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ESTIMATION OF MOMENTS OF SUMS OF INDEPENDENT
REAL RANDOM VARIABLES1

By Rafał Latała

Warsaw University

For the sum S = ∑
Xi of a sequence �Xi� of independent symmetric

(or nonnegative) random variables, we give lower and upper estimates of
moments of S. The estimates are exact, up to some universal constants,
and extend the previous results for particular types of variables Xi.

Introduction. Let X1�X2� � � � be a sequence of independent real random
variables and let S = ∑

Xi. In the last few years several papers have appeared
in which there were found exact estimates (up to some constants) of moments
of S; that is, of the quantities

�S�p = �E�S�p�1/p�

The growth of moments is closely related to the behavior of the tails of S.
In [7] and independently in [8] and [6], Chapter 4 were found precise, up to
some constants, tail estimates in the case of Xi = aiεi, where ai ∈ R and
�εi� is the Bernoulli sequence. In [2] estimates for moments were given in this
case. This result was generalized in [1] to the case of Xi = aiYi, ai ∈ R and
Yi i.i.d., symmetric random variables with logarithmically concave tails. In
[4] estimates for moments of S were established, when the Xi are symmetric
random variables with logarithmically convex tails.

In this paper we give simple formulas for estimating of moments which
hold in the general case when Xi are independent symmetric or nonnegative
random variables (Theorems 1 and 2). In particular, using them we easily
derive the above mentioned results. As a simple application, we also prove
that the constants Cp in the Rosenthal inequalities∥∥∥∑Xi∥∥∥

p
≤ Cpmax

(∥∥∥∑Xi∥∥∥
2
�
(∑ �Xi�pp

)1/p)
are of order p/ lnp; compare [5].

Definitions and notation. Let us define the following functions on R for
p > 0:

ϕp�x� = �1 + x�p�

ϕ̃p�x� =
ϕp�x� + ϕp�−x�

2
�

Received January 1996; revised October 1996.
1Research partially supported by Foundation for Polish Science and KBN Grant 2 P301 022 07.
AMS 1991 subject classifications. 60E15, 60G50.
Key words and phrases. Estimation of moments, sums of independent random variables, Rosen-

thal inequality.

1502



SUMS OF INDEPENDENT RANDOM VARIABLES 1503

For a random variable X we define

φp�X� = Eϕp�X�
and for a sequence �Xi� of independent nonnegative (resp. symmetric) random
variables we define the following Orlicz norm:

����Xi����p = inf
{
t > 0� ∑

ln
(
φp

(
Xi
t

))
≤ p

}
�

For two functions f�g we write f ∼ g to signify that for some constant C,
C−1f ≤ g ≤ Cf.

1. Nonnegative random variables. Let us begin with the following sim-
ple lemma.

Lemma 1. For X1� � � � �Xn independent nonnegative random variables we
have

φp�X1 + · · · +Xn� ≤ φp�X1� · · ·φp�Xn��

Proof. Obviously it is enough to prove Lemma 1 for n = 2 and this reduces
to the observation that

ϕp�x+ y� ≤ ϕp�x�ϕp�y� for x�y ≥ 0�

Lemma 2. If X�Y are independent nonnegative random variables, then

φp
(
2X+φ2/p

p �X�Y) ≥ φp�X�φp�Y��

Proof. First let us notice that (by taking pth roots)

ϕp�tx� ≥ t2/pϕp�x� for t ≥ 1� x ≥ 1�

hence

Eϕp�2X+φ2/p
p �X�Y�I�Y≥1� ≥ Eϕp�φ2/p

p �X�Y�I�Y≥1�

≥ φp�X�Eϕp�Y�I�Y≥1��
(1)

Since for 0 ≤ y < 1� x ≥ 0, ϕp�2x + φ2/p
p �X�y� ≥ ϕp��1 + y�x + y� =

ϕp�y�ϕp�x�, we have

Eϕp�2X+φ2/p
p �X�Y�I�Y<1� ≥ φp�X�Eϕp�Y�I�Y<1��(2)

This and (1) gives the proof of Lemma 2. ✷

Lemma 3. If X1�X2� � � � �Xn are independent nonnegative random vari-
ables such that φp�X1� · · · · ·φp�Xn� ≤ ep, then

