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Abstract: Numerous empirical studies have shown that certain exponen-
tial Lévy models are able to fit the empirical distribution of daily financial
returns quite well. By contrast, very few papers have considered intraday
data in spite of their growing importance. In this paper, we fill this gap by
studying the ability of the Normal Inverse Gaussian (NIG) and the Vari-
ance Gamma (VG) models to fit the statistical features of intraday data
at different sampling frequencies. We propose to assess the suitability of
the model by analyzing the signature plots of the point estimates at differ-
ent sampling frequencies. Using high frequency transaction data from the
U.S. equity market, we find the estimator of the volatility parameter to be
quite stable at a wide range of intraday frequencies, in sharp contrast to
the estimator of the kurtosis parameter, which is more sensitive to mar-
ket microstructure effects. As a secondary contribution, we also assess the
performance of the two most favored parametric estimation methods, the
Method of Moments Estimators (MME) and the Maximum Likelihood Es-
timators (MLE), when dealing with high frequency observations. By Monte
Carlo simulations, we show that neither high frequency sampling nor maxi-
mum likelihood estimation significantly reduces the estimation error of the
volatility parameter of the model. On the contrary, the estimation error of
the parameter controlling the kurtosis of log returns can be significantly
reduced by using MLE and high-frequency sampling. Both of these results
appear to be new in the literature on statistical analysis of high frequency
data.
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Figueroa-López et al./Estimation of NIG and VG model for high frequency data 2

1. Introduction

Driven by the necessity to incorporate the observed stylized features of asset
prices, continuous-time stochastic modeling has taken a predominant role in the
financial literature over the past two decades. Most of the proposed models are
particular cases of a stochastic volatility component driven by a Wiener pro-
cess superposed with a pure-jump component accounting for the discrete arrival
of major influential information. Accurate approximation of the complex phe-
nomenon of trading is certainly attained with such a general model. However,
accuracy comes with a high cost in the form of hard estimation and implemen-
tation issues as well as over-parameterized models. In practice and certainly for
the purpose motivating the task of modeling in the first place, a parsimonious
model with relatively few parameters is desirable. With this motivation in mind,
parametric Exponential Lévy Models (ELM) are one of the most tractable and
successful alternatives to both stochastic volatility models and more general Itô
semimartingale models with jumps.

The literature of geometric Lévy models is quite extensive (see Cont & Tankov
(2004) for a review). Due to their appealing interpretation and tractability,
in this work we concentrate on two of the most popular classes: the Variance
Gamma (VG) and Normal Inverse Gaussian (NIG) models proposed by Carr
et al. (1998) and Barndorff-Nielsen (1998), respectively. In the “symmetric case”
(which is a reasonable assumption for equity prices), both models require only
one additional parameter, κ, compared to the two-parameter geometric Brow-
nian motion (also called the Black-Scholes model). This additional parameter
can be interpreted as the percentage excess kurtosis relative to the normal dis-
tribution and, hence, this parameter is mainly in charge of the tail thickness of
the log return distribution. In other words, this parameter will determine the
frequency of “excessively” large positive or negative returns. Both models are
pure jump models with infinite jump activity1. Nevertheless, one of the param-
eters, denoted by σ, controls the variability of the log returns and, thus, it can
be interpreted as the volatility of the price process.

Numerous empirical studies have shown that certain parametric exponential
Lévy models, including the VG and the NIG models, are able to fit daily returns
extremely well using standard estimation methods such as maximum likelihood
estimators (MLE) or method of moment estimators (MME) (c.f. Eberlein &
Keller (1995), Eberlein & Özkan (2003), Carr et al. (1998), Barndorff-Nielsen
(1998), Kou & Wang (2004), Carr et al. (2002), Seneta (2004), Behr & Pötter
(2009), Ramezani & Zeng (2007), and others). On the other hand, in spite of
their current importance, very few papers have considered intraday data. One
of our main motivations in this work is to analyze whether pure Lévy models
can still work well to fit the statistical properties of log returns at the intraday
level.

