the chlorophyll pigments. Water con-

tent was estimated with a smaller bias, in relation to the 

more even distribution of the water in the leaf volume. In 

contrast with most of other studies involving the PROS-

PECT model applied to a large mix of species, this study 

concentrated on a single species. �is highlights the 

limits of a generic formalism and calibration of the cur-

rent PROSPECT models. Further investigations should 

therefore focus on a better description of the chlorophyll 

distribution in the leaf volume to account for differences 

between species. Furthermore, the bias and discrepancies 

observed in this study might be also partly explained by 

the measurement uncertainties associated to reflectance 

and biochemical contents.

PROSPECT estimates of chlorophyllian pigments and 

water contents were compared with empirical relation-

ships based on vegetation indices. Results showed very 
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similar performances in terms of ranking as well as in 

terms of RMSE after bias correction for PROSPECT 

model estimates. Although VIs provided a very sim-

ple and straightforward method for biochemical con-

tent estimates, PROSPECT model inversion offered the 

advantage to explicitly account for genotypic differences 

in leaf surface features, Rsurf  and mesophyll structure 

(N  ). However, these two additional variables should be 

more deeply investigated to evaluate their interest as 

potential new traits. Indeed, Rsurf  could allow charac-

terizing the glaucosity observed between genotypes and 

conditions through the differences in leaf ‘color’ due to 

leaf surface features.

Finally, this study indicates that non-destructive meth-

ods may provide similar or better precision of chloro-

phyllian pigments and water contents as compared to 

classical destructive measurements [29]. However, the 

repeatability of these traits should be more formally com-

pared over a large phenotyping dataset. �e currently 

limited throughput of the indirect methods based on leaf 

reflectance achieved in the lab may be replaced in the 

close future by the development of new imaging tech-

niques achieved at the canopy level as suggested by [70].
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