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Estimation of Network Reliability Using Graph Evolution Models 
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The usual network reliability problem is: Suppose that 
edges of G are s-independently erased with probabilities q ( e ) ,  
e E E. Let F denote the set of non-erased edges; the subgraph 
( V J )  of G then appears with probability: 
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In practice this static model describes: i) systems without edge 
renewal, or fi) stationary regimes Of renewable systems. h Case 
ii, q ( e )  is the equilibrium probability that a renewable edge 
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Abstract - Monte Carlo techniques for estimating various net- 
work reliability characteristics, including terminal C O M ~ C ~ ~ V ~ ~ Y ,  are 
developed by assuming that edges are subject to failures with ar- 
bitrary probabilities and nodes are absolutely reliable. The core 
of our approach is introducing network time-evolution processes 
and using certain graph-theoretic machinery resulting in a con- 
siderable increase in accuracy for Monte Carlo estimates, especially 
for highly reliable networks. Simulation strategies and numerical 
results are presented and discussed. 

1. INTRODUCTION 

Reliability of networks with randomly failing edges is a 
subject of extensive research. Several directions prevail in this 
research: 

algorithms for reliability computation [ 1-3,2 1,221 
reliabdity estimation by means of simulation [6,8-11,14,16,17] 
constructing tractable lower and upper bounds on the network 

This paper describes an approach to network reliability 
simulation based on an artificial time-evolution formulation of 
network failure reliability characteristics. This approach incor- 
porates both simulation and analytic methods and has no dif- 
ficulty when the edge failure probabilities are distinct. The aim 
of this work is to develop efficient simulation procedures. In 
particular, we are interested in reducing the relative error of 
network failure estimation for highly reliable networks. 

A network 3t is an undirected graph G= ( V , E ) ,  with node- 
set V, J V J  =n, and edge-set E, JEJ  =m, whose spanning 
subgraphs ( V J )  are classified as up (operational) and down 
(non-operational), subject to the reasonable monotonicity con- 
dition: If ( V,F)  is up then all subgraphs ( V J ‘  ) are up, where 
F E  Ff. 

reliability [2-4,18-201. 

Notation 

R (3 t ,q)  reliability of Tc 
4 
T 

the m-vector with coordinates q ( e )  E E. 
a fixed subset of V; the members of T are called 
terminals 

Other, standard notation is given in “Information for Readers 
& Authors” at the rear of each issue. 

The reliability of 3t is defined as the probability R (  Z , q )  
that the random subgraph ( V , F )  is operating. As a principal 
example, we consider terminal reliability defined by: ( V J )  is 
up if Tlies in one component of ( V J ) .  This network is denoted 

We consider Monte Carlo simulation of network reliabili- 
ty based on time evolution modification of the static model. This 
modification leads to an important acceleration (variance reduc- 
tion) of the Monte Carlo procedures, and guarantees 
boundedness of the relative error, irrespective of the value of 
graph unreliability (claim 6.2). 

Section 2 presents a general statistical framework for 
reliability evaluation. Section 3 expresses the network reliability 
R ( T c , q )  in terms of two different Markov processes: i) a 
destruction process (DP), and ii) a creation process (CP). Sec- 
tion 4 presents combinatorics for analyzing DP for the network 
( G, T )  . The central role belongs to the notion of maximal span- 
ning tree, the Kruskal algorithm, and lemma 4.1. In the case 
of equal edge-failure probabilities, the DP leads to an efficient 
Monte Carlo sampling scheme studied earlier by Fishman [lo]. 
Sections 5 & 6 describe a modification of CP based on the graph- 
theoretical notion of closure. Section 7 presents numerical results 
for a family of networks, with a comparison of several Monte 
Carlo approaches. 

by (G9T). 

2. MONTE CARLO SAMPLING SCHEME 

By the Monte Carlo method for evaluating a sum, 

z = z ( u )  
U €  U 
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over a very large set Uof “outcomes”, we mean the following 
method. Introduce the probability distribution p ( U )  on U and 
consider U as an um from which a ball u can be drawn with 
probability p (U). Also let Z denote the mean value of random 
variable Y(u) = z(u)/p(u)  by: 

The variance and coefficient of variation of Y are: 

From basic statistics we have - 
Ckim 2.1. Let S = (U’, u2 ,..., UN) be the result of N 
s-independent choices from U, with probabilities p ( U). Then - 

N 

Ps = N-’ Y(Ui) 
i = l  

is an unbiased estimate of E { Y) , with variance and coefficient 
of variation equal: 

Var{E} = N-’ * Var{Y> 

6s = 0 

Crude Monte Carlo 

Consider a network X with a graph G = ( V, E )  and some 
operational (up) criterion. Realization of the above scheme for 
the set of subsets of E as the urn U, with p (F) , F E E, given 
by (1-1), and Y(F) = 1 when (VJ) is up, and 0 otherwise, 
are referred to as crude Monte Carlo (CMC) for evaluating 
R (  X , q ) ,  or equivalently, for evaluating Q( X , q )  = 
l-R(X,q).  The variance of CMC is: 

and the relative error in evaluating Q on the basis of N 
s-independent experiments is: 

The main deficiency of CMC is the unbounded growth of 
BCMC as Q approaches 0 (viz, for highly reliable networks). 
Various improvements of CMC have been suggested in order 
to reduce or eliminate this effect [6,8-11,14,17]. 