As essentially any other model, a Lévy model will have limitations when

1That is, a model with infinitely many jumps during any finite time interval [0, T ].
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working with very high-frequency transaction data and, hence, the question
is rather to determine the scales where a Lévy model is a good probabilistic
approximation of the underlying (extremely complex and stochastic) trading
process. We propose to assess the suitability of the Lévy model by analyzing
the signature plots of the point estimates at different sampling frequencies. It
is plausible that an apparent stability of the point estimates for certain ranges
of sampling frequencies provides evidence of the adequacy of the Lévy model
at those scales. An earlier work along these lines is Eberlein & Özkan (2003),
where this stability was empirically investigated using hyperbolic Lévy models
and MLE (based on hourly data). Concretely, one of the main points therein was
to estimate the model’s parameters from daily mid-day log returns2 and, then,
measure the distance between the empirical density based on hourly returns and
the one-hour density implied by the estimated parameters. It is found that this
distance is approximately minimal among any other implied densities. In other
words, if fδ(·; θ∗d) denotes the implied density of Xδ when using the parameters
θ∗d estimated from daily mid-day returns and if f∗h (·) denotes the empirical
density based on hourly returns, then the distance between fδ(·; θ∗d) and f∗h is
minimal when δ is approximately one hour. Such a property was termed the
“time consistency of Lévy processes”.

In this paper, we further investigate the consistency of exponential Lévy
models for a wide rage of intraday frequencies using intraday data of the U.S.
equity market. Though natural differences due to sampling variation are to be
expected, our empirical results under both models exhibit some very interest-
ing common features across the different stocks we analyzed. We find that the
estimator of the volatility parameter σ is quite stable for sampling frequencies
as short as 20 minutes or less. For higher frequencies, the volatility estimates
exhibit an abrupt tendency to increase (see Figure 6 below), presumably due
to microstructure effects. In contrast, the kurtosis estimator is more sensitive
to microstructure effects and a certain degree of stability is achieved only for
mid range frequencies of 1 hour and more (see Figure 6 below). For higher
frequencies, the kurtosis decreases abruptly. In fact, opposite to the smooth
signature plot of σ at those scales, the kurtosis estimates consistently change
by more than half when going from hourly to 30-minute log returns. Again,
this phenomenon is presumably due to microstructure effects since the effect of
an unaccounted continuous component will be expected to diminish when the
sampling frequency increases.

One of the main motivations of Lévy models is that log returns follow ideal
conditions for statistical inference in that case; namely, under a Lévy model
the log returns at any frequency are independent with a common distribution.
Due to this fact, it is arguable that it might be preferable to use a parsimonious
model for which efficient estimation is feasible, rather than a very accurate model
for which estimation errors will be intrinsically large. This is similar to the so-

2These returns are derived from prices recorded in the middle of the trading session. The
idea behind the choice of these prices is to avoid the typically high volatility at the opening
and closing of the trading session.
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called model selection problem of statistics where a model with a high number
of parameters typically enjoys a small mis-specification error but suffers from a
high estimation variance due to the large number of parameters to estimate.

An intrinsic assumption in the previous paragraph is that standard esti-
mation methods are indeed efficient in this high frequency data setting. This
is, however, an overstatement (typically overlooked in the literature) since the
population distribution of high-frequency sample data coming from a true Lévy
model depends on the sampling frequency itself and, in spite of having more
data, high frequency data does not necessarily imply better estimation results.
Hence, another motivation for this work is to analyze the performance of the two
most common estimators, namely the Method of Moments Estimators (MME)
and the Maximum Likelihood Estimators (MLE), when dealing with high fre-
quency data. As an additional contribution of this analysis, we also propose
a simple novel numerical scheme for computing the MME. On the other hand,
given the inaccessibility of closed forms for the MLE, we apply an unconstrained
optimization scheme (Powell’s method) to find them numerically.

