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Estimation of Markov-Modulated 
Time-Series via EM Algorithm 

Subhrakanti Dey , Vikram Krishnamurthy , and Thierry Salmon-Legagneur 

Abshct-In this letter, we consider the estimation of various 
Markov-modulated time series. We obtain maximum likelihood 
estimates of the time-series parameters including the Markov 
chain transition probabilities and the time-series coefficients using 
the expectation maximization (EM) algorithm. In addition, the 
recursive EM algorithm is used to obtain on-line parameter 
estimates. Simulation studies show that both algorithms yield 
satisfactory results. 

I. INTRODUCTION 
Signal Model: Let Sk denote a N,-state irreducible Markov 

chain with states {1,2, . . . , N , }  with transition probability 
matrix II = (nmn), nmn = P ( S ~ + ~  = n 1 Sk = m) and 
initial state probability 7r = (7rm),  7rm = P(sl = m). Define 
the Markov-modulated polynomials A(z- ' ,  sk), B(z-l ,  s k ) ,  
and C(z-' ,  s k )  as (where z-l denotes the delay operator and 
k denotes discrete time) 

P 

i= 1 
U 

B ( z - l ,  Sk) = 1 + b;(sk)z - i ,  
i=l  
r 

C(z-1, Sk) = 1 + cz(sk)z-z. 
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where uk and yk are the measured input and output at time 
k, WkN white N(0 ,a2)  is independent of Sk, and 4 is the 
parameter vector consisting of polynomial coefficients and 
Markov chain parameters. We assume uk to be persistently 
exciting [4]. We also assume that A(z-l ,  s k ) .  B ( z - l , s k )  
and C(z-l, s k )  are coprime to each other for each m, m E 
{ 1,2, . . . 1 N.3 } . 

Notations: Yk = ( y l  . . . gk)T, uk = ( U 1  .. .Uk)T, sk = 
(sI...s~)~, y;" = ( y t . . . ~ k ) ~ ,  U/ = ( u ~ . * . u c ) ~  and 
Zk = (Yk, U k ) ,  where superscript T denotes transpose. 

Estimation Objectives: We use the expectation maximiza- 
tion (EM) algorithm [ 101 to obtain maximum likelihood (ML) 
estimates of 4, given YT and UT (when appropriate) in Section 
11. In addition, based on the recursive EM algorithm [2], an 
on-line estimation scheme is presented in Section 111. 

Motivation and Applications: The models (1.2), (1.3), and 
(1.4) consist of parameter sets that are constant over segments 
with abrupt changes from segment to segment. The parameter 
sets are determined by the realization of a finite state Markov 
chain. Such so called "segmentation" models are used in 
econometrics, seismology, geology, and image analysis (see 
[5 ]  and references therein). 

In 151, the EM algorithm and a recursive EM algorithm are 
used to estimate Markov-modulated AR processes, which is a 
special case of our model (1.2) with B = 0. The three models 
we consider in this paper can be regarded as an extension of 
the work in [5 ] .  

Our model can be also viewed as a random coeficient time 
series. These are used to model the stochastic stability of short 
run market equilibrium under variations in supply (see [9] and 
references therein). Markov-modulated models also used in 
econometrics [6] and failure detection [7]. 

Remark I: Models (1.2), (1.3), or (1.4) are special cases of 
the Markov-modulated ARMAX model 

A(z-',sk)yk = B(Z-l ,Sk) 'Uk + C(z-l,Sk)Wk. (1.5) 

However, unlike (1.2), (1.3), and (1.4), ML estimation of 
(1.5) is computationally prohibitive since it requires computing 
probability density functions over all N," realizations of a N, 
state T-point Markov chain. We do not deal with estimating 
(1.5) in this letter. For similar reasons, we forbid A ( z - l )  in 
(1.4) to be Markov modulated. Various suboptimal techniques 
for estimating Markov-modulated ARMAX models exist in 
the literature [11], [3]. 