φp�2e2�X1 + · · · +Xn�� ≥ φp�X1� · · ·φp�Xn��
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Proof. Let Yk = 2�φp�X1� · · ·φp�Xk��2/p�X1 + · · · +Xk�. We prove by
induction that

φp�Yk� ≥ φp�X1� · · ·φp�Xk��(3)

For k = 1 it is obvious, so assume that (3) holds for some k. Then by mono-
tonicity of ϕp and the previous lemma,

φp�Yk+1� ≥ φp�2Xk+1 +φ2/p
p �Xk+1�Yk� ≥ φp�Xk+1�φp�Yk�

≥ φp�X1� · · ·φp�Xk+1�� ✷

Theorem 1. LetX1�X2� � � � �Xn be a sequence of independent nonnegative
random variables, and p > 0. Then the following inequalities hold:

e− 1
2e2

����Xi����p ≤ �X1 + · · · +Xn�p ≤ e����Xi����p for p ≥ 1

and

�ep − 1�1/p

2e2
����Xi����p ≤ �X1 + · · · +Xn�p ≤ e����Xi����p for p ≤ 1�

Proof. Let us assume that∑
ln
(
φp

(
Xi
t

))
= p�

so that φp�X1/t� · · ·φp�Xn/t� = ep. By Lemma 1,

φp

(
X1 + · · · +Xn

t

)
≤ ep�

However, ϕp�x� ≥ xp for x ≥ 0, so for any nonnegative variable Z, φp�Z� ≥
�Z�pp and therefore

�X1 + · · · +Xn�p ≤ et�
To show the other inequality, let us observe that by Lemma 3,

φp

(
2e2
X1 + · · · +Xn

t

)
≥ ep�(4)

However, for any nonnegative random variable Z,

φp�Z� ≤ �1 + �Z�p�p for p ≥ 1�(5)

by the triangle inequality. For p ≤ 1, since ϕp�x� ≤ 1 + xp for x ≥ 0, we have
that

φp�Z� ≤ 1 + �Z�pp for p ≤ 1�(6)

From (4), (5) and (6) we obtain the desired lower estimates, and this completes
the proof. ✷



SUMS OF INDEPENDENT RANDOM VARIABLES 1505

In the particular case of i.i.d. nonnegative r.v., Theorem 1 yields the follow-
ing result of S. J. Montgomery-Smith (private communication).

Corollary 1. If p ≥ 1 and X�X1� � � � �Xn are i.i.d. nonnegative random
variables then

�X1 + · · · +Xn�p ∼ sup
{
p

s

(
n

p

)1/s

�X�s� max
(

1�
p

n

)
≤ s ≤ p

}
�

Proof. By Theorem 1 we have

�X1 + · · · +Xn�p ∼ inf�t > 0� φp�X/t� ≤ ep/n��
First assume that φp�X/t� ≤ ep/n and 1 ≤ s ≤ p. Then since for x ≥ 0,
ϕp�x� = ��1 + x�p/s�s ≥ �1 + px/s�s ≥ 1 + �p/s�sxs, we obtain(

p

s

)s∥∥∥∥Xt
∥∥∥∥
s

s

≤ ep/n − 1�

If n ≥ p, then ep/n − 1 ≤ ep/n, so that

t ≥ e−1p

s

(
n

p

)1/s

�X�s�

and if n ≤ p and s ≥ p/n, then �ep/n − 1�1/s ≤ e and so we obtain

t ≥ e−1p

s
�X�s ≥ e−1p

s

(
n

p

)1/s

�X�s�

To estimate from the other side, we may assume that

sup
{
p

s

(
n

p

)1/s

�X�s� max
(

1�
p

n

)
≤ s ≤ p

}
= t�

Since for x ≥ 0,

ϕp�x� ≤
∑
k<p

(
p

k

)
xk + xp�(7)

and
(
p
k

) ≤ �ep/k�k, if n ≥ p we have that

φp

(
X

2et

)
≤ ∑
k<p

pk

�2tk�k �X�kk +
�X�pp
�2et�p ≤ 1 + p

n
≤ ep/n�

If p ≥ n, we have �p/n�1/k ≤ k1/k < e for k ≥ p/n. Also �X�k ≤ �X�p/n for
k ≤ p/n. Therefore from (7) we obtain

φp

(
X

2et

)
≤ exp�p�X/2et�p/n� +

∑
p/n<k<p

pk

�2tk�k �X�kk +
�X�pp
�2et�p

≤ ep/2n + p
n

≤ ep/n� ✷
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2. Symmetric random variables.