By Monte Carlo simulations, we discover the surprising fact that neither
high-frequency sampling nor MLE reduces the estimation error of the volatility
parameter in a significant way. In other words, estimating the volatility param-
eter based on, say, daily observations has similar performance to doing the same
based on, say, five minute observations. On the other hand, the estimation error
of the parameter controlling the kurtosis of the model can be significantly re-
duced by using MLE or intraday data. Another conclusion is that the VG MLE
is numerically unstable when working with ultra high frequency data while both
the VG MME and the NIG MLE work quite well for almost any frequency.

The reminder of this article is organized as follows. In Section 2, we review the
properties of the NIG and VG models. Section 3 introduces a simple and novel
method to compute the moment estimators for the VG and the NIG distribu-
tions and also briefly describes the estimation method of maximum likelihood.
Section 4 presents the finite-sample performance of the moment estimators and
the maximum likelihood estimator via simulations. In Section 5, we present our
empirical results using high-frequency transaction data from the U.S. equity
market. The data was obtained from the NYSE TAQ database of 2005 trades
via Wharton’s WRDS system. For the sake of clarity and space, we only present
the results for Intel and defer a full analysis of other stocks for a future publi-
cation. We finish with a section of conclusions and further recommendations.

2. The statistical models

2.1. Generalities of exponential Lévy models

Before introducing the specific models we consider in this paper, let us briefly
motivate the application of Lévy processes in financial modeling. We refer the
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reader to the monographs of Cont & Tankov (2004) and Sato (1999) or the re-
cent review papers Figueroa-López (2011) and Tankov (2011) for further infor-
mation. Exponential (or Geometric) Lévy models are arguably the most natural
generalization of the geometric Brownian motion intrinsic in the Black-Scholes
option pricing model. A geometric Brownian motion (also called Black-Scholes
model) postulates the following conditions about the price process (St)t≥0 of a
risky asset:

(i) The (log) return on the asset over a time period [t, t+ h] of length h, i.e.

Rt,t+h := log
St+h
St

,

is Gaussian with mean µh and variance σ2h (independent of t);
(ii) Log returns on disjoint time periods are mutually independent;
(iii) The price path t→ St is continuous; i.e. P(Su → St, as u→ t, for all t) =

1.

The previous assumptions can equivalently be stated in terms of the so-called
log return process (Xt)t, denoted henceforth as

Xt := log
St
S0
.

Indeed, assumption (i) is equivalent to ask that the increment Xt+h−Xt of the
process X over [t, t+h] is Gaussian with mean µh and variance σ2h. Assumption
(ii) simply means that the increments of X over disjoint periods of time are
independent. Finally, the last condition is tantamount to asking that X has
continuous paths. Note that we can represent a general geometric Brownian
motion in the form

St = S0e
σWt+µt,

where (Wt)t≥0 is the Wiener process. In the context of the above Black-Scholes
model, a Wiener process can be defined as the log return process of a price
process satisfying the Black-Scholes conditions (i)-(iii) with µ = 0 and σ2 = 1.

As it turns out, assumptions (i)-(iii) above are all controversial and believed
not to hold true especially at the intraday level (see, e.g., Cont (2001) for a
concise description of the most important features of financial data). The em-
pirical distributions of log returns exhibit much heavier tails and higher kurtosis
than a Gaussian distribution does and this phenomenon is accentuated when
the frequency of returns increases. Independence is also questionable since, e.g.,
absolute log returns typically exhibit slowly decaying serial correlation. In other
words, high-volatility events tend to cluster across time. Of course, continuity
is just a convenient limiting abstraction to describe the high trading activity
of liquid assets. In spite of its shortcomings, geometric Brownian motion could
arguably be a suitable model to describe low frequency returns but not high
frequency returns.
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An exponential Lévy model attempts to relax the assumptions of the Black-
Scholes model in a parsimonious manner. Indeed, a natural first step is to relax
the Gaussian character of log returns by replacing it with an unspecified distri-
bution as follows:

(i’) The (log) return on the asset over a time period of length h has distribution
Fh, depending only on the time span h.

This innocuous (still desirable) change turns out to be inconsistent with con-
dition (iii) above in the sense that (ii)-(iii) together with (i’) imply (i). Hence,
we ought to relax (iii) as well if we want to keep (i’). The following is a natural
compromise:

(iii’) The paths t→ St exhibit only discontinuities of first kind (jump disconti-
nuities).

