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ABSTRACT 

The single-receiver single-satellite validation method is a technique that screens data from each satellite 

independently to detect and identify faulty observations. A new method for estimation of the stochastic 

properties of multi-constellation GNSS observation is presented utilizing parameters of this validation method.  

Agreement of the characteristics of the validation statistics with theory is used as the criterion to select the best 

precision of the observations, spectral density and correlation time of the unknowns. A curve fitting approach in 

an iterative scheme is employed. The method is applicable to any GNSS with any arbitrary number of 

frequencies. Demonstration of the method results and performance is given using multiple-frequency data from 

GPS, GLONASS and Galileo in static and kinematic modes.  
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INTRODUCTION 
 
The knowledge of realistic values of observation precision is essential in building a 

reliable covariance matrix of the observations and in their weighting during processing in all 
precise positioning and navigation applications using Global Navigation Satellite Systems 
(GNSS). Estimation of the observation stochastic properties has been discussed in [1], [7], 
[15], [17], [22] and [26] mainly for conventional observations. With new measurements from 
emerging constellations of GNSS, estimation of observation precision for all constellations 
and for all their frequencies is needed. On the other hand, methods that are capable of 
validating data from multiple GNSS constellations should be implemented to detect extreme 
irregularities in the data and isolate faulty observations. [23, 24] evaluate a general form of 
fault detection and exclusion and discuss probabilities of different types of errors. Validation 
of GPS with GLONASS measurements was investigated in [6], and GPS with Galileo in [11] 
and [17].  

 
The single-receiver single-satellite approach is a method that can be applied to validate 

any GNSS with any arbitrary number of frequencies. The basic model of the method was 
discussed in [4] and [19], and was presented in a modified form in [10]. In this contribution, 
the single-receiver single-satellite data validation method is firstly reviewed as a background 
to the main focus of this paper, which is presenting a new method for estimation of the 
stochastic properties of the multi-constellation observations by examining statistical 
properties of the validation statistics. Agreement of the characteristics of the validation 
statistics with theory is used as the criterion to select the best precision of the observations 
within an iterative search process. Such agreement will take place when real-data are 
correctly modelled and their assumed stochastic properties are properly selected. 
Demonstration of the proposed method is given in static and kinematic modes. The static test 
include observations collected over one week at two continuously operating reference 
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stations, and the kinematic data were collected in a ship-borne mode for nine hours. The 
paper presents estimation of precision and stochastic properties of current observation types 
from the three GNSS: GPS, GLONASS and Galileo.  

 
SINGLE-RECEIVER SINGLE-SATELLITE DATA VALIDATION METHOD    

 

In the single-receiver single-satellite method, undifferenced code and phase observations 
of each satellite of a single receiver are screened to detect the most severe irregularities in the 
data and if necessary remove or repair faulty observations. The process is applied, satellite by 
satellite, independently at each epoch, and in a sequential manner. The method is applicable 
to post-mission or real-time processing of any GNSS constellation, in static or kinematic 
modes. In addition, the method advantages include that measurements from systems with a 
limited number of operational satellites, such as Galileo and QZSS, can be screened without 
the need for having a complete positioning solution. Moreover, there is no need for the 
determination of inter-system biases when using data from different constellations as the 
model does not combine data from different systems, where observations from each satellite 
are screened individually. In this section, the mathematical modelling used in the method in 
addition to the validation process employed are presented. 
 
A Reparameterized Modelling Form of the Observation Equations 
 

The carrier phase and pseudorange observation equations of a single satellite tracked by a 
single receiver on frequency 𝒇𝒋 (for 𝒋 = 1 to 𝒏) at time instant 𝒕 can be formulated as follows: 

 𝜙𝑗(𝑡) = 𝜌(𝑡) + 𝑑𝜌(𝑡) + 𝑐(𝛿𝑡𝑟(𝑡) − 𝛿𝑡𝑠(𝑡)) + 𝑇(𝑡) − 𝜇𝑗𝐼(𝑡) + 𝑏𝜙𝑗(𝑡) + �̃�𝜙𝑗(𝑡) + 𝜀𝜙𝑗(t) (1)  𝑝𝑗(𝑡) = 𝜌(𝑡) + 𝑑𝜌(𝑡) + 𝑐(𝛿𝑡𝑟(𝑡) − 𝛿𝑡𝑠(𝑡)) + 𝑇(𝑡) + 𝜇𝑗𝐼(𝑡) + 𝑏𝑝𝑗(𝑡) + �̃�𝑝𝑗(𝑡) + 𝜀𝑝𝑗(𝑡)  (2) 