Remark2:  As a more generalized model, one can have 
A(z-', s k ) ,  B(z-', t k )  and C(z-l ,  r k )  modulated by three in- 
dependent Markov chains Sk, t k ,  r k .  In this letter, we consider 
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the special case 5-k = t k  = rk for notational simplicity, al- 
though our approach can be easily extended. Another obvious 
extension is to consider polynomials A(z-', S k ) ,  B(Z- ' ,  S k ) ,  
and C ( z - l ,  S k ) ,  where S k  = (sk, sk-1,. . . , s k - p ) '  is a vector 
state Markov chain. 

Remark 3: State estimates of Sk are obtained from the E- 
step of the EM algorithm. 

Remark 4: Deriving stationarity criteria for Markov- 
modulated time series is a difficult problem. For example, two 
switchia, separately second-order AR stationary processes 

I 
I 
I 

can result in an unstable system-whereas two individually 
unstable AR processes can be stabilized when allowed to 
switch according to a Markov regime. For sufficient conditions 
on the second-order stationarity of Markov-modulated time 
series, see [8] and [ 5 ] .  

' 11. ML ESTIMATION VIA EM ALGORITHM 

A. Markov-Modulated ARX Estimation 

The EM algorithm for estimating 4 in (1.2) involves two 
steps: E-step and M-step. 

E Step: Following [3], the expectation of the log-likelihood 
function of a T-point "complete" data sequence MT = 
(YT, UT,  S T )  defined as Q(4('), 4) f E{ln ~ ( M T  1 4) I ZT, 
4( ' ) }  can be written as 

1 T - l  ' - - C C  T 
2 2a2 

Q(&), 4)  = - - In (T 

k = l  m=l 

B. Markov-Modulated MAX Estimation 

The MAX model (1.3) can be written in equivalent 
A M  form as A'(z-', sk)yk = B'(z-', s k ) u k  + e k ,  where 
A'(z-', sk) is "sufficiently" long enough (see Remark below) 
to ensure that ek  is almost white and B'(z-', sk) = 
A'(z-', sk)B(z-l ,  s k ) .  In addition, let A'(m) and B'(m) 
be the vectors containing the coefficients of A'(z-', sk) and 
B'(z-l ,  sk), m E { 1 ,2 ,  . . . , Ns}, respectively. 

EMAlgonthm: After estimating A'(m) and B'(m) by the 
above EM algorithm in Section 11-A, B(m) can be estimated 
by polynomial division. To estimate C(m) in (1.3), a set of 
inverse Yule-Walker equations has to be solved (see p. 291 of 
[4]), which are 

r 

e,(m) + Cyet-i(m) = o t 2 1, 
i=l  

m E { 1 , 2 . .  . . , N , }  (2.4) 

where et(m), t 2 1 can be estimated from the coefficients 
of A'(z-l ,  sk) as e,(m) = a:(m)a:+,(m), where 
A'(z-',sk) = c : L , a : ( m ) ~ - ~ ,  ab = 1. 

Remark: The order p' of A'(z-', S k )  has to be large enough 
to be a good approximation of l /C( z - ' ,  sk) in (1.3) (see p. 
291 of [4]). For rigorous details, see Theorem 8.3.1 in p. 246 
of [12], where it is proved that for weak consistency p' should 
be chosen as O(T1/3 ) .  

C. Markov-Modulated ARMA Estimation 

Since A in (1.4) is no longer Markov modulated, it can be 
estimated via the Yule-Walker equations 

where Vt = E[ykyk-,] (see p. 289, [4]). 
EMAIgorithm: Rewrite (1.4) as A(z-')A'(z-l ,  s k ) y k  = 

e k ,  where ek and A'(z-l ,sk) are as defined in Section 11-B. 
After obtaining an estimate of A(z-')A'(z-',  sk) via EM, 
dividing A(.-') by A(z-l)A'(z-I,  sk) gives an estimate of 
C(z- ' ,  sk), and hence, C ( m ) ,  m E { 1 , 2 , .  . . , N s } .  

