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Abstract

Image feature points are the basis for numerous computer vision tasks, such as pose

estimation or object detection. State of the art algorithms detect features that are invari-

ant to scale and orientation changes. While feature detectors and descriptors have been

widely studied in terms of stability and repeatability, their localisation error has often

been assumed to be uniform and insignificant.

We argue that this assumption does not hold for scale-invariant feature detectors and

demonstrate that the detection of features at different image scales actually has an influ-

ence on the localisation accuracy. A general framework to determine the uncertainty of

multi-scale image features is introduced. This uncertainty is represented via anisotropic

covariances with varying orientation and magnitude. We apply our framework to the

well-known SIFT and SURF algorithms, detail its implementation and make it avail-

able 1. Finally, the usefulness of such covariance estimates for bundle adjustment and

homography computation is illustrated.

1 Introduction

Robust image feature point detection, matching, and tracking represent basic operations for

many computer vision algorithms. Feature points are meaningful and stable points in an im-

age, which are extracted using a mathematical operator. Once extracted, they are described

in a distinctive way. The interest points and the attached descriptors define an abstract image

representation. Feature based methods have been successfully applied in many fields such

as scene modeling [15], 3D tracking [18] and image retrieval [8].

One of the most prominent (corner) detectors was introduced by Harris [5]. For detection it

© 2009. The copyright of this document resides with its authors.

It may be distributed unchanged freely in print or electronic forms.
1Binaniers and code are available from http://campar.in.tum.de/Main/CovarianceEstimator

http://campar.in.tum.de/Main/CovarianceEstimator
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Figure 1: Covariance estimates for interest regions detected by SIFT (left) and SURF (right).

builds on the second order derivative matrix, constructed from intensity values, while match-

ing is performed employing the cross correlation between local image patches. The matching

accuracy and robustness heavily depend on the actual transformation between views.

To tackle this problem several scale and rotation invariant interest point detectors have been

introduced. They are referred to as blob detectors, because they are not only able to detect

points in an image but also interest regions; simply speaking areas which are brighter or

darker than the surrounding. Different to basic corner detectors the algorithms search for in-

terest points in scale space allowing us to find similar features at different scales. To address

rotation invariance, the descriptor often detects a local primary orientation. Popular region

detectors are the SIFT [10], SURF [1] or Hessian-Laplace, Harris-affine, and Hessian-affine

detectors. The latter two are additionally invariant to affine transformations. Schmid et al.

[14] and Mikolajczyk et al. [11, 12] provide comprehensive evaluations of different feature

point and region detectors. [14] compares corner detectors similar to Harris in terms of re-

peatability and information content, while [11, 12] cover scale-invariant region detectors.

They measure the detector performance based on repeatability, “localisation error” and the

number of correspondences in images under different geometric and photometric transfor-

mations.

While the “localisation error” of the detector has been evaluated between matching features,

an investigation of the detection precision has not been performed to the best of our know-

ledge. By doing so it is possible to parametrise the localisation error. In this sense our work

is complementary to the extensive comparisons in [12, 14] and the goal of this work is to

obtain an individual estimate for the localisation uncertainty for each region found. Figure

1 exemplarily displays results we obtained 2. The covariances can then be used for model

fitting where we minimise a weighted least square cost function based on covariances instead

of minimising a least square cost function (which assumes a uniform error across the data).

Model fitting itself appears in many different computer vision problems including scene

modelling with bundle adjustment and stitching with homography estimation. These two

applications are used in our work to demonstrate the usefulness of the proposed localisation

error estimation.

The paper is structured as follows. Section 2 introduces related work on the topic of co-

variance estimation. In Section 3 we propose a general framework for uncertainty estimation

applicable for scale invariant feature detectors. Section 4 illustrates the application of our

framework to SIFT and SURF. Experiments related to these implementations are presented

in Section 5, while Section 6 shows results for the incorporation of our estimates into existing

algorithms. Section 7 concludes the paper.