In this paper we offer another urn scheme for evaluating 
network reliability which guarantees finite relative error. The 

~ 
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balls u in this scheme are the trajectories of a certain Markov 
process on the state space 2“ or its proper reduction, and the 
value Y( U )  of the random variable is the conditional probabili- 
ty of the up state for a given trajectory. Except for a special 
choice of the urn we suggest no changes to the above basic 
sampling scheme. This, however, provides performance of the 
Monte Carlo which is in general comparable with the existing 
advanced sampling techniques. In certain cases, such as highly 
reliable networks and dense graphs, the suggested method is 
definitely better. 

3. GRAPH DESTRUCTION AND 
CREATION PROCESSES 

Introduce an artificial time t and let F( t )  denote the set 
of edges existing at the instant t. Consider two types of graph 
evolution processes G ( t )  = ( V , F ( t ) ) ,  F ( t )  E E, t 1 0. 

Destruction Process (DP) 

Initially, at t =0, all edges are up: F (  0) =E. Edges leave 
the set F (  t )  s-independently, at random moments T( e ) ,  with 
the Cdf, Pr{.r(e) I t} = 1 -exp( -X(e)t). Let 7(X) denote 
the random moment when G( t )  goes down. The Cdf of T( X) 
is Pr{7(X) I t} = R ( X , q ) ,  where q is an m-vector with 
the components q(e)  = 1 -exp( -X(e)t), e E E. The static 
model in the Introduction agrees with DP when the edge failure 
rates X(e) are chosen so that - 

and is realized at t = 1. 

Creation Process (CP) 

Initially, at t = 0, all edges are down: F( 0) = 0. The edges 
of G join F( t) s-independently, at random moments 7 (  e ) ,  with 
the Cdf, Pr{.r(e) I t} = 1-exp( -X(e)t), e E E, and 
operate forever. Let [ ( X ) denote the moment when G ( t) goes 
up. TheCdfof[(X) i sPr{ t (X]  I t} = R ( X , q ) ,  withq(e) 
= exp( -X(e)t). The static model agrees with CP when the 
edge birth rates h(e)  are chosen so that, 

and is realised at t =  1. 
For each of these processes consider an ordering 

(permutation) w = (el, ..., e,,,) of E specifying the order in 
which the edges are erased (in DP) or created (in CP). The prob- 
ability of w is given by the well-known expression [7,17]: 

(3-3) 

where Eo = E, Ei = E - e l -  ...- ei, 1 I i s  m-1,  and 

For a given w, an edge e is called DP-critical if erasing 
it causes G( t) to go down, and CP-critical if its creation causes 

h(Ei) = L E E ,  h(e)* 
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G(t) to go up. The ordinal number of the critical edge in w 
is called the critical number of w and denoted by [w], so that 

min{i:G-el- ... -ei  is down}, in DP 
(el,e2 ,..., ei))  is up), in CP. (3-4) 

PutP(t(w) = Pr{7(32) I tJw} for DP, and Pr( t (32)  
I t I w) for CP. By a well-known property of Markov processes 
[7], P ( t ( w )  is a convolution of exponential r.v.’s: 

P ( t ( w )  does not depend on the order of e[wl+l,...,em in the 
permutation w. The following notions are therefore reasonable. 

Trajectories and Tails 

An ordered subset x = (el, e2 , .  . . ,er) of E is called a rra- 
jectory of DP if G-el-e2- ... -ei is up for i < rand down 
for i = r; x is called a trajectory ofCP if ( V , {  el,...,ei)) is 
down for i < r and up for i=r .  An ordered subset y = (er, 
e,, l,. . . ,em) of E is called a tail of DP if ( V, {ei,ei+ 1,. . . ,e,} 
is down for i > r and up for i = r; y is called a tail of CP 
if G-ei-ei+l-... -em is up for i > rand  down for i=r .  

0 

The critical number r=[w] divides a permutation 
w = (el,. . . ,em) into the trajectory tr ( w )  = ( e1,e2,. .. ,e,.) and 
the tail tl(w) = (er,er+l,...,em). A trajectory x can be iden- 
tified with the set (bundle) of permutations w satisfying tr (w)  = 
x, thus - 

P(t lx)  = P(t lw) for w satisfying tr(w) = x ,  

The following obvious variance decomposition reveals the 
gain in accuracy provided by DP or CP with respect to CMC 
(at the expense of more complex computations). 