Lemma 4. For any p ≥ 2 and real numbers a < b < c < d, satisfying the
condition a+ d = b+ c = 2, the function

f�t� = �a+ t�p + �b− t�p + �c− t�p + �d+ t�p

is nondecreasing for t ≥ 0.

Proof. Since f is convex it is enough to check that f′�0� ≥ 0. But
p−1f′�0� = �a�p−2a− �b�p−2b− �c�p−2c+ �d�p−2d = g�d− 1� − g�c− 1�, where

g�s� = �1 + s�p−2�1 + s� + �1 − s�p−2�1 − s��
So it is enough to show that the function g is nondecreasing on �0�∞�. This
is true since

g′�s� = �p− 1���1 + s�p−2 − �1 − s�p−2� ≥ 0 for s ∈ �0�1�
and

g′�s� = �p− 1���1 + s�p−2 − �s− 1�p−2� ≥ 0 for s ∈ �1�∞��

Lemma 5. For X1� � � � �Xn independent symmetric random variables and
p ≥ 2 we have

φp�X1 + · · · +Xn� ≤ φp�X1� · · ·φp�Xn��

Proof. The proof easily reduces to the case of n = 2 and X1 = xε1� X2 =
yε2, with 0 ≤ y ≤ x. In this case, this becomes the inequality

ϕ̃p�x+ y� + ϕ̃p�x− y� ≤ 2ϕ̃p�x�ϕ̃p�y��
This follows by Lemma 4, applied to a = 1−x−y� b = 1−x+y� c = 1+x−y
and d = 1 + x+ y. ✷

Lemma 6. If t ≥ 1� �x� ≥ 1 and p ≥ 1, then

ϕ̃p�tx� ≥ tp/2ϕ̃p�x��(8)

Proof. Let us fix x ≥ 1 and define for t ≥ 1,

f�t� = ln ϕ̃p�tx� −
p

2
ln t�

We have to show that f�t� ≥ f�1�. This is true, since f is nondecreasing on
�1�∞�. This is so because

f′�t� = p
2t

�tx− 1��tx+ 1�p−1 + �tx+ 1��tx− 1�p−1

�tx− 1�p + �tx+ 1�p ≥ 0� ✷
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Lemma 7. IfX1�X2� � � � �Xn are independent symmetric random variables
such that φp�X1� · · ·φp�Xn� ≤ ep, then for p ≥ 1,

φp�2e2�X1 + · · · +Xn�� ≥ φp�X1� · · ·φp�Xn��

Proof. Following the proof of Lemma 3, it is enough to show that

φp�2X+φp�X�2/pY� ≥ φp�X�φp�Y�
for independent symmetric variables X and Y. By the convexity of ϕp, we
obtain Eϕp�a+ bε� ≤ Eϕp�a+ cε� for real numbers a� b� c, such that �b� ≤ �c�.
Therefore, since φp�X� ≥ 1, we have for any real numbers x�y with �y� ≤ 1,

Eϕ̃p�ε1x�ϕ̃p�ε2y� = ϕ̃p�x�ϕ̃p�y� = Eϕp�ε2y+ ε1�x+ ε2xy��
≤ Eϕp�ε2y+ ε12x� ≤ Eϕp�2ε1x+φp�X�2/pε2y�
= Eϕ̃p�2ε1x+φp�X�2/pε2y��

So we may proceed as in the proof of Lemma 2, using Lemma 6 and the above
inequality. ✷

Now proceeding exactly as in the case of nonnegative random variables we
derive the following from Lemmas 5 and 7.

Theorem 2. Let X1�X2� � � � �Xn be a sequence of independent symmetric
random variables, and p ≥ 2. Then the following inequalities hold:

e− 1
2e2

����Xi����p ≤ �X1 + · · · +Xn�p ≤ e����Xi����p�

Also in a similar way as in the nonnegative case, we prove the following.