2We use the Oxford image dataset provided at http://www.robots.ox.ac.uk/~vgg/research/

affine/

http://www.robots.ox.ac.uk/~vgg/research/affine/
http://www.robots.ox.ac.uk/~vgg/research/affine/
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2 Related Work

Uncertainty estimation for corner-like points as a measure for the localisation precision has

been studied before. Common to all approaches is the assumption of a Gaussian error model

and hence the characterization using a 2D covariance matrix. The error is assumed to arise

either from pixel intensity noise or from the detection algorithm itself.

Brooks et al. [3] take into consideration the curvature of the self-matching residual at a

Harris-corner point and estimate the covariance from the second moment matrix based on

pixel intensities. They demonstrate an error reduction for fundamental matrix estimation.

Kanazawa and Kanatani [7] raise the question about the usefulness of covariance matrices

for image features. They provide a more theoretical evaluation and show that covariance

estimates based on the Hessian calculated from image intensities reflect the uncertainty of

feature localisation. Furthermore, they state that the incorporation of such covariances does

not improve homography or fundamental matrix estimation because estimated covariances

seem to be isotropic and of similar size. Both works mentioned develop their argumentation

independent from the detection operator applied, but associate location uncertainty with the

residual error occurring in template matching.

Steele and Jaynes [16] on the other hand focus on the detector and address the problem of

feature inaccuracy based on pixel noise. They use different noise models for pixel intensities

and propagate the related covariances through the detection process of the Förstner-corner

detector to come up with a covariance estimate for each feature point.

Haja et al. [4] provide a comparison of region detectors with respect to localisation accuracy.

They look at the matching precision of regions; however, they do not parametrize the locali-

sation error of an interest point itself.

Orguner and Gustafsson [13] evaluate the accuracy for Harris corner points. The analysis

is built on the probability that pixels are the true corner in the region around the corner es-

timate. They have found that the accuracy for a corner point can vary depending on the

different image color channels (RGB).

Important to note is that [3, 7, 13, 16] base their argumentation on corner detectors which are

not scale-invariant. Scale-invariant region detectors extract image regions, complementary

to the corner-like features, hence we claim two things: First, due to the focus on interest

regions, the shape of covariances will be in general anisotropic. Second, the magnitude of

covariances will vary significantly due to detection in scale space.

Wu et al. [19] also observed a behaviour according to the second statement and introduce

less weight for interest points detected on higher scales.

3 Uncertainty Evaluation Framework

Our analysis is based on the assumption that a detection process locates a feature, and that

this process generates a measurement error that conforms to a bivariate normal distribution.

In this section we will explain the general framework we have developed to estimate the

covariance matrix describing this distribution.

Common to all scale invariant feature detectors is a two step approach to find feature

points. First, a scale-space representation in form of an image stack D (see Figure 2) is cre-

ated with the feature detection operator at preselected scales σi ∈ {σ j} j=1...N from the im-

age I. The detection operator fdec depends on the particular algorithm and is not necessarily

a linear function. For the calculation of the operator response D(x,σi) at a specific location
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Figure 2: (left) detection stack in scale space; (right) detection operator response and cost

function at one detected feature point.

in scale space (x,σi) the image neighbourhood Nx is taken into consideration. For each

layer D(•,σi) of the stack local maxima are then detected at position p via a non-maximum

suppression approach, leading to a first set of feature points P1:

D(x,σi) = fdec (I(Nx),σi) (1)

P1 :=
N⋃

i=1

{

〈p,σi〉

∣
∣
∣
∣
p = arg max

x∈Np

(D(x,σi))

}

(2)

Second, the algorithm selects those features from P1 for which the response S to the scale-

selection operator fsel attains a local maximum over scale (Figure 2 left). Points for which

the scale-selection operator attains no extremum or the response is below a threshold τ are

rejected:

S(p,σi) = fsel (I(Np),σi) (3)

P2 :=

{

〈p,σ〉

∣
∣
∣
∣
〈p,σ〉 ∈ P1, σ = argmax

∀σi

(S(p,σi)), S(p,σ) > τ

}

(4)

The selected scale indicates the scale at which a maximum detector response to the local

image structure is observed. It is relatively independent of the image resolution and is related

to the structure and not to the resolution at which the structure is represented.