VarcMc = Varp + Pr{x} P(t lx)  P(tlx). (3-9) 
X 

Similarly, a tail y can be identified with the bundle of per- 
mutations w satisfying tl( w) =y. Its probability is: 

h(ei)+ ... +h(e,) 
i = r  

The Cdf of the critical moment, given y ,  is: 

(3-10‘) 

In the important case of equal edge-failure probabilities 
(X(e) = X for all e E E) we have - 

r 
X(ei) 1 (m-r)! ( r -  l)! . Pr{w} = -, Pr{x} = ____ , Pr{y} = -. 

h ( E - e l  -... -e i - l )  m! m! m! 
Pr{x} = P r { 4  = n 

w:tr(w) = x  i = l  

(3-6) 

By the total probability formula, 

q = {q( e )  ; e E E }  is the vector of edge failure probabilities, 

1-exp[-X(e)t], for DP i e x p [ - h ( e ) t ] ,  for CP. 
d e )  = 

The sum at the left in (3-7) is over all trajectories of the cor- 
responding process. 

The Monte Carlo scheme based on generating trajectories 
x and exactly computing P ( t  Ix) is characterised by the variance: 

(3-8) 

(3-1 1) 

Now we describe generating permutations, trajectories and 
tails with their “natural” probabilities, as they appear in the 
corresponding process. 

Generating permutations 

For each edge e generate a value b(e)  of r.v. 7(e) ,  the 
lifetime of e. Then the desired permutation w = ( el,e2,. . . ,em) 
is induced by the inequalities: 

b (e l )  < b(e2) <...< b(e,). (3-12) 

This method is equivalent to drawing a permutation w from 
the um (see section 2) of all m! possible permutations of E with 

0 probability p ( w )  given by (3-3). 

Generating trajectories 

A trajectory x =  (e1,e2,. . . ,er) is generated by sequential- 
ly choosing el from E with probability X ( e l )  / X (  E ) ,  e2 from 
E-el with probability h(e2)/h(E-el), etc, until the critical 
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edge is generated. This is equivalent to drawing a trajectory 
from an urn with probability (3-6). 

Sequentially generating tails in the reverse order e,, 
e, - l,. . . , with natural probabilities (3- 10) is practically intrac- 
table, except for the case of equal edge-failure probabilities. 
In the latter case, tails are generated in the same sequential man- 
ner as trajectories. 0 

4. IDENTIFYING THE CRITICAL EDGE OF DP FOR 
3Z=(G,T)  

Notation 

Gk component of G -  el - e2 - . . . - ek- that contains T 
D some spanning tree of Gk 
D (  T )  the minimal subtree of D that contains T 
D, the lexicographically maximal spanning tree with 

respect to w 
e (w, T )  the junior edge of the subtree D, ( T).  

Consider generating a trajectory x = ( e1,e2,. . . ) of DP. 
After a current edge ek is erased, we need only to check if the 
terminal-set T is connected by G - el - e2 - . . . - ek. Surely, the 
choice of ek can always be restricted to the edge-set of Gk. The 
possibilities are: 

contains T; D might be preserved. 
ii. otherwise. Find an edge e of Gk-ek connecting the 

components of D-ek. If e exists, then Gk+l =G-ek, Gk+l 
connects T, and we can put D: = D - ek + e; otherwise (e does 
not exist), consider the components of D - ek. If one of them, 
say D ' contains the entire T, then Gk + = Gk (D ' ) which is the 
subgraph of Gk induced by the vertices of D '  , Gk+ connects 
T, and we can put D: = D'; otherwise T is disconnected in 
Gk-ek, so that the critical number is k, and (e l ,e2,  ..., ek) is 

An important fact is that when an entire permutation w is 
available, the critical edge can be determined by using exactly 
one special spanning tree D, as shown in lemma 4.1 below. 

For a spanning tree D, D( T)  is the union of the chains 
of D between all pairs of terminals. An edge permutation w in- 
duces the following lexicographic order among the spanning 
trees: D > D " when the senior edge of D ' - D " is greater than 
that of D " - D I .  Then D, is exactly the tree constructed by 
the famous Kruskal algorithm [15], with the input w. 

i. ek 4 D. Then Gk+l=G-ek, and obviously Gk+l 

the desired trajectory. 0 

Lemma 4.1. Let b (e) be the lifetime of edge e in DP, and 
w = ( el,e2,. . . ,e,) be the edge permutation induced by ine- 
qualities b(e l )  <b(e2)  e . . .  < b(6,). Then (G ,T)  fails when 
e(w,T)  fails, so that e(w,T)  is the critical edge of w. 