Corollary 2. If p ≥ 2 and X�X1� � � � �Xn are i.i.d symmetric random
variables then we have

�X1 + · · · +Xn�p ∼ sup
{
p

s

(
n

p

)1/s

�X�s� max
(

2�
p

n

)
≤ s ≤ p

}
�

Remark 1. If we change ln in the definition of ����Xi����p to loga for some
a > 1, then the lower constants in Theorems 1 and 2 will change to �a −
1�/�2a2� and the upper constants will change to a. The lowest ratio of these
constants is obtained when a = 3/2.

Remark 2. If Xi are independent, mean zero random variables, and �εi�
is a Bernoulli sequence independent of �Xi� then

1/2
∥∥∥∥∑Xi

∥∥∥∥
p

≤
∥∥∥∥∑ εiXi

∥∥∥∥
p

≤ 2
∥∥∥∥∑Xi

∥∥∥∥
p

�

Hence we may obtain Theorem 2 for mean zero random variables, with slightly
worse constants, by setting φp�Xi� = φp�εiXi� = Eϕ̃p�Xi�.
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Remark 3. If p < 2, then by Khintchine’s inequality we have for indepen-
dent symmetric random variables Xi

cp

∥∥∥√∑
X2
i

∥∥∥
p
≤

∥∥∥∑Xi∥∥∥
p
≤

∥∥∥√∑
X2
i

∥∥∥
p
�

where the cp are positive constants depending only on p. So we may use
Theorem 1 to obtain some estimates of moments for p < 2.

3. Examples of applications. We give a few examples of random
variables Xi, where one can compute the functions Mp�Xi equivalent to
�1/p� lnφp�Xi� in the sense that

����aiXi����p ∼ inf
{
t > 0� ∑

Mp�Xi�ai/t� ≤ 1
}
�

We will assume that p ≥ 2 and use the following simple estimates of ϕ̃p:

ϕ̃p�x� ≥ 1 + p�p− 1�
4

x2 ≥ 1 + p
2

8
x2�(9)

ϕ̃p�x� ≤ coshpx ≤ 1 + p2x2 for p�x� ≤ 1(10)

and

max
( 1

2�1 + �x��p�1 + �x�p) ≤ ϕ̃p�x� ≤ �1 + �x��p ≤ ep�x��(11)

3.1. Let ε be a symmetric Bernoulli variable, that is, P�ε = ±1� = 1/2 and

Mp�ε�t� =
{
�t�� if p�t� ≥ 1�

pt2� if p�t� ≤ 1�

Then by a simple calculation we get lnφp�tε� ≤ pMp�ε�t� by (10) and (11),
and lnφp�4tε� ≥ pmin�1�Mp�ε�t�� by (9) and (11). Hence Theorem 2 yields
the following result (cf. [2]):∥∥∥∑aiεi∥∥∥

p
∼ ∑
i≤p
ai +

√
p

( ∑
i>p

a2
i

)1/2

�

where �εi� is a sequence of independent symmetric Bernoulli variables, and
�ai� is a nonincreasing sequence of nonnegative numbers.

3.2. We may generalize the previous example. Let X be a symmetric ran-
dom variable with logarithmically concave tails; that is, P��X� ≥ t� = e−N�t�

for t ≥ 0, where N� R+ → R+ ∪ �∞� is a convex function. Since it is only a
matter of multiplication of X by some constant, we will assume that

inf�t > 0� N�t� ≥ 1� = 1�(12)

In this case, we will set

Mp�X�t� =
{
p−1N∗�p�t��� if p�t� ≥ 2�

pt2� if p�t� < 2�
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where N∗�t� = sup�ts−N�s�� t > 0�. We will prove that

lnφp�tX/4� ≤ pMp�X�t�(13)

and

pmin�1�Mp�X�t�� ≤ lnφp�e3tX��(14)

By the symmetry of X we may assume that t > 0. If pt ≥ 2, by (11), and
integrating by parts

φp�tX/4� ≤ Eep�tX/4� = 1 +
∫ ∞

0
es−N�4s/pt� ds ≤ 1 + eN∗�pt/2�

∫ ∞

0
e−s ds

≤ 1 + eN∗�pt�/2 ≤ eN∗�pt��

If pt < 2, then t < 1. By the convexity of N and the normalization property
(12), we get N�x� ≥ x for x ≥ 1. Hence