 
where 𝜙𝑗(𝑡) and 𝑝𝑗(𝑡) denote the observed carrier phase and pseudoranges in distance units 

with corresponding zero-mean noise terms 𝜀𝜙𝑗(𝑡) and 𝜀𝑝𝑗(𝑡). 𝜌(𝑡) denotes the receiver-to-

satellite range, dρ(t) is the orbital error, 𝑐 is the speed of light, 𝛿𝑡𝑟(𝑡) and 𝛿𝑡𝑠(𝑡) are the 
receiver and satellite clock errors and 𝑇(𝑡) is the tropospheric delay. The parameter 𝐼(𝑡) 
denotes the ionospheric delay for code observations and advance for phase observations 
expressed in units of distance with respect to the first frequency. For frequency 𝑓𝑗 , the 

ionospheric coefficient 𝜇𝑗 = 𝑓12/𝑓𝑗2 is used to express the ionosphere error in terms of 𝐼(𝑡). 

The parameters 𝑏𝜙𝑗(𝑡) and 𝑏𝑝𝑗(𝑡) are the phase and code biases, which are considered 

constant over a short period of time [8, 19], e.g. an hour, and therefore will be denoted 
thereafter as 𝑏𝜙𝑗(𝑡𝑜) and 𝑏𝑝𝑗(𝑡𝑜). For phase measurements, 𝑏𝜙𝑗(𝑡𝑜) comprises the sum of the 

initial phase bias, the phase ambiguity and the instrumental phase delay. For code 

measurements, 𝑏𝑝𝑗(𝑡𝑜) is the instrumental code delay. �̃�𝜙𝑗(𝑡) and �̃�𝑝𝑗 (𝑡) denote the 

unmodelled systematic errors that are not constant in nature or quasi-random, such as 
multipath.  
 

The ionospheric delay 𝐼(𝑡) and the bias parameters �̃�𝜙𝑗(𝑡) and �̃�𝑝𝑗(𝑡) can be split into two 

components, initial values 𝐼(𝑡𝑜), �̃�𝜙𝑗(𝑡𝑜) and �̃�𝑝𝑗(𝑡𝑜) at the initial epoch 𝑡𝑜 , and the 

difference from these value, which are denoted as 𝛿𝐼(𝑡), 𝛿�̃�𝜙(𝑡) and 𝛿�̃�𝑝(𝑡) such that: 

 𝐼(𝑡) = 𝐼(𝑡𝑜) + 𝛿𝐼(𝑡) (3) 
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�̃�𝜙𝑗(𝑡) = �̃�𝜙𝑗(𝑡𝑜) + 𝛿�̃�𝜙𝑗(𝑡) �̃�𝑝𝑗(𝑡) = �̃�𝑝𝑗(𝑡𝑜) + 𝛿�̃�𝑝𝑗(𝑡) 

(4) 
(5) 

 
 

The rank deficiency of the model in Eq. (1, 2) can be reduced by re-parameterization of the 
unknowns using a geometry-free model as follows [10]: 
 𝜌∗(𝑡) = 𝜌(𝑡) + 𝑑𝜌(𝑡) + 𝑐(𝛿𝑡𝑟(𝑡) − 𝛿𝑡𝑠(𝑡)) + 𝑇(𝑡) 𝜌∗∗(𝑡) = 𝜌∗(𝑡) − 𝜌∗(𝑡𝑜) 𝑏𝜙𝑗∗ (𝑡𝑜) = 𝑏𝜙𝑗(𝑡𝑜) + �̃�𝜙𝑗(𝑡𝑜) + [𝜌∗(𝑡𝑜) − 𝜇𝑗𝐼(𝑡𝑜)] 𝑏𝑝𝑗∗ (𝑡𝑜) = 𝑏𝑝𝑗(𝑡𝑜) + �̃�𝑝𝑗 (𝑡𝑜) + [𝜌∗(𝑡𝑜) + 𝜇𝑗𝐼(𝑡𝑜)] 

(6) 
(7) 
(8) 
(9) 

 
 