Proof. Let k be the ordinal number of e(  w,T) in w, and 
putFi=E-el- ...- ei, i = l ,  ..., k. For i < k ,  (V,Fi )  contains 
D,( T )  and thus connects T. We show that T is disconnected 
in ( v,Fk).  Consider the components D ' , D "  of D, - ek By 
definition of ek, both D '  , D" contain terminals. When ek fails, 

515 

the subset C of E connecting D '  & D" becomes empty. If it 
did not, then there would exist ej in C, with j > k, so that the 
spanning tree D, - t?k + ej is lexicographically greater than 

Example 

Figure l a  presents the graph called dodecahedron [12]. 
It has 20 nodes and 30 edges. The double-circled nodes 1,3,17 
are the terminals. The numbers near edges specify the edge 
lifetimes, b ( e ) .  The corresponding tree D, is shown on figure 
lb; its bold part is D,( T) .  The network lifetime is 19, while 
the overall connectivity is lost earlier, at t=6.  

D,-which is a contradiction. 

a. 

b. 

Figure 1. The Dodecahedron and Its Maximal Spanning Tree 

Simulation Strategy 

gested by lemma 4.1. 
The following Monte Carlo simulation algorithm is sug- 
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1. Generate N permutations wj (j = 1,. . . , N )  as describ- 

2. For each j = 1,. . . ,N, determine [wj] using the Kruskal 

3. Compute P(tlwj) by (3-5). 
4. Compute the estimate of network failure probability as 

the sample average of P ( t  1 wj)  (j = 1 ,. . . , N )  , see (2-2); com- 
0 

The Kruskal algorithm used in the above simulation starts 
from e, and terminates with e,, ie, it deals only with the tail 
of the given permutation. In principle, this property could be 
exploited by sequentially generating the tail of a permutation 
wj, applying (3-10) & (3-10'). Unfortunately, however, these 
formulas are too complicated for straightforward calculations. 
The situation is, however, much easier in the important case 
of equal edge-failure probabilities, as in (3-1 1). The reliability 
simulation of 32 = ( G, Z') with equal edge-failure probabilities 
is considered by Fishman [8,10]. In [lo], the simulation method 
is based on generating tails, and lemma 4.1 was used, but 
without being formulated explicitly. 

The case of equal edge-failure probabilities is extremely 
favorable for the network Monte Carlo. Indeed, in this case all 
permutations have the same probability, 1 / (m!) . On the other 
hand, assuming, without loss of generality, h ( e )  = 1 for all e 
E E,  the convolution (3-5) can be considerably simplified. In- 
deed, in the theory of order statistics [5] it is well-known that 
1-exp( - (m- i+l ) t )  istheCdf0fther.v. ~ = T ( ~ ) - T ( ~ . - ~ ) ,  

where T ( ~ )  is order statistic i for the sample of m i.i.d. r.v.'s 
T~ - exp(l) ,  q,=O. Moreover, ther.v.'s V,, i = l ,  ..., m, are 
s-independent. Thus the r.h.s. of (3-5) is: 

ed in (3-12). 

algorithm; the trajectory tr ( wj )  is thus identified. 

pute the corresponding sample variance. 

The Cdf Hr(t) of the r-th order statistic is given by a well- 
known formula 

Hr(t) = Pr{T(,)st) = binfc(r;l-e-',m) 

Thus (3-7) acquires the form: 

m 

R(=,q)  = A ( r ) H r ( t ) ,  
r =  1 

A ( r )  = (number of permutations with [w] = r)/m!, 

(4-2) 

(4-3) 

This presentation is used in [lo] as a basis for a Monte Carlo 
sampling scheme. A remarkable property of (4-3) is that the rele- 
vant combinatorics of 32 = (G,  Z') , expressed by the numbers 
{ A  ( r )  , r = 1,. . . ,m} , are totally separated from the probabilities 
contained in the functions Hr( t) , These functions are standard 
and always available for any value of t. So, the Monte Carlo 
simulation efforts should be turned to obtaining the distribution 
{ A  ( r )  , r = 1 ,. . . ,m} . It is reasonable to c d  it the internal distribu- 
tion (ID) of the network ( G , n  . As an illustration, tables 1 & 
2 present the IDS of several complete graphs with T= V,  and for 
the dodecahedredon with various Ts. obtained by simulation. 