One can see that for interest point localisation only the feature detection operator and

by this means the created scale-space stack D is of importance. The detection process is

accomplished by a maximum search for the characteristic scale. Thus, for the evaluation

of a detection error the particular layer D(•,σ) of the detection pyramid is the determining

factor. Maximising the operator output is equal to minimising the cost function R(∆p) in (5).

Within a small neighbourhood ∆p = (∆x,∆y) ∈ Np we can approximate R(∆p) via a Taylor

expansion up to second order for feature point 〈p,σ〉 (see also Figure 2 right):

R(∆p) = |D(p,σ)−D(p+∆p,σ)| ≈ R̃(∆p) =
1

2
∆p⊤H∆p. (5)

Model point and first derivative vanish, while the Hessian H characterizes the curvature at

the interest point p. Simply speaking, for a low curvature the detection process will imply

an error due to the missing discriminative behaviour of D(•,σp) in the neighbourhood Np,

whereas for a high curvature, the spacial detection process will be more accurate. Following
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the argumentation in [7], it makes sense to regard the inverse of the Hessian H as a measure

for feature localisation uncertainty.

Therefore, we decided on taking the inverse of the Hessian as our covariance estimate. The

estimation process then happens in two steps:

1. Estimate the covariance for each interest point 〈p,σ〉 according to

Σ = H−1 =

[
Rxx(p,σ) Rxy(p,σ)
Rxy(p,σ) Ryy(p,σ)

]−1

= ∓

[
Dxx(p,σ) Dxy(p,σ)
Dxy(p,σ) Dyy(p,σ)

]−1

, (6)

where Rxx,Rxy,Ryy and Dxx,Dxy,Dyy are the second order derivatives at the point p,

respectively. The last term has a negative sign if the interest point relates to a maximum

in the operator response and a positive sign if it is a minimum.

2. Depending on the particular creation process of the detector stack D, it may be re-

quired to propagate the covariance matrix back to the initial scale σ0 (according to

the initial image). By doing so it is ensured that covariances retain their proportional

relationship. Rescaling is particularly important, if layer D(•,σi) does not have the

same resolution as D(•,σ0); this often is the case for computational reasons. A back

projection then is done via

Σ(0) = Σ ·

(
res(D(•,σ0))

res(D(•,σi))

)2

. (7)

Σ(0) here refers to the covariance associated with a feature point 〈p,σ〉 at position p in

the initial image, describing its localisation precision. The proposed method is applicable

to feature detection algorithms detecting points in scale space. In the following we will

demonstrate how to implement the framework for SIFT and SURF.

4 Uncertainty Estimation for SIFT and SURF Features

We chose to apply our framework to SIFT and SURF as these two feature detection algo-

rithms are widely used.

4.1 Scale Invariant Feature Transform (SIFT)

SIFT [10] is one of the most popular region detectors possessing scale-invariance. It uses the

Laplacian operator for spatial feature detection and scale selection. To lower its complexity,

the operator is approximated by a difference of Gaussians (DoG) operator. This approach al-

lows creating the detection stack D from the difference of neighbouring layers of a Gaussian

pyramid:

D(x,σi)
︸ ︷︷ ︸

:=S(x,σi)

= (G(x,σi+1)−G(x,σi))
︸ ︷︷ ︸

≈∇2G(x,σi)

∗I(x) (8)

= G(x,σi+1)∗ I(x)−G(x,σi)∗ I(x) (9)

To achieve lower memory usage the image stack introduced before is now represented by an

image pyramid grouped in octaves. Between subsequent octaves, down sampling by a factor
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2 is performed, which retains the same information as smoothing the image with doubled

standard deviation. While an octave contains images of equal resolution, it is divided into

intervals created by increasing detector size. This allows us to compute the relation from

detected feature scale to the original image scale:

σi = σ0 ·2
octave+interval/Nintervals , (10)

where σ0 = 1.6 is defined as the smoothing strength of the very bottom pyramid layer and

Nintervals is the predefined number of intervals per octave.