The observation equations in terms of the re-parameterized vector of unknowns [𝜌∗∗(𝑡), 𝛿𝐼(𝑡), 𝑏𝜙𝑗∗ (𝑡𝑜), 𝑏𝑝𝑗∗ (𝑡𝑜), 𝛿�̃�𝜙𝑗(𝑡), 𝛿�̃�𝑝𝑗(𝑡)]𝑇 then read: 

 𝜙𝑗(𝑡) = 𝜌∗∗(𝑡) − 𝜇𝑗𝛿𝐼(𝑡) + 𝛿�̃�𝜙𝑗(𝑡) + 𝑏𝜙𝑗∗ (𝑡𝑜) + 𝜀𝜙𝑗(𝑡)𝑝𝑗(𝑡) = 𝜌∗∗(𝑡) + 𝜇𝑗𝛿𝐼(𝑡) + 𝛿�̃�𝑝𝑗(𝑡) + 𝑏𝑝𝑗∗ (𝑡𝑜) + 𝜀𝑝𝑗(𝑡)  

(10) 
(11) 

During processing initialization, the first three terms on the right-hand side of the equation 
equal zeros at the first epoch 𝑡𝑜, leading to 𝑏𝜙𝑗∗ (𝑡𝑜) and 𝑏𝑝𝑗∗ (𝑡𝑜) equal 𝜙𝑗(𝑡𝑜) and 𝑝𝑗(𝑡𝑜), 

respectively. The unknowns in Eq. (10, 11) can be predicted using dynamic modelling to 
remove rank deficiency in a Kalman filtering processing. The time prediction process at time 𝑡 for the vector of unknowns, denoted in a general form as 𝑥𝑡, reads: 
 �̌�𝑡 = Φ𝑡/𝑡−1�̂�𝑡−1 (12)  

   
where Φ𝑡/𝑡−1 is the transition matrix, �̂�𝑡−1 and �̌�𝑡 are the estimated and predicted vectors of 

unknowns at times t-1 and t. The reparametrized unknown range 𝜌∗∗ can be considered 
unlinked in time and thus is not considered in the prediction process. 𝑏𝜙𝑗∗ (𝑡𝑜) and 𝑏𝑝𝑗∗ (𝑡𝑜) are 

constants. The ionospheric delay 𝛿𝐼 and the time-variant bias components 𝛿�̃�𝜙𝑗and 𝛿�̃�𝑝𝑗  are 

considered changing relatively smoothly with time and taken exponentially decaying by 
using a first-order autoregressive stochastic process (a first-order Gauss-Markov process). 
Hence, the temporal correlations of the biases, denoted in a general term as β reads: 
 𝛽 = 𝑒−|Δ𝑡|/𝜏 
 

(13) 

where e is the base of the natural logarithm, Δ𝑡 is the time interval between the epochs 𝑡 − 1 
and 𝑡 and 𝜏 is the correlation time length. The dynamic models of 𝛿𝐼, 𝑏𝜙𝑗∗  and 𝑏𝑝𝑗∗  for a 

frequency 𝑗 at 𝑡 then read: 
 𝛿𝐼(𝑡) = 𝛽𝛿𝐼  𝛿𝐼(𝑡 − 1) + 𝑑𝛿𝐼(𝑡) 𝑏𝜙𝑗∗ (𝑡) = 𝛽 𝑏𝜙𝑗∗  𝑏𝜙𝑗∗ (𝑡 − 1) + 𝑑 𝑏𝜙𝑗∗ (𝑡) 𝑏𝑝𝑗∗ (𝑡) = 𝛽 𝑏𝑝𝑗∗  𝑏𝑝𝑗∗ (𝑡 − 1) + 𝑑 𝑏𝑝𝑗∗ (𝑡) 

(14) 
(15) 
(16) 
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where 𝛽𝛿𝐼 , 𝛽 𝑏𝜙𝑗∗  and 𝛽 𝑏𝑝𝑗∗  are the temporal correlations for 𝛿𝐼(𝑡), 𝑏𝜙𝑗∗ (𝑡) and 𝑏𝑝𝑗∗ (𝑡). 𝑑𝛿𝐼(𝑡), 𝑑𝑏𝜙𝑗∗ (𝑡) and 𝑑𝑏𝑝𝑗∗ (𝑡) are their process noises, which are assumed Gaussian white noises. The 

variance of each process noise is computed as {
𝜗2𝜏 (1 − 𝛽2)} [13], where 𝜗 denotes the 

spectral density. The transition matrix Φ𝑡/𝑡−1 is taken a digonal matrix comprising the 

temporal correlations  𝛽𝛿𝐼 , 𝛽 𝑏𝜙𝑗∗  and 𝛽 𝑏𝑝𝑗∗ . 