TABLE 1 
Simulated ID'S of Complete Graphs, N = lo6 

A ( r )  s for 

~ 

4 
5 
6 
7 
8 
9 
10 
1 1  
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 

0.023810 
0.095238 0.002050 
0.285714 0.010155 
0.595238 0.029820 

0.071937 
0.155212 
0.298834 
0.431992 

0.000127 
0.000761 
0.002688 
0.007294 
0.016465 
0.033110 
0.061712 
0.108629 
0.181284 
0.277702 
0.310228 

0.000006 
0. 000043 
0.000165 
0. ooO529 
0.00145 1 
0. 003070 
0.006247 
0.01 1650 
0.020218 
0.034246 
0.055661 
0.08682 1 
0.130692 
0.186388 
0.241062 
0.221751 

0.000002 
0.000002 
O.ooOo16 
0. oooD29 
O.ooOo87 
0.000259 
0.000549 
0.001019 
0.001869 
0.003360 
0.005759 
0.009628 
0.014864 
0.023444 
0.035028 
0.051427 
0.073990 
0.103387 
0.138312 
0.177942 
0.201261 
0.157776 

0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0. 000000 
0.000000 
0.000006 
0.000005 
O.ooOo13 
0.000041 
0.000065 
0.000117 
0.000216 
0.000342 
0.000499 
0.000757 
0.001205 
0.001785 
0.002634 
0.003678 
0.00543 1 
0.007685 
0.010677 
0.014367 
0.019461 
0.026335 
0.035125 
0.045961 
0.0595 12 
0.075767 
0.093734 
0.112722 
0.130512 
0.140335 
0.130172 
0.080841 

5 .  CREATION AND MERGING PROCESSES FOR 
32= (G,Z') 

A closer look at the performance of the Kruskal algorithm 
reveals that on each step of constructing a maximal spanning tree, 
there can be identified a set of irrelevant edges whose future ap- 
pearance does not affect the time t (32). These are exactly the 
edges complementing the existing part of the tree to its graph- 
theoketical closure. 

The closure of a subset F of E consists of F and all edges 
of G whose ends lie in the same component of the spanning 
subgraph (V ,F) .  A subset F is closed if it coincides with its 
closure. 
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TABLE 2 
Simulated ID’S for the Dodecahedron, N = IO5  

A V )  

r T = V  T = (1, 7, 8, 11, 16) T = (1, 20) 

3 0.00476 0.00130 0.00039 
4 0.01637 0 .OO429 0.00170 
5 0.03366 0.00959 0.00374 
6 0.05991 0.01928 0.00752 
7 0.09559 0.03486 0.01464 
8 0.13872 0.05867 0.02600 
9 0.17746 0.09259 0.04515 

10 0.20031 0.13270 0.07215 
11 0.17794 0.17232 0.10635 
12 0.09528 0.17733 0.13207 
13 0.13625 0.13642 
14 0.08407 0.12568 
15 0.04464 0.10235 
16 0.02017 0.07963 
17 0.00784 0.05561 
18 0.00284 0.03731 
19 o.oO091 0.02361 
20 0.00028 0.01428 
21 O.ooOo5 0.00836 
22 0 . m 2  o.oO401 
23 0.00183 
24 0.00089 
25 0.00029 
26 0 . m 2  

For example, closing the set of bold edges of the 
dodecahedron shown in figure l b  adds the edge e = ( 1,3). 

The closure operation enables us to deal simultaneously 
with thicker bundles of permutations than in the original DP 
or CP. A serious obstacle for using this approach in the DP 
for the network ( G, T )  is the stochastic properties of tails, ex- 
pressed by (3-lo), (3-10’). This obstacle never appears for 
(G,T)  in CP, as is shown below [3,19]. 

In what follows, the notion of regularpartition of Vplays 
the central role. Given a graph G= ( V,E) , a partition g 
= {Xl,X2 ,..., X,} of V, where Xi f l  J = 0 for i # j ,  and 
U [= 1 X i  = V, is called regular (with respect to G) if each in- 
duced subgraph G ( X i )  is connected. Arbitrary set F of edges 
generates a regular partition (F)  = {Xl,X2,. . . ,X,} where Xi are 
the components of the spanning subgraph (V ,F)  (including 
isolated nodes, if any). Subsets F’ and F“ are equivalent if (F’) 
= ( F ” ) ,  and identify every regular partition g with the class 
of subsets F of E satisfying (F)  =g. Clearly, each such class 
is the collection of subsets of edges with a common closure. 
For every regular g, let its components be referred to as 
super-nodes and E(g) denote the set of exteml edges (the edges 
between distinct super-nodes). Put A (8)  = 

Consider the set L( G )  of all regular partitions of V, par- 
tially ordered by the relation: g ’ < g ” when g ” is obtained 
by merging components of g’. 

Suppose that a state F ( t )  of CP (see section 3) belongs 
to an equivalence class g ( t )  = g. Clearly, the time F( t) spends 
inghasthecdf  l-exp[-X(g).t]. Onleavingg,F(t) jumps 

( e ) .  

in one of direct successors of g, say g’, obtained by merging 
exactly two super-nodes of g, and chosen with probability (A (g) 
- X(g ’ ) ) /X(g) . The above is summarized in the following. 