Feature regions 〈p,σ〉 are located spatially and in scale via non-maximum suppression in a

3× 3× 3 neighbourhood for each pyramid location (x,σi) according to Equations (2) and

(4). For a more accurate interest point localisation compared to the one obtained from the

sampled scales σi, detected feature points are interpolated in scale space leading to a second

order estimate

û =

(
p̂

σ̂

)

= argmax
û

(

D(u)+
∂D⊤

∂ û
(û−u)+

1

2
(û−u)⊤

∂ 2D

∂ û2
(û−u)

)

(11)

The Laplacian operator performs well for scale selection, yet detects less meaningful points

or regions (e.g. on edges) which need to be post processed. For more information the reader

is referred to [10].

4.2 Speeded Up Robust Features (SURF)

SURF [1] adopts the idea of SIFT and improves the process in order to obtain a faster de-

tection and matching. We will briefly explain the detection process, which is necessary for

covariance estimation.

The algorithm relies on the usage of integral images, which accounts for most of the reduc-

tion in computation time. It employs the determinant of the Hessian matrix as spatial feature

detection and scale selection operator, similar to the Harris-corner detector but adapted for

scale-invariance. The entries of the Hessian are calculated by convolving the appropriate

Gaussian second order derivatives with the image at the analysed position. SURF approxi-

mates derivatives with box filters of different sizes according to the scale. The Hessian can

then be evaluated at constant, low computational cost using integral images for arbitrary filter

size:

D(x,σi)
︸ ︷︷ ︸

:=S(x,σi)

= det

[
Lxx(x,σi) Lxy(x,σi)
Lxy(x,σi) Lyy(x,σi)

]

, (12)

where Lxx,Lxy,Lyy are the responses of the image convolved with the according box filter.

The scale space is analysed by up-scaling the filter size rather than iteratively reducing the

image size. The smallest box filter has size 9× 9 and the output is considered as the initial

scale layer with scale σ0 = 1.2. Following layers are obtained by filtering the image with

gradually bigger masks. Sampled scales thus directly relate to the filter size s via

σi = σ0 ·
s

9
. (13)

The scale space is grouped into octaves as well. An octave includes a series of filter responses

of equal size. In total an octave encompasses a scaling factor of 2, thus filter responses in

the following octave are subsampled and are half the size. In order to localise interest points

〈p,σ〉 in the image and across scales, non-maximum suppression in a 3× 3× 3 neighbour-

hood followed by an interpolation step is applied similar to SIFT.
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4.3 Covariance Estimation for SIFT and SURF

Our covariance estimation framework is easily applied to SIFT and SURF. The covariance is

calculated according to Equation (6) as the inverse of the Hessian. Derivatives are calculated

by taking differences of neighbouring sample points. To get a more robust estimate it is

useful to increase the influence region from 3×3 to a 5×5 neighbourhood and calculate the

Hessian as a Gaussian weighted sum:

Σ =

(

∑
i, j∈Np

w(i, j) ·

[
Dxx(i, j,σp) Dxy(i, j,σp)
Dxy(i, j,σp) Dyy(i, j,σp)

])−1

. (14)

Note that the interpolation step shown in Equation (11) will lead to a detection scale σ̂

which is not represented by pyramid scales σi. Interpolation between pyramid layers leads to

D(p̂, σ̂). Covariance estimation is performed at this characteristic scale; so at a given octave

and (sub)interval, requiring back propagation of covariances to the original size according to

Σ(0) = Σ · (2octave)2. (15)

To lower the complexity, covariances can be estimated at the detection scale σ rather than

at σ̂ without degrading the result significantly. Using D(•,σ) as the reference layer for the

Hessian calculation requires a back projection of Σ(0) = Σ · (2octave +(σ̂ −σ))2.