 
Data Validation Process 

 

For validation of GNSS data, one starts by formulation of the observation equation at time 𝒕 in a linearized Gauss–Markov model as follows: 
 𝑦𝑡 = 𝐴𝑡�̌�𝑡 + 𝑣𝑡 (17) 

 
where 𝑦𝑡 is the vector of phase and code observations, 𝑣𝑡 denotes the vector of observation 
predicted residuals (innovations) and 𝐴𝑡 is the design matrix, which reads: 
 𝐴𝑡 = [𝑢 −𝜇𝑗𝑢 +𝜇𝑗 I 00 I    I 00 I ] 

(18) 

 
for j=1 to n frequencies, u is a unit column vector and I is the identity matrix, both of size n.  
 

In real-time applications, Local Testing can be applied, where one examines the 
observations at the present epoch. 𝑞 number of possible errors in the observations can be 
tested, where q < df, where df is the degrees of freedom. Possible detection of the presence of 
model errors can be performed by examining the local over-all model statistic 𝑇𝐿𝑂𝑀 , which 
reads [20]: 
 𝑇𝐿𝑂𝑀 = 𝑣𝑡𝑇𝑄�̂�𝑡−1𝑣𝑡/𝑑𝑓 (19) 

  
where 𝑄�̂�𝑡 denotes the covariance matrix of the predicted residuals, formulated as [20]: 

 𝑄�̂�𝑡 = 𝑄𝑦𝑡 + [𝐴𝑡(𝐴𝑡𝑇𝑄𝑦𝑡−1𝐴𝑡)−1𝐴𝑡𝑇] (20) 

 𝑄𝑦𝑡  is the covariance matrix of the observations. The null hypothesis (outlier-free 

observations) is rejected, indicating possible presence of significant measurement or model 
errors, when: 
 𝑇𝐿𝑂𝑀 ≥ F∝(𝑑𝑓, ∞, 0) (21) 

  
where F∝ is the Fisher distribution value corresponding to a significance level 𝛼 and df. 
 

Once the presence of an observation outlier is detected, one needs to identify the faulty 
measurement(s) that cause such error(s). We will restrict attention to one dimensional error 
model in one code or phase observation, i.e. 𝑞 = 1.  The test statistic can then be computed 
for observation i as follows [2, 20]:  
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    𝑤i =  𝑐𝑖𝑇  𝑄𝑣−1 𝑣√(𝑐𝑖𝑇   𝑄�̂� 𝑐𝑖)  (22) 

 where 𝑐𝑖 is a zero column vector except the element corresponding to the examined 
observation i, which equals 1. An outlier is considered present in the observation when:  
 |𝑤𝑖| ≥ 𝑁𝛼12 (0, 1),   |wi| ≥ |wk|   for k= 1 to m observations (23) 

 
Note that the significance level 1 for the w-statistic is different from the significance level 
for the local over-all-model in the detection test. The former can be computed using 
Baarda’s B method [1], which assumes same probability for type II error (failure to reject a 
false null hypothesis) in both the detection and identification tests. 
 

The power of the above test statistic can be assessed by its Minimal Detectable Biases 
(MDB), which is a measure for the size of the error that can be detected with a certain power 
and probability of false alarm. The MDB reads [4, 20]:  
  𝑀𝐷𝐵𝑖 =  √ 𝜆𝑜(𝑐𝑖𝑇   𝑄�̂�  𝑐𝑖)  (24) 

 
The non-centrally parameter o needs first to be determined, where [20]: 
 𝜆𝑜 = f(, q) (25) 
 
denotes the power of the test. The MDB can be computed even before actual measurements 
have been collected using only the functional model and the expected precision of the data. 

 
UTILIZATION OF THE PROPERTIES OF W-STATISTIC AS A TOOL TO ESTIMATE  

OBSERVATION STOCHASTIC PROPERTIES 

 
This section discusses the characteristics of the validation parameters of the single-

receiver single-satellite approach that can be used as a tool for estimation of the observation 
stochastic properties. For instance, one can check that the estimated w-statistic of the 
observed signals has a standard normal distribution, N(0, 1). Such a condition would only 
take place if observation weighting is correctly applied under the null hypothesis. A 
demonstration of the proposed approach is given through implementation in practical 
experiments in the static and kinematic modes. Due to the large number of figures that can be 
discussed in this demonstration, only representative samples are presented.  