EX2 ≤ 1 +
∫ ∞

1
x2e−x dx = 1 + 5e−1 ≤ 3

and

E�1 + tX/4�pI��ptX�≥4� ≤
∫ ∞

4/pt
�1 + tx/4�pe−x dx

≤
∫ ∞

4/pt
e−x/2 dx sup

x≥4/pt
�1 + tx/4�pe−x/2 ≤ 2et2p2/8�

Therefore, by (10) and (11) we obtain

φp�tX/4� ≤ E�1 + p2t2X2/16�I��ptX�<4� +E�1 + tX/4�pI��ptX�≥4� ≤ 1 + t2p2�

and (13) follows. To prove the second estimate, let us first assume that pt < 2.
Then by (12), we have EX2 ≥ e−1. By (9) it then follows that

lnφp�e3tX� ≥ ln�1 + p2t2e5/8� ≥ p2t2�

Now let p�t� ≥ 2, then N∗�pt� ≥ 1. If p ≥N�1/t� then by (11) we obtain

φp�e3tX� ≥ �1 + �e3�p�e−N�1/t� ≥ ep�
So we need only consider the case when N∗�pt� = pts−N�s� for 1/pt ≤ s ≤
1/t. But in this case, by (11),

φp�e3tX� ≥ 1
2�1 + e3ts�pe−N�s� ≥ epts−N�s� = eN∗�p�t���

The proof of (14) is complete.
From (13) and (14) we obtain the following slight generalization of the result

of [1]: ∥∥∥∑aiXi∥∥∥
p
∼ inf

{
t > 0� ∑

i≤p
N∗
i �pai/t� ≤ p

}
+

(
p
∑
i>p

a2
i

)1/2

�

where �Xi� is a sequence of independent random variables with logarithmi-
cally concave tails normalized so that inf�t� P��Xi� ≥ t� ≤ e−1� = 1, and
Ni�t� = lnP��Xi� ≥ t�, and �ai� is a nonincreasing sequence of nonnegative
numbers and p ≥ 2.
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3.3. Let X be a symmetric random variable with logarithmically convex
tails; that is, P��X� ≥ t� = e−N�t� for t ≥ 0, where N� R+ → R+ is a concave
function and

Mp�X�t� = max�tp�X�pp�pt2�X�2
2��

We will prove that in this case

lnφp�e−2tX� ≤ max�tp�X�pp�p2t2�X�2
2� ≤ pMp�X�t�(15)

and

pmin�1�Mp�X�t�� ≤ lnφp�e2tX��(16)

Since tX also has logarithmically convex tails, we may assume that t = 1.
First let C = max��X�pp�p2�X�2

2�. Then by (10) and (11) we have

φp�e−2X� ≤ E�1 + e−4p2X2�I��e−2pX�≤1� +Eee
−2p�X�I�1≤�e−2pX�≤p�

+ 2pe−2pE�X�pI��e−2pX�≥p��
(17)

Integrating by parts, we obtain

Eee
−2p�X�I�e2≤�pX�≤e2p� ≤ e1−N�e2/p� +

∫ p
1
et−N�te2/p�dt�

but from Chebyshev’s inequality

e−N�e2� ≤ Ce−2p

and

e−N�e2/p� ≤ Ce−4�

Hence by the concavity of N, if t = λ1 + �1 − λ�p, we get

e−N�te2/p� ≤ e−λN�e2/p�−�1−λ�N�e2� ≤ Ce−4λ−2p�1−λ� ≤ Ce−2t�

Therefore,

Eee
−2p�X�I�e2≤�pX�≤e2p� ≤ Ce−3 +

∫ p
1
Ce−tdt ≤ C�e−3 + e−1��

Finally from (17), it follows that

lnφp�X� ≤ ln�1 +C�e−4 + e−3 + e−1 + e−p�� ≤ ln�1 +C� ≤ C
and (15) is proved. Let us now establish (16). We may suppose that φp�e2X� ≤
ep, otherwise (16) follows trivially. But then, from (11), we have that �X�p ≤
e−1. Therefore, from Chebyshev’s inequality, N�1� ≥ p, and by the concavity
of N, we have N�x� ≥ px for x ≤ 1. Hence

EX2I��X�≤1� ≤
∫ 1

0
2xe−px dx ≤ 2p−2

and

EX2I��X�>1� ≤ EXp ≤ e−2pφp�e2X� ≤ e−p ≤ p−2�
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Therefore p2EX2 ≤ 3, and hence by (9),

lnφp�e2X� ≥ ln
(

1 + p
2

8
e4EX2

)
≥ p2EX2�

By (11) we also have

lnφp�e2X� ≥ ln�1 + e2pE�X�p� ≥ pmin��X�pp�1�
and (16) is shown.