Covariances estimated in this manner can only be determined up to scale. Normalisation

as suggested by [6, 7] is not reasonable in our case, as we want to preserve the proportions

between covariances. Therefore, we scale all covariance matrices such that a circular feature

detected in the very bottom pyramid layer will approximately have Frobenius norm 1. This

constant factor has been determined experimentally. Note, that scaling is only performed for

numerical reasons and does not change the influence of covariance in any way.

5 Experiments

The following contains a description of the experiments we carried out to ensure our un-

certainty estimates are related to the real underlying location error distribution. First we

generate samples of the localisation error in order to obtain a quantitative measurement for

the detector accuracy. Second, we compare the proposed covariance estimates to the created

error distribution and evaluate the accuracy of the estimates.

The idea behind the statistical error sampling is to create synthetic images with which it

is possible to control the ground truth location of feature points. For detected feature points

in these images we are then able to measure the localisation error. SIFT uses a difference of

Gaussians (DoG) as detection operator. For controlling the feature point location this means,

that the output of the image and operator convolution has to be maximum at the specified

ground truth location. It is achieved via a matched filter approach by placing a DoG itself at

the desired feature location. The detection scale is influenced by appropriate choice of the

DoG in the image according to Equation (10). For SURF a matched filter approach is not

feasible, because the determinant of the Hessian is a nonlinear detection operator. Yet, it will

generate maximum response at the centre of a bivariate Gaussian.

To build up a localisation error distribution, repeating the detection several times does not

give the desired result, since the detection process is deterministic. By adding pixel noise

in the original image we expect the localisation error to change as well. In order to test
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Figure 3: Distribution of localisation error (plus sign) and comparison of maximum likeli-

hood estimate (dashed line) to our Hessian based covariance estimate (solid line) for different

viewpoints (a) - (g) and detectors SIFT (top) and SURF (bottom).

the influence of viewpoint changes we additionally warp the initial synthetic image with a

perspective transformation.

Viewpoint change 0° 10° 20° 30° 40° 50° 60°

Bhattacharyya distance(·103)

SIFT 0.181 0.850 0.955 2.72 7.94 32.9 50.2

SURF 0.391 0.411 0.449 1.17 3.57 16.9 28.4

Table 1: Covariance comparison between ML and our estimate

Results for the error modelling are shown in Figure 3. The maximum likelihood estimate

of the sampled error distribution and our covariance estimates are compared to each other

via the Bhattacharyya distance [2]. A normalization before comparison is necessary as the

estimated covariances can only be determined up to scale. Table 1 lists the results for varying

viewpoint changes. Note that the error distribution for SURF does not depend that much on

the feature shape compared to SIFT. Calculation of our covariance estimate as a weighted

sum in the interest point neighbourhood results in a more circular shape, but guarantees more

stable estimates.

From our evaluation we conclude that the covariance estimate does represent the under-

lying localisation error distribution. Figure 4 displays the change of the covariance norm

over the related detection scale. The curves show that features detected at higher scales are

less accurate compared to features detected at lower scales. This is intuitive as layers in the

detection pyramid corresponding to higher scales are built from more blurred or sub sam-

pled versions of the original image. This loss of information is the reason for the increasing

localisation error.