 
Test Description 

 

The data used in the static test were collected at two continuously operating reference 
stations at Curtin University, Australia, over the first week of March 2013 with 30 seconds 
sampling interval. Observations from GPS, GLONASS and Galileo were collected using a 
geodetic-grade multi-frequency multi-GNSS antenna (TRM59800.00) and receiver (Trimble 
NETR9). Tracked signals in the test included L1, L2 and L5 code and phase observations for 
GPS, L1 and L2 for GLONASS, and E1, E5a and E5b for Galileo.  
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The kinematic test was carried out on 26/4/2012, where the GNSS was mounted on a boat 
and almost 9.3 hours of GPS and GLONASS data with a sampling interval of one second 
were collected using a Sokkia GSR2700ISX receiver. The kinematic course included a high 
dynamic part where the boat was almost six kilometres offshore  
 
Characterization of w-test statistic As a Tool to Estimate Observation Precision  
 

Figures 1 to 3 show three examples from processing the static data of GPS satellite PRN 
29, GLONASS PRN 19 and Galileo PRN 11 collected on 2/3/2013 using the single-receiver 
single-satellite data validation method. The figures depict the time-series and histograms of 
w-statistic for phase and code data of all available frequencies with the elevation angle and 
signal-to-noise ratio (SNR) values in dB-Hz for L1. The elevation angles were obtained from 
satellite almanacs and approximate point positions determined using a single point 
positioning of available GPS data performed in a prior step to the data screening process. The 
left side of the Figures 1 to 3 shows time-series of the computed w- statistic values and the 
right side of the figures shows their corresponding histograms, where the computed standard 
deviation 𝜎𝑤 and mean 𝜇𝑤 of each w-statistic are given on top of each figure. Figure 4 
illustrates a similar example for the kinematic test, where the w-statistic values for GPS PRN 
31 is given as an example. The similarities shown in the between w-statistic values for 𝜙1 
and 𝜙2 in the four figures can be explained by their correlations, which results in an error in 
one measurement influencing other measurements [14]. The critical values for w-statistic 
[𝑁𝛼2(0,1)] are shown in the figures as solid lines. A possible outlier is suspected when the 

computed w-statistic exceeds this critical value. 
 

 
Fig. 1.  Time-series of w-statistic for GPS phase and code measurements on L1 and L2, satellite elevation angles and SNR 

on L1 (left side); histograms of w-statistic (Right side) 
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Fig. 2. Time-series and histograms of w-statistic for GLONASS measurements 

 

 

 
Fig. 3. Time-series and histograms of w-statistic for Galileo measurements  
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Fig. 4.  Time series of w-statistic in the kinematic test 

 
To check if the w-statistic approximately follows a standard normal distribution, a number 

of methods can be applied. For instance, one would consider the closeness of the standard 
deviations to one and the mean values to zero. Ideally this would be the case, however, due to 
possible noise in the data, small discrepancies may be experienced. In addition, one can judge 
by visual inspection of the w-statistic histograms to check if they vary in a random manner, 
with a standard normal distribution. This is shown in the Figures 1 to 4, for which the model 
and stochastic information are set correctly. On the other hand, Figure 5 illustrates a case 
where the process noise parameters were incorrectly set (amplifying the C/A code standard 
deviations by 10 times of the assumed correct value) for GPS satellite PRN 29. As shown in 
Figure 5, the w-statistic histograms significantly deviate from the standard normal 
distribution. An alternative method is to inspect the Q-Q plot of the w-statistic, where a 
departure of the data from the Q-Q slant straight line would indicate departure from 
normality. An example of a Q-Q plot for GPS w-statistic results of C/A code data for satellite 
PRN 29 is given in Figure 6. A skewness or short/long tails of points on a Q-Q plot would 
indicate skewness and tailing of data distribution. Inference of the plot would help in tuning 
the variance of the observations. For instance, long tails with an ‘S’ shaped-curve indicates 
that the data have more variance than expected from data of a normal distribution. This is 
shown in Figure 7 for the case of amplifying the C/A code standard deviations of GPS 
satellite PRN 29. On the other hand, short tails indicate less variance than one would expect. 
Finally, the Kolmogorov-Smirnov goodness-of-fit test [16] can be performed which 
compares the cumulative distribution function (CDF) of the time-series of the w-statistic to 
the hypothesized CDF of continuous distribution defined by the standard normal distribution.  
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Fig. 5.  w-test statistic for measurements with incorrect process noise modelling 
 