Claim 5.1. 

i. g( t )  = ( F ( t ) )  is a Markov process on L ( G ) ;  
ii. the time spent by g( t )  in a state g is distributed as 

iii. thetransitiong - g’hastheprobabilityPr{g’Ig} = (X(g) 
- X(g’))/X(g), when g’  is a direct successor of g, and 0 
otherwise. 

For additional details see [3,19]. In the following, g ( t )  

exp ( (g)  1 ; 

is referred to as Merging Process, MP. 

Example 

Figure 2 presents L (K4), the set of all regular partitions 
g of the complete 4-node graph, “naturally” stratified into 4 
levels according to the number of super-nodes in g. The arrows 
show the direct successions in L ( K4), thus forming the transi- 
tion graph of the Markov process g( t ) .  The members of 
L ( K 4 )  are represented by circles; the corresponding closed 
spanning subgraph is drawn in each circle. Let T = {2,3}. The 
double circles correspond to the partitions for which T lies in 
one super-node. 

Figure 2. Transition Diagram for a Markov Process Whose States 
Are All Regular Partitions of a Complete 4-Node Graph 

Given a network ( G, T )  , we say that g E L( G )  is up if 
all terminals lie in one super-node of g. A trajectory of g( t )  
is a sequence U = ( go,g l , .  . . ,g,) of regular partitions where go 
is the trivial partition into singletons; gi is a direct successor 
of gi-l for i = l ,  ..., r; and r is the first i such that gi is up. In 
general, trajectories have distinct lengths, so that r depends on 
U. The probability of U is: 
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E, of the edges between distinct components Xi. If g, is up, 
then stop; otherwise draw an edge from E, and form g,+1 by 

After a trajectory u = ( go,gl,. . . ,gr} is formed, the condi- 
is computed as the convolution of functions 

(5-1) 

The conditional distribution function of 4 (37.1 along u is tional Cdf ( l 

(si) - (gi+ 1 ) 
r-1 

Pr{u} = 
i=O h(gi) merging the two components connected by this edge. 

P ( t  1 U )  = Convo, i s  1 { 1 - exp[ - X (gi) t]} . 

Finally, the Cdf of [ (31 ) is 

(l-exp[-Ait]) where Ai= CeEEr X(e), i=O,  ..., r-1. 
the 

above convolution is a linear combination of the exponents 
exp[ - A$], i = 0,. . . , r  - 1, whose coefficients are homogenous 
functions of Ai, of order 0. The following recurrent procedure 
has the complexity 0 ( r2) : 

Since all Ai are distinct (in fact, & > A1 > (5-2) 

(5-3) 

where U is the set of all trajectories of g(t). 
Returning to the initial creation process F (  t) E E,  we see 

that a trajectory x =  (el,e2, ...) of CP produces a uniquely 
defined trajectory of MP which we denote by (x) . We say that 
trajectories n’ , x ”  of CP are equivalent if ( x ’ )  = ( x ” ) .  Thus, 
a trajectory u of MP represents the class of trajectories of CP 
satisfying (x) = U ;  we write it as x E U. 

For x E u one has - 

Pr {x 1 U} = Pr { x }  /Pr (U} 

Assume Conv,-kcicr-l (1 -exp[-Aitl} 

k 

= 1 - Ak,i exp[-A,-itl 
i = l  

k 

With Ak,j = 1. 
i = l  

(To start with, we haveAl,l = 1). 

Then - 

The Monte Carlo scheme based on generating trajectories k 

A k + l , k + l  = l -  Ak+l , i .  of MP and exactly computing P ( t ( u )  using (5-2) has 
i= 1 

6. COMPLEXITY OF THE MP-MONTE CARLO 

Comparison with CMC and CP is based on the expansions: 

VarcMc = VarMp + (5-5) 

Varcp = VarMp 

For evaluating the computational complexity of the Monte 
Carlo scheme based on MP consider two problems. 

A. Estimating Q = E (  X , q )  for particular value of the 
vector q with a given mean relative error 6. 

B. Estimating Q = R(%,q) for a l-parameter family qr 
oftheformq,(e) = ql(e)‘ = exp[-h(e)t], t E (tl,t2, ..., tk) 

Pr(u}P(tJu) P( t lu) ,  
U 

+ Pr{u} Pr(x)u} P(t lx)2-P(t lx)2 . (5-6) With a given mean relative error 6. 
U ( x E u  ) The following statements can be easily established. 

The second term in the r.h.s. Of (5-6) is the Part of Varcp 
by the state space reduction when cp was transform- 

In the example of figure 2 the trajectories of g ( t )  are the 

Claim 6.1. The complexity of one simulation run for A is 
0 ( n2). For B, the values of Q ( tl 1 U), . . . , Q ( tk 1 U )  are available 
in one simulation run: its complexity is 0 ( n 2 )  + O(k-n) .  

Let 6Mp (e) denote the coefficient of variation in the MP 
Monte Carlo scheme: 

ed into MP. 

paths starting in 86 and terminating in doubled circles. 