Summarizing, a Lévy model for the price process (St)t≥0 of a risky asset satisfies
conditions (i’), (ii), and (iii’). In the following section, we concentrate on two
important and popular types of Lévy models.

2.2. Variance Gamma and Normal Inverse Gaussian models

The Variance Gamma (VG) and Normal Inverse Gaussian (NIG) Lévy models
were proposed in Carr et al. (1998) and Barndorff-Nielsen (1998), respectively,
to describe the log return process Xt := logSt/S0 of a financial asset. Both
models can be seen as a Wiener process with drift that is time-deformed by an
independent random clock. That is, (Xt) has the representation

Xt = σW (τ(t)) + θτ(t) + bt, (2.1)

where σ > 0, θ, b ∈ R are given constants, W is Wiener process, and τ is a
suitable independent subordinator (non-decreasing Lévy process) such that

Eτ(t) = t, and Var(τ(t)) = κt.

In the VG model, τ(t) is Gamma distributed with scale parameter β := κ and
shape parameter α := t/κ, while in the NIG model τ(t) follows an Inverse
Gaussian distribution with mean µ = 1 and shape parameter λ = 1/(tκ). In
the formulation (2.1), τ plays the role of a random clock aimed at incorporating
variations in business activity through time.

The parameters of the model have the following interpretation (see (3.1) and
(3.12) below):

1. σ dictates the overall variability of the log returns of the asset; In the
symmetric case (θ = 0), σ2 is the variance of the log returns per unit
time;
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2. κ controls the kurtosis or tail heaviness of the log returns; In the symmetric
case (θ = 0), κ is the percentage excess kurtosis of log returns relative to
the normal distribution multiplied by the time span;

3. b is a drift component in calendar time;
4. θ is a drift component in business time and controls the skewness of log

returns;

The VG can be written as the difference of two Gamma Lévy processes,

Xt = X+
t −X−t + bt, (2.2)

where X+ and X− are independent Gamma Lévy processes with respective
parameters

α+ = α− =
1

κ
, β± :=

√
θ2κ2 + 2σ2κ± θκ

2
.

One can see X+ (resp. X−) in (2.2) as the upward (resp. downward) movements
in the asset’s log return.

Under both models, the marginal density of Xt (which translates into the
density of a log return over a time span t) is known in closed form. In the VG
model, the probability density of Xt is given by

pt(x) =

√
2e

θ(x−bt)
σ2

σ
√
πκ

t
κΓ( tκ )

 |x− bt|√
2σ2

κ + θ2

 t
κ−

1
2

K t
κ−

1
2

 |x− bt|
√

2σ2

κ + θ2

σ2

 , (2.3)

where K is the modified Bessel function of the second kind (c.f. Carr et al.
(1998)). The NIG model has marginal densities of the form

pt(x) =
te

t
κ+

θ(x−bt)
σ2

π

(
(x− bt)2 + t2σ2

κ
θ2

κσ2 + 1
κ2

)− 1
2

K1


√

(x− bt)2 + t2σ2

κ

√
σ2

κ + θ2

σ2

 ,

(2.4)

Throughout the paper, we assume that the log return process {Xt}t≥0 is
sampled during a fixed time interval [0, T ] at evenly spaced times ti = iδn,
i = 1, . . . , n, where δn = T/n. This sampling scheme is sometimes called calendar
time sampling (c.f. Oomen (2006)). Under the assumption of independence and
stationarity of the increments of X (conditions (i’) and (ii) in Section 2.1), we
have at our disposal a random sample

∆n
i := ∆n

i X := Xiδn −X(i−1)δn , i = 1, . . . , n, (2.5)

of size n of the distribution fδn(·) := fδn(·;σ, θ, κ, b) of Xδn . Note that, in this
context, a larger sample size n does not necessarily entail a greater amount of
useful information about the parameters of the model. This is, in fact, one of
the key questions in this paper: does the statistical performance of standard
parametric methods improve under high-frequency observations? We will ad-
dress this issue by simulation experiments in Section 4. For now, we introduce
the statistical methods used in this article.
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3. Parametric estimation methods

In this part, we review the most used parametric estimation methods: the
method of moments and maximum likelihood. We also present a new com-
putational method to find the moment estimators of the considered models.
It is worth pointing out that both methods are known to be consistent under
mild conditions if the number of observations at a fixed frequency (say, daily or
hourly) are independent.