 

 
 

Fig. 6.  Q-Q plot for GPS C/A code data of satellite 29 
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Fig. 7.  Q-Q plot for GPS C/A code data of satellite 29 with a wrong standard deviation 

 
ESTIMATION OF STOCHASTIC PROPERTIES OF THE MULTI-GNSS OBSERVATIONS  

AND PROCESS NOISE 

 
A new empirical method for estimation of the stochastic properties of the observations and 

the process noise using the validation parameters of the single-receiver single-satellite 
technique is described in this section. While the precision of conventional observations of 
GPS and GLONASS has been researched before, the method is of particular interest for the 
modernized observation types of the two systems and for the new GNSS constellations. 
Results for different types of phase and code observations of currently available frequencies 
in each of the tested constellations: GPS, GLONASS and Galileo are presented using real 
data. 
 

The performance of the multi-frequency multi-constellation single-satellite validation 
method is affected by the covariance matrix of the observations. To compute the standard 
deviations used in the covariance matrix for the slant observations along the receiver-to-
satellite line of sight used in computing the covariance matrix, two methods were considered 
in this study. In the first method, the standard deviations along the slant directions were 
computed by scaling the standard deviations along the zenith using an elevation-angle 
dependent model in the form [1 + 𝑎0 × 𝑒𝑥𝑝(−𝐸𝑜/𝐸𝑜𝑜)] [12], where 𝑎0 is a weighting 
coefficient that is dependent on the type and frequency of the observation, receiver and 
method used for the observation tracking (e.g. Z-tracking, codeless, semi-codeless). 𝐸𝑜 and 𝐸𝑜𝑜 are the observed elevation angle and a selected base value for the elevation angle in 

degrees. In this study, the weight model is selected as (1 + 10 × 𝑒(−𝐸𝑜/10𝑜)) with an average 
value of 𝑎0 =10, such that for observation 𝑖, its variance reads [21]: 

 

 𝜎𝑖2 = 𝜎𝑜2(1 + 10 × 𝑒(−𝐸𝑜/10𝑜))2 (26) 
 
where 𝜎𝑜2 is the variance along the zenith direction. The second weight model considered 
employs the Carrier-to-Noise density ratio (or the signal-to-noise ratio, SNR) in the form [27]: 
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 𝜎𝑖2 = 𝑍𝑖 × 10− 𝑆𝑁𝑅𝑖10  (27) 
 
where 𝑍𝑖 is a variance factor that is dependent on the type and frequency of the observation, 
the method used for observation tracking, and receiver used. 𝑆𝑁𝑅𝑖 is the measured signal-to-
noise ratio for the observation 𝑖 in dB-Hz. 

  
Estimation of the Precision of the Multi-GNSS Observations 

   

In this approach, the tested un-differenced GNSS measurements were assumed with no 
cross-correlations. The standard deviations of the undifferenced observations along the zenith 
direction are empirically determined using a curve fitting iterative method. The data used 
were collected throughout the first week of March 2013 in the static mode, which is a 
controlled environment suitable for this purpose. Possible values of standard deviations were 
iteratively used in the validation process and the set that gave the best overall fit of the 
distribution of w-test statistic to N(0, 1) for most satellite observations of each system and 
passed all normality tests mentioned in the previous section was selected as the best 
candidate.  
 

Standard deviations of the phase observations were iterated within the range 0.5 mm to 3 
mm for all GNSS systems. For code observations, standard deviations of GPS and Galileo 
measurements were examined between 5 cm and 25 cm. For GLONASS code observations, 
the range of iterated standard deviations was from 5 cm to 40 cm, due to the fact that 
GLONASS observations typically have less precision compared with the observations of 
GPS and Galileo. Using an elevation-angle dependent model (Eq. 26), testing was performed 
for each observation type, starting the standard deviation from a base value and incrementing 
it by 0.1 mm for phase observations and by 1 cm for code observations. The best obtained 
sets of standard deviations for the three GNSS are given in Table 1, noting that most 

multipath effects were modelled in the terms 𝜹�̃�𝝓𝒋  𝐚𝐧𝐝 𝜹�̃�𝒑𝒋 . The presented values are in 

close agreement with the measurement precision given in the literature [5, 23]. 
 