From (15) and (16) immediately follows the result of [4] that states∥∥∥∑Xi∥∥∥
p
∼

(∑
EX

p
i

)1/p
+

(
p
∑
EX2

i

)1/2

for p ≥ 2 and �Xi� a sequence of independent symmetric random variables
with logarithmically convex tails.

Lemma 8. If Xi are independent nonnegative random variables then for
p ≥ 1 and c > 0 we have

����Xi����p ≤ 2 max
( �1 + c�p
cp

(∑
EXi

)
�

(
1 + 1
c

)
p−1/p

(∑
EX

p
i

)1/p
)
�(18)

If Xi are independent symmetric random variables, then we have for p ≥ 3
and c ∈ �0�1�

����Xi����p≤2 max
(�1 + c�p/2
c
√
p

(∑
EX2

i

)1/2

�

(
1+ 1
c

)
p−1/p

(∑
E�Xi�p

)1/p)
(19)

and for p ∈ �2�3�

����Xi����p ≤ 2 max
((∑

EX2
i

)1/2
� 2p−1/p

(∑
E�Xi�p

)1/p)
�(20)

Proof. Since the function �1+x�p is convex for p ≥ 1, the function x−1��1+
x�p − 1� is nondecreasing on �0�∞�. Hence ϕp�x� ≤ 1 + �1 + c�pc−1x for 0 ≤
x ≤ c, and so

ϕp�x� ≤ 1 + �1 + c�pc−1x+ �1 + c−1�pxp for x ≥ 0�

Therefore

lnφp�Xi� ≤ �1 + c�pc−1EXi + �1 + c−1�pEXpi �
and (18) follows.

To prove the inequalities for symmetric r.v., let us put f�x� = x−2��1+x�p+
�1−x�p−2� and g�x� = x3f′�x�, whenever �x� ≤ 1. We have g�0� = g′�0� = 0,
and

g′′�x� = p�p− 1��p− 2�x��1 + x�p−3 − �1 − x�p−3��
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Hence for p ≥ 3, f�x� is nondecreasing. Therefore for c ∈ �0�1� and �x� ≤ c,
we have ϕ̃p�x� − 1 ≤ f�c�x2/2 ≤ c−2�1 + c�px2. Therefore

ϕ̃p�x� ≤ 1 + �1 + c�pc−2x2 + �1 + c−1�p�x�p�
As above, this implies (19). If 2 ≤ p ≤ 3, f�x� is nonincreasing, hence for
�x� ≤ 1, we have ϕ̃p�x� ≤ 1 + (

p
2

)
x2. Therefore for any x we have

ϕ̃p�x� ≤ 1 + px2 + 2p�x�p
and (20) follows.

From Theorem 1, 2 and Lemma 8 (taking c = lnp/p) we obtain the follow-
ing result.

Corollary 3. There exists a universal constant K such that if Xi are in-
dependent nonnegative random variables and p ≥ 1, then∥∥∥∑Xi∥∥∥

p
≤K p

lnp
max

(∑
EXi�

(∑
EX

p
i

)1/p)
and if Xi are independent symmetric random variables and p ≥ 2 then∥∥∥∑Xi∥∥∥

p
≤K p

lnp
max

((∑
EX2

i

)1/2
�
(∑
E�Xi�p

)1/p)
�

Remark 3. If we put in Lemma 8 c = �2s − 1�−1, then Theorem 2 yields
the following one-dimensional version of the result of Pinelis (c.f. [9] and [10]).
For independent symmetric random variables Xi, and p ≥ 2 we have∥∥∥∑Xi∥∥∥

p
≤Kmin

{
sAp +

√
sep/sA2� 1 ≤ s ≤ p�

∼ Ap +
√
pA2 +

pAp

ln�2 + �Ap/A2�√p�
�

where Ar = �∑E�Xi�r�1/r and K is a universal constant.
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of a simple formula for the moments.

REFERENCES
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