3.1. Method of moment estimators

In principle, the method of moments is a simple estimation method that can
be applied to a wide range of parametric models. Also, the method of moment
estimators (MME) are commonly used as initial points of numerical schemes
used to find Maximum Likelihood Estimators (MLE), which are typically con-
sidered to be more efficient. Another appealing property of moment estimators
is that they are known to be robust against possible dependence between log
returns since their consistency is only a consequence of stationarity and ergod-
icitity conditions of the log returns. In this section, we introduce a new method
to compute the MME for the VG and NIG models.

Let us start with the VG model. The mean and first three central moments
of a VG model are given in closed form as follows (see, e.g., Cont & Tankov,
2004, pp. 32 & 117):

µ1(Xδ) := E(Xδ) = (θ + b)δ,

µ2(Xδ) := Var(Xδ) = (σ2 + θ2κ)δ, (3.1)

µ3(Xδ) := E(Xδ − EXδ)
3 = (3σ2θκ+ 2θ3κ2)δ,

µ4(Xδ) := E(Xδ − EXδ)
4 = (3σ4κ+ 12σ2θ2κ2 + 6θ4κ3)δ + 3µ2(Xδ)

2.

The MME is obtained by solving the system of equations resulting from
substituting the central moments of Xδn in (3.1) by their corresponding sample
estimators:

µ̂k,n :=
1

n

n∑
i=1

(
∆n
i − ∆̄(n)

)k
, k ≥ 2, (3.2)

where ∆n
i is given as in (2.5) and ∆̄(n) :=

∑n
i=1 ∆n

i /n. However, solving the
system of equations that defines the MME is not straightforward and, in general,
one will need to rely on a numerical solution of the system. We now describe a
novel simple method for this purpose. The idea is to write the central moments
in terms of the quantity E := θ2κ/σ2. Concretely, we have the equations

µ2(Xδ) = δσ2(1 + E), µ3(Xδ) = δσ2θκ(3 + 2E),

µ4(Xδ)

3µ2
2(Xδ)

− 1 =
κ

δ

1 + 4E + 2E2

(1 + E)2
.
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From these equations, it follows that

3µ2
3(Xδ)

µ2(Xδ) (µ4(Xδ)− 3µ2
2(Xδ))

=
E (3 + 2E)

2

(1 + 4E + 2E2) (1 + E)
:= f(E). (3.3)

In spite of appearances, the above function f(E) is a strictly increasing concave
function from (−1 + 2−1/2,∞) onto (−∞, 2) and, hence, the solution of the cor-
responding sample equation can be found efficiently using numerical methods.
It remains to estimate the left hand side of (3.3). To this end, note that the
left-hand side term can be written as 3Skw(Xδ)

2/Krt(Xδ), where Skw and Krt
represent the population skewness and kurtosis:

Skw(Xδ) :=
µ3(Xδ)

µ2(Xδ)3/2
, Krt(Xδ) :=

µ4(Xδ)

µ2(Xδ)2
− 3. (3.4)

Finally, we just have to replace the population parameters by their empirical
estimators:

V̂arn :=
1

n− 1

n∑
i=1

(
∆n
i − ∆̄n

)2
, Ŝkwn :=

µ̂3,n

µ̂
3/2
2,n

, K̂rtn :=
µ̂4,n

µ̂2
2,n

− 3. (3.5)

Summarizing, the MME can be computed via the following numerical scheme:

1. Find (numerically) the solution Ê∗n of the equation

f(E) =
3 Ŝkw

2

n

K̂rtn
; (3.6)