Table 1. Standard deviations of undifferenced GNSS measurements (zenith direction) 

  GPS Galileo GLONASS 
 L1 L2 L5 E1 E5a E5b E6 L1 L2 

 code (cm) 20 10 5 20 12 11 5 33 20 
 phase (mm) 1.5 1.3 1.0 2.0 0.6 0.6 0.7 2.2 2.0 

 
The second weight model considered in this study employs the signal-to-noise ratio (SNR). 

The variance factor in this model was estimated by considering the zenith direction, where 
SNR usually reach their maximum values. By substituting the variance of the observations on 
the left-hand side of Eq. (27) to the estimated values along the zenith direction listed in Table 
1 and using the maximum possible values for SNR of different observation types obtained 
from the used receiver, one can estimate 𝑍𝑖. In this study, the maximum values of SNR for 
different observation and frequency types ranged between 47.9 and 56.7 dB-Hz.  

 
 The competency of the two methods, elevation-angle and SNR-dependent modelling, in 

weighting of the observations in the validation method is presented here through one example 
by comparing Figure 1 with Figure 8 for GPS observations of satellite PRN 29. The later 
figure illustrates the distribution of w-statistic values based on using the SNR weighting 
model, whereas Figure 1 is based on weighting the observations using the elevation-angle 
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dependent model. As the two figures show, the standard deviations σw and the mean μw of the 
w-statistic results of the two methods almost agree with minor differences. This result comes 
to an agreement with other studies that compare the impact of using the two methods on 
positioning performance [3]. 

 

 
Fig. 8. Time series and histogram of w-test statistic for GPS weighting using SNR 

 
 Estimation of Correlation times and Spectral Densities 
 

 In addition to the covariance matrix of the observations, stochastic information needed for 
processing using the single-receiver single-satellite validation method include the process 

noise of the unknowns 𝜹𝑰, 𝜹�̃�𝝓𝒋 and 𝜹�̃�𝒑𝒋 .  Since these unknowns are modelled as a first-

order Gauss-Markov process with a correlation that is decaying exponentially with time, their 
correlation times were determined by plotting the autocorrelation of each element as a 
function of time lag and estimating the time lag at which the autocorrelation equals 1/e. The 

correlation time for 𝜹𝑰, 𝜹�̃�𝝓𝒋and 𝜹�̃�𝒑𝒋 are given in Table 2 for the static test data based on 

processing results of the first week of March 2013. To determine the best values for the 
spectral densities 𝝑, they were initially taken as the change of the parameters with time. Next, 
these values were tuned utilizing the same approach used in estimating the precision of the 
observations, i.e. selecting the set that gives the best overall fit of the distribution of w-
statistic values to N(0, 1) and passes all normality tests. The best estimated spectral densities 
under our test conditions are given in Table 2. These values were considered applicable for 
all frequencies and for all GNSS systems as our tests show. 
 

Table 2. Spectral densities of the process noise of the model parameters in the static mode 

Parameter 𝛿𝐼 𝛿�̃�𝜙 𝛿�̃�𝑝 

Spectral densities 4 𝑚𝑚2/𝑠 1.5 𝑚𝑚2/𝑠 47 𝑚𝑚2/𝑠 

Correlation time 600 s 600 s 600 s 
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For the kinematic test data, the observation precisions determined in the static mode were 
used; however, the spectral densities have to accommodate possible changes due to dynamics 
of the object and surrounding environment. Keeping the same correlation time of the time-
variant biases for both the static and kinematic modes, the same strategy discussed in the 
static mode for estimation of the best values for the spectral densities ϑ was followed. The 
spectral densities were initially taken as the estimated values in the static mode and were next 
tuned to find the set that gives the best overall fit of the distribution of w-statistic to normal 
distribution under our test conditions after excluding data outliers. In the ship-borne 
kinematic environment considered here, the boat has experienced relatively medium waves. 
As a result, the spectral densities in the kinematic mode were slightly higher than those for 
the static test. The final spectral densities for the kinematic test are given in table 3.     