6 Results for Model Fitting

While we have investigated the correctness of our covariance estimates in the previous sec-

tion, now the goal is to verify that usage of those really improves the performance of current

algorithms. Bundle adjustment and homography estimation are the two applications which

we will discuss in the following. The concept of covariance incorporation is alike for both
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Figure 4: Frobenius norm of estimated covariances for interest regions detected in real im-

ages; SIFT (left) and SURF (middle). (right) illustrates the relation between the distinctive-

ness of a feature and its covariance.

model fitting approaches. They state optimization methods, which try to minimise a least

square problem in the form of:

argmin
x

y(x)⊤y(x) (16)

In computer vision the vector y is composed of single observations yi j for point j in image

i and is calculated as the difference between a known image point pi j and a mapped model

point w(TiM j), where T defines the mapping, M refers to the model and w is a warping

function. For the Euclidian norm yi j becomes

yi j = pi j −w(TiM j). (17)

Considering covariances, minimisation of the Euclidian distance results in minimising the

Mahalanobis distance. Thereby terms with large covariances maintain less influence on the

overall cost reduction, resulting in a weighted least square optimization with

yi j = Σ
− 1

2
i j (pi j −w(TiM j)) . (18)

Bundle adjustment simultaneously refines the 3D coordinates describing the scene geometry

as well as camera poses and intrinsic camera parameters. A comprehensive introduction can

be found in [17]. Given a set of images representing a scene from different viewpoints and

their corresponding image feature points, bundle adjustment tries to minimize the reprojec-

tion error of 3D points in all images. The projection function from Equations (17) and (18)

is T = K[R t], while the model parameters M refer to the 3D points.

The scene we use for bundle adjustment is created synthetically, so its geometry is known

beforehand. It consists of four parallel quadratic image patches located at different depths

from the camera centre (Figure 5 left). The scene is captured from varying viewpoints with

known camera matrix K and poses [R, t] and feature points including their covariance esti-

mates are detected in each of the images. An initial estimate of the 3D structure and camera

poses is created from 2 images. Finally, we compute the target reprojection error between the

known corner points c̄ and projected 3D corner points C̄ by means of the estimated mapping

parameters:

e =
1

nc

nc

∑
i=1

∥
∥c̄−w(T̂C̄)

∥
∥ . (19)

For our simulations we use the sparse bundle adjustment framework provided by Lourakis

[9]. Table 2 summarises the performance improvement of bundle adjustment with covari-

ances employed. Note that the reprojection error is smaller for smaller patches, due to more

distinctive feature points with smaller covariances detected at smaller patches.
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Figure 5: Bundle adjustment: (left) artificial setup for bundle adjustment, (middle) example

image for one camera position; Homography estimation: (right) overlay of images using the

homography estimated with covariances.

mean all patches smallest patch largest patch

covariance usage no yes no yes no yes

SIFT 2.031 1.759 1.941 1.672 2.088 1.828

SURF 2.554 2.363 2.518 2.292 2.631 2.464

Table 2: Reprojection error for bundle adjustment with and without covariance estimates

used. Values indicate the mean performance as pixel offset for about 100 different image

pairs. Smallest and largest patch refer to the patch size seen in the images.

We also applied the estimated covariances for homography computation. We compute a

homography between two images based on their feature point correspondences. In this case

the mapping function reads as the homography itself: T = H. The model parameters M

are the feature points in the images associated with their covariances, which stay unchanged

during the optimization. Figure 5 (right) presents some qualitative results using SIFT and

the Oxford dataset.

Evaluation of the mean difference of pixel intensity values indicates that using covariance

information does not result in a more accurate estimate compared to not using covariances;

estimated homographies are rather equally good. Still our covariance estimates prove to be

correct, otherwise we would observe worse an probably unstable results.

7 Conclusion and Future Work

In this paper, we have presented a novel framework for estimating location uncertainty for

scale invariant feature points. We have shown that the covariance of the localisation error

can be calculated from the detector response map in the neighbourhood of a feature point

without significant computational overhead. Consequently, covariances differ according to

the particular detection scale and interest region shape. We have implemented the proposed

framework for SIFT and SURF and verified that our covariance estimates relate to the real

underlying error distribution. Furthermore, we used this covariance information in model

fitting and have shown a performance improvement for bundle adjustment.

Future work should include the application of our framework to other multi-scale feature

detectors and investigate if the covariance information could also be used to construct more

robust descriptors.
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