Simulation strategy 
For estimating the sum (5-3), the sampling scheme of sec- 6$p(Q) = V ~ ~ M P  - - &U Pr{u}Q(tlu)2 -1, 

tion 2 is applied, with “natural” probabilities p ( u )  = Pr{u} Q2 Q(02 
given by (5-1). 

Generating a trajectory of g ( t )  
Then the complexity of the MP Monte Carlo for both A and B is: 

Start from go = {XI, ..., Xn}, (Xil = l .  At step r one has 
a sequence g0,gl,g2, ...,grr with g,= {XI ,..., Xn-,}, and a list 

sz,,(Q) . 0 ( ~ 2 ) .  
62 

U 
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A pleasant feature of MP is given by the following W = (Variance) x (CPU-time in sec for lo00 replications). 
statement. (7-1) 
Claim 6.2. For a given n and a given operational criterion the 
coefficient of variation 8hp( Q) is bounded uniformly for all 
values of A(e), e E E and 0 5 t I W. 

Proof. Since the A’s appear only in the products A(e) .t 
and in 0-homogeneous form, it is sufficient to prove that 
limt-o, 8Lp (Q) exists and is bounded in the unit ball E, A2 (e) 
I 1. 

Consider the lattice L of all partitions of the node-set I/ 
(states), and let UP and DN denote the sets of up and down states 
respectively. A trajectory of MP is a sequence U = 
( go,gl,. . . ,gr), where go,. . . ,gr- E DN, g, E UP (in this for- 
mulation trajectories with zero probabilities are permitted). 
Then - 

The values WDp & WMp for DP & MP, respectively, were 
compared with the corresponding WcMc for the crude Monte 
Carlo (CMC) and for some methods in [6,9,14,16]. 

The CMC was based on erasing edge e with probability 
q( e), e E E ,  and on checking the terminal connectivity of the 
resulting subnetwork. When no edges fail, the CMC simula- 
tion program skips the terminal connectivity check [6]. The set 
union algorithm of Hopcroft & Ullman [13] was applied for 
the connectivity check. For both DP & CP, the ratios 
WCMCIWDp & WCMC/WMp were computed. 

From the accuracy point of view, the principal parameter 
is the relative error: 

6 = (Variance) “/(Network failure probability). (7-2) 

as t - oo (since A(g,) >...>A(gr-l)). Define p ( % )  = 
min{h(g) : g E DN with a direct successor in UP} and U, 
= {U = (go, ..., gr-l,gr) E U :  A(g,-l)=p(%)}. Then- 

[for t large enough] 

A ( % )  = Pr{u} ~ ( u ) .  

This limit is a continuous function of A( e), e E E ,  and the 
assertion follows. 0 

In the particular case of complete graph G=K,,, with 
equal edge-failure rates, and all-terminal connectivity as an 
operational criterion, it can be shown that A&( Q) I 1 for all 
n .  The following seemingly non-trivial question is then 
reasonable and important. 

Question. Is there a universal constant A such that 6MP (Q) I 
A for all n,  all possible A’s and 0 I t e oo? 

U €  U, 

7. SIMULATION RESULTS 

In order to evaluate the performance of the Monte Carlo 
schemes based on edge destruction & creation processes, a series 
of experiments has been done for several networks. Network 
failure probability Q=R{%,q} was estimated along the lines 
of the simulation strategies for DP & MP described in sections 
4 & 5. As a performance measure of the simulation method we 
take: 

The variance reduction factor with respect to CMC was com- 
puted for MP as, qMp = 6&C/6hp. 

The simulation results are based on N= lo4 replications. 
The following networks were chosen for numerical experiments: 

1. The Easton-Wong [6] communication network with 105 
nodes and 127 edges, with the all-terminal connectivity as the 
operational criterion. 

2. The dodecahedron (figure la) with the s-t connectivity 
as the operational criterion for s = 1 and t = 20 [9]. 

3. The dodecahedron with the all-terminal connectivity as 
the operational criterion. 

4. A family of complete graphs Klo, K15, K20, K25, K30 
with the all-terminal connectivity as the operational criterion. 

For networks #1 & #2, the performance of our methods 
is compared with that of alternative methods [6,9]. Table 3 
presents simulation results for the Easton-Wong network, table 
4 for the dodecahedrons, and table 5 for complete graphs. The 
following conclusions can be drawn from analyzing tables 3 - 5. 

1. DP is not competitive with MP, in terms of both variance 
reduction factor and in the Wperformance measure. Relative to 
CMC, DP has good performance parameters for nondense and 
very reliable graphs, as shown in table 4. The reasonable applica- 
tion field of DP is networks with equal edge-failure probabilities. 
In that case, one simulation run results in estimating the ID of 
(G, T )  and serves for any q value; see section 5. 