 

Table 3. Spectral densities of the process noise of in the Kinematic mode 

Parameter 𝛿𝐼 𝛿�̃�𝜙 𝛿�̃�𝑝 

Spectral densities 4 𝑚𝑚2/𝑠 2 𝑚𝑚2/𝑠 60 𝑚𝑚2/𝑠 

Correlation time 600 s 600 s 600 s 

 
Testing the Estimated Stochastic Properties of GNSS Observations 

 
After estimation of the stochastic properties of GNSS measurements, one would like to 

examine if they would produce realistic positioning results. Therefore, the estimated 
observation precisions of GPS were implemented in a Precise Point Positioning (PPP) 
processing of the ship-borne kinematic data. Note here that the GNSS observation precisions 
were obtained from the static data, i.e. they were independent from the data used in PPP 
processing. The single-receiver single-satellite data validation method was also used for 
screening the data prior to applying the PPP. A detection and exclusion strategy was applied, 
i.e. if an outlier is detected in any observation, this observation is excluded from the data.   

 
Before using the validation approach, one would first examine its power through 

estimating the MDB values, which is a measure of the size of the errors that can be detected 
with the model used with a certain power of detection and probability of false alarm. Using 
0.001 for the latter and a power of detection of 0.8, which are reasonable values for precise 
positioning, the resulting MDBs for GPS satellite 31, given as an example, are depicted in 
Figure 9.  The figure shows that for high elevation angles, errors as low as 10 cm and less 
than a metre can be detected for GPS phase and code data respectively. However, for low 
elevation angles, the size of the minimum errors that can be detected significantly increases. 
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Fig. 9.  MDB of GPS PRN 31 

 
The time-series of the 3D position standard deviations, as a measure of position precision, 

resulting from processing the data in the PPP mode is given in Figure 10. As the figure 
shows, no outliers can be seen in the data after applying the single-receiver single-satellite 
validation method as outliers if present would result in spikes in the figure. This indicates the 
good performance of the single-receiver single-satellite validation method in detecting and 
removing observations with outliers if they exist. More results on the performance of the 
method in detection of different levels of artificially inserted outliers in a large data set are 
given in [10]. Furthermore, the resulting positions for the converged part of the solution were 
compared with the output of processing the data using the Natural Resources of Canada 
CSRS-PPP online service utilizing its default values [9]. The differences between the results 
of the two processing schemes were within a few mm to cm throughout the compared 
processing period, which indicated that the estimated observation precision used in the PPP 
processing were representative.   
 
 

 
Fig. 10.  3D Positional Standard Deviation 
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CONCLUSIONS 

 
A new empirical method for estimation of the precision of GNSS observations applicable 

to any GNSS with any number of frequencies is presented. While the precision of 
conventional observations of fully operational systems such as GPS and GLONASS has been 
identified before, the method is of particular interest for the new observation types of the 
modernized satellites and for the new GNSS constellations. The method uses the statistical 
properties of the single-receiver single-satellite local validation parameters to select the best 
precision of the observations applying a curve fitting iterative approach. The set that gives the 
best overall fit of the distribution of w-test statistic to a standard normal distribution for most 
satellite observations of each system and pass all normality tests is deemed suitable. In this 
study, real data from GPS, GLONASS and Galileo were used for this purpose. The data were 
collected throughout the first week of March, 2013 in a static mode, and for almost nine 
hours in a kinematic ship-borne mode. Values for the observation precision for different 
observation types of the three GNSS constellations were estimated and found to be in close 
agreement with their values determined from other studies. Two weighting models were 
considered, an elevation-angle dependent model and a model that uses Carrier-to-Noise 
density ratio. Results of the two methods were compatible. In addition, the spectral densities 
and correlation time of the unknowns were estimated for both static and kinematic test 
modes. In a practical positioning scenario, the single-receiver single-satellite validation 
method was firstly used for screening the kinematic boat data to detect outliers and identify 
erroneous observations. The measurement precisions that were estimated in the static testing 
were next used in PPP post-processing of the kinematic test data. Results showed the good 
performance of the single-receiver single-satellite data validation method in the detection of 
outliers and in removing faulty observations. The estimated observation precision from the 
presented tests gave comparable positioning solution to those obtained from a good 
independent source. However, as the method is emprical it requires long computation time 
for running possible candidate precisions within the chosen test range. In addition, the 
computed precisions do not include multipath; therefore, its impact should be accounted for 
in the processing schemes that merge its effect within the observation standard deviations. 
For the new systems, BeiDou, QZSS, IRNSS, we plan to conduct a future similar study to 
determine their stochastic properties. 
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