Remark: C(Z-', sk) could be also estimated by solving the 
inverse Yule-Walker equations (2.4) for t 2 p + 1. However, 
simulations show that the above technique yields better results. 
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111. ON-LINE ESTIMATION VIA 
THE RECURSIVE EM ALGORITHM 

For brevity, we mention the relevant estimation equations 
only (for motivation and details of the recursive EM algorithm 
see [2 ]  and the references therein). 

as the estimate of the model 4 at the Ic-th time 
instant and @k = (41,. . . , 4k). Following [ 2 ] ,  our recursive 
EM algorithm based on maximizing the Kullback-Leibler 
information measure is 

Define 

! $k+l = 4 k  + (Ik+l($k))-’S($k, Y k + l )  (3.1) 

where . I k + l ( $ k )  is the Fisher information matrix (FIM) 
of the complete data Mk, given byA Ik+l(&) = 

-d2Qk+i(~k,$)/d$21+=$b, Qk+l(@kd) = E{1n f ( M k  I 
4 )  I &,dkP1)}, and S ( $ k , y k + l )  is the score vector defined 
as S(&., y k + d  = dQk+1(@‘le,4)/d41+=$~- 

Remarks: 
1. Exponential forgetting can be used in updating the FIM 

as follows (XF = 1 means no forgetting): 

I k + l  = A F I k  + Vk+1,0 < X F  I 1 (3.2) 

where XF is the forgetting factor, and Vk+1 is that part 
of the FIM computed at time k + 1. 

2. In the ARMA estimation problem, A(z- ’ )  is estimated 
by the recursive version of the Yule-Walker equations 
described in Section I1 with an appropriate forgetting 
factor AyW. 

IV. SIMULATION STUDIES 

We present two examples, with N ,  = 2, 7r11 = T Z Z  = 0.9, 
and Uk uniformly distributed in (0,1) (where applicable). 

A. ML Estimation via EM Algorithm 

Results: For 50000 data-points, the following hold: 
1. MAX: The true parameter vector &, = (B(  l)’, C( l)’, 

B(2)’, C(2)’, ~ 1 1 ~ 2 2 ~ ~ )  = ((0.8 0.3), (0.5 0.3), 
(0.5 0.1), (-0.4 0.2), 0.9 0.9 0.25). 

After 50 passes, we obtained 4” = ((0.7841 0.2882), 
(0.4756 0.2972), (0.4740 0.1189), (-0.3820 0.2043), 
(0.9066 0.9156 0.2586). 

C(2)‘, ~ 1 1 7 ~ 2 2 ~ ~ ’ )  = ((-1.0 0.3), (0.5 0.3), (-0.4 0.2), 
0.9 0.9 0.25). 

450 = ((-1.0037 0.3078), (0.4795 0.2892), 

2. ARMA: The true parameter vector $0 = (A’ ,  C(l)’, 

(-0.3955 0.2162), 0.9099 0.9087 0.2525). 

B. On-Line Estimation via Recursive EM Algorithm 

modulated ARMA model with u2 = 1 and 
Consider a jump time-varying 100 000-point Markov- 

A = (0.8 - 0.5)’,C(1) = (0.5 0.3)’, 
C(2) = (-0.4 0.2)’ t 5 20000 

A = (0.5 - 0.8)’, C(1) = (0.7 0.5)’, 
C(2) = (-0.2 0.5)’ t > 20000. (4.1) 

” 
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Fig. 1. Time evolution of ARMA parameter estimates. 

In our simulation, XF = 0.9999, Xyw = 0.9999, and p’ = 15. 
We do not assume any a priori knowledge in the parameter 
values, and initial conditions may be arbitrary. To avoid the 
effect of the initial transients on the parameter estimates due 
to insufficient data, estimation starts after the first 2000 points, 
which is the period during which only the FIM is updated. Fig. 
1 shows the time evolution of the estimates of the ARMA 
parameters. 

Remark: The convergence proof of the recursive EM al- 
gorithm for HMM’s is an open problem. Simulation studies 
show that the larger CT’ is, the slower the convergence. It is 
seen from Fig. 1 that the estimates are close to the true values 
after a few thousand data points. 
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