2. MP is very efficient for highly reliable networks and 
dense graphs; see lines 4,5 and 9,lO in table 4, and lines 3,4,5 
in table 5. The performance of MP increases when the network 
reliability approaches 1. 

3. The suggested MP algorithm needs no extra modifica- 
tions to include the cases of distinct edge failure probabilities 
and various partition-dependent operational criteria. 

4. The complexity of MP-evaluation of Q (t) for several 
ti ( i  = 1,. . . , k )  is essentially the same as for one value of t; see 
section 6. In particular, all 5 values of Q in table 4 can be ob- 
tained in a single simulation experiment of io4 replications; 
this would increase the W-performance ratio by a factor of 5. 



580 IEEE TRANSACTIONS ON RELIABILITY, VOL. 40, NO. 5, 1991 DECEMBER 

TABLE 3 
Simulation Results of the Easton - Wong Network IS] 

(all-terminal connectivity) 

Network 
failure 

probability 

Edge failure 
probabilities 

WCMC WCMC** 
6?fP VMP ~ 

WSD 
pH pV PS e*’ 

0.02 0.01 0.001 0.0438 0.9 <1 0.6 67 3.4 2.4 
0.005 0.01 0.0005 0.00538 1.6 1.5 1.2 135 5.4 7.6 

*)Estimated by MP 
**)WcMc/WsD is the performance ratio of the CMC versus the Easton-Wong’s sequential destruction method [6]. 

TABLE 4 
Simulation Results for the Dodecahedron 

(s - t connectivity; s = “1 ‘ I ,  t = “20”, see Fig. 1 ,a.) 

(1)’ (2)’ {3)* {41* 

0.5 0.71023 - <1 0.38 2.8 0.67 1.56 0.68 0.56 0.05 
- <1 1.8 8.3 2.0 - - 0.2 0.0358 

0.1 0.00282 - < I  3.1 37.7 8.8 1.81 1.40 12.3 70.3 
0.05 0.000288 34 1.3 3.8 246 55.7 1.91 2.71 136 3714.4 
0.02 O.oooO167 43 

- - 

- - 8.2 4.1 3472 495 - - 

All-terminal connectivity 
- - - - 0.2 0.1876 - < 1  0.43 23 5.4 

0.1 0.0226 1.2 4.0 0.72 85 20 
0.05 0.002650 1.5 10.2 0.86 504 108 - - 
0.02 0.000158 1.6 23.0 0.95 6960 1227 - - 
0.01 O.oooO2 1.7 109 0.98 51590 7635 - - 

- - - - 
- - 
- - 
- - 

*) Computed by MP. 
{ I ) ’  Dagger sampling [16], source [9]. 
{2}* Sequential Construction [6], source [9]. 
(3) * Method of Bounds [9]. 
(4)’ Methods of failure sets [14], source [9]. The failure set method produced two estimates, the table presents the 

better one, with larger value of WcMc/WFs. 

5. In our experiments, sparse networks were represented 
by the dodecahedron. Based on the results in tables 3 & 4, we 
suggest using MP for 0 I Q < 0.05. 

6. The comparison with the results from the literature 
reveals that MP (for a particular value of the q-vector) is com- 
petitive with the sequential destruction method [16] applied to 

a very sparse network; see table 3.  Based on data in [9], MP 
Monte Carlo considerable outperforms the dagger method and 
the sequential construction method when applied to the 
dodecahedron, for Q < 0.05; see table 4. For the same exam- 
ple, the MP is inferior to the Fishman method of bounds [9] 
by a factor of 1.5-2.5. 
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TABLE 5 
Simulation Results for Complete Graphs 

(all-terminal connectivity). Edge failure probability q = 0.55 

Network failure 
probability % wCMC 

a P  ?UP - 

K1o 0.456*10-’ < 1  0.54 70 21 

The graph e.) wDP wMP 

4 5  0.346-10-2 < 1  0.57 887 169 
K20 0.232-10-3 < 1  0.53 15160 3280 
K25 0.147.10-4 < 1  0.50 0.27.106 47220 
K30 0.889*10-5 < 1  0.47 5.08-107 0.73.107 

*) Estimated by MP. 

The dodecahedron with terminals s = 1 and t = 20 (figure 
la) has a specific feature with respect to the method of bounds. 
Namely, the bound 1 -A in terms of edge-disjoint cuts [9, p 
149; 11, p 4631 asymptotically coincides-in this particular 
case-with the true network unreliability value, since the col- 
lection of cuts chosen for A contains all minimum size cuts be- 
tween s and t (which is far from being so, for general G, s, t).  

The MP is considerable inferior to the Karp-Luby method 
of failure sets; see table 4. The KarpLuby method requires extra 
effort for computing failure sets, in terms of computer time and 
computer memory; see comments on this issue in [9, p 531. 
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