2. Determine the MME using the following formulas:

σ̂2
n :=

V̂arn
δn

(
1

1 + Ê∗n

)
, κ̂n :=

δn
3

K̂rtn

(
(1 + Ê∗n)2

1 + 4Ê∗n + 2Ê∗n2

)
, (3.7)

θ̂n :=
µ̂3,n

δnσ̂2
nκ̂n

(
1

3 + 2Ê∗n

)
, b̂n :=

1

δn
∆̄n − θ̂n =

XT

T
− θ̂n. (3.8)

We note that the above estimators will exist if and only if the equation (3.6)
admits a solution Ê∗ ∈ (−1 + 2−1/2,∞), which is the case if and only if

3 Ŝkw
2

n

K̂rtn
< 2.

Furthermore, the MME estimator κ̂n will be positive only if the sample kurtosis
K̂rtn is positive. It turns out that in simulations this condition is sometimes
violated for small time horizons T and coarse sampling frequencies (say, daily
or longer). For instance, using the parameter values (i) of Section 4.1 below and
taking T = 125 days (half a year) and δn = 1 day, about 80 simulations out of
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1000 gave invalid κ̂, while only 2 simulations result in invalid κ̂ when δn = 1/2
day.

Seneta (2004) proposes a simple approximation method built on the assump-
tion that θ is typically small. In our context, Seneta’s method is obtained by
making the simplifying approximation Ê∗n ≈ 0 in the equations (3.7-3.8), result-
ing in the following estimators:

σ̂2
n :=

V̂arn
δn

, κ̂n :=
δn
3

K̂rtn, (3.9)

θ̂n :=
µ̂3,n

3δnσ̂2
nκ̂n

=
Ŝkwn(V̂arn)1/2

δnK̂rtn
, b̂n :=

XT

T
− θ̂n. (3.10)

Note that the estimators (3.9) are, in fact, the actual MME in the restricted
symmetric model θ = 0 and will indeed produce a good approximation of the
MME estimators (3.7-3.8) whenever

Q∗n :=
3 Ŝkw

2

n

K̂rtn
,

and, hence, Ê∗n is “very” small. This fact has been corroborated empirically by
multiple studies using daily data as shown in Seneta (2004).

The formulas (3.9-3.10) have appealing interpretations as noted already by
Carr et al. (1998). Namely, the parameter κ determines the percentage excess
kurtosis in the log return distribution (i.e. a measure of the tail fatness compared
to the normal distribution), σ dictates the overall volatility of the process, and θ
determines the skewness. Interestingly, the estimator σ̂2

n in (3.9) can be written
as

σ̂2
n =

1

T − δn

n∑
i=1

(
Xiδn −X(i−1)δn −

XT

n

)2

=
1

T − δn
RV n +O

(
1

n

)
,

where RV n is the well-known realized variance defined by

RV n :=

n∑
i=1

(
Xiδn −X(i−1)δn

)2
. (3.11)

Let us finish this section by considering the NIG model. In this setting, the
mean and first three central moments are given by (see, e.g., Cont & Tankov,
2004, pp. 117):

µ1(Xδ) := E(Xδ) = (θ + b)δ,

µ2(Xδ) := Var(Xδ) = (σ2 + θ2κ)δ, (3.12)

µ3(Xδ) := E(Xδ − EXδ)
3 = (3σ2θκ+ 3θ3κ2)δ,

µ4(Xδ) := E(Xδ − EXδ)
4 = (3σ4κ+ 18σ2θ2κ2 + 15θ4κ3)δ + 3µ2(Xδ)

2.
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Hence, the equation (3.3) takes the simpler form:

3µ2
3(Xδ)

µ2(Xδ) (µ4(Xδ)− 3µ2
2(Xδ))

=
9E

5E + 1
:= f(E), (3.13)

and the analogous equation (3.6) can be solved in closed form as

Ê∗n =
Ŝkw

2

n

3 K̂rtn − 5 Ŝkw
2

n

. (3.14)

Then, the MME will be given by the following formulas:

σ̂2
n :=

V̂arn
δn

(
1

1 + Ê∗n

)
, κ̂n :=

δn
3

K̂rtn

(
1 + Ê∗n
1 + 5Ê∗n

)
, (3.15)

θ̂n :=
µ̂3,n

δnσ̂2
nκ̂n

(
1

3 + 3Ê∗n

)
, b̂n :=

1

δn
∆̄n − θ̂n =

XT

T
− θ̂n. (3.16)

3.2. Maximum likelihood estimation

Maximum likelihood is one of the most widely used estimation methods, partly
due to its theoretical efficiency when dealing with large samples. Given a ran-
dom sample x = (x1, . . . , xn) from a population distribution with density f(·|θ)
depending on a parameter θ = (θ1, . . . , θp), the method proposes to estimate θ

with the value θ̂ = θ̂(x) that maximizes the so-called likelihood function

L(θ|x) :=

n∏
i=1

f(xi|θ).

When it exists, such a point estimate θ̂(x) is called the Maximum Likelihood
Estimator (MLE) of θ.

In principle, under a Lévy model, the increments of the log return process X
(which corresponds to the log returns of the price process S) are independent
with common distribution, say fδ(·|θ), where δ represents the time span of
the increments. As was pointed out earlier, independence is questionable for
very high frequency log returns, but given that, for a large sample, likelihood
estimation is expected to be robust against small dependences between returns,
we can still apply likelihood estimation. The question is again to determine the
scales where both the Lévy model is a good approximation of the underlying
process and the maximum likelihood estimators are meaningful. As indicated
in the introduction, it is plausible that the MLE’s stability for certain range of
sampling frequencies provides evidence of the adequacy of the Lévy model at
those scales.

Another important issue is that, in general, the probability density fδ is not
known in a closed form or might be intractable. There are several approaches
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to deal with this issue such as numerically inverting the Fourier transform of
fδ via Fast Fourier Methods (see Carr et al. (2002)) or approximating fδ us-
ing small-time expansions (see, e.g., Figueroa-López & Houdré (2009)). In the
present article, we don’t explore these approaches since the probability densi-
ties of the VG and NIG models are known in closed forms. However, given the
inaccessibility of closed expressions for the MLE, we apply an unconstrained
optimization scheme to find them numerically (see below for more details).

4. Finite-sample performance via simulations

4.1. Parameter values

We consider two sets of parameter values:

(i) σ =
√

6.447 ∗ 10−5 = .0080; κ = 0.422; θ = −1.5∗10−4; b = 2.5750∗10−4;
(ii) σ = .0127; κ = 0.2873; θ = 1.3 ∗ 10−3; b = −1.7 ∗ 10−3;

The first set of parameters (i) is motivated by the empirical study reported in
Seneta (2004) (see pp. 182) using the approximated MME introduced in Section
3.1 and daily returns of the Standard and Poor’s 500 Index from 1977 to 1981.
The second set of parameters (ii) is motivated by our own empirical results below
using MLE and daily returns of INTC during 2005. Throughout, the time unit
is a day and, hence, e.g., the estimated average rate of return per day of SP500
is

EX(1) = E log

(
S1

S0

)
= θ + b = 1.0750 ∗ 10−4 ≈ .1%,

or 0.00010750 ∗ 365 = 3.9% per year.

4.2. Results

Below, we illustrate the finite-sample performance of the MME and MLE for
both the VG and NIG models. The MME is computed using the algorithms de-
scribed in Section 3.1. The MLE was computed using an unconstrained Powell’s
method3 started at the exact MME. We use the closed form expressions for the
density functions (2.3-2.4) in order to evaluate the likelihood function.

4.2.1. Variance Gamma

We compute the sample mean and sample standard deviation of the VG MME
and the VG MLE for different sampling frequencies. Concretely, the time span δ

3We employ a MATLAB implementation due to Giovani Tonel obtained through MATLAB
Central (http://www.mathworks.com/matlabcentral/fileexchange/).
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between consecutive observations is taken to be 1/36, 1/18, 1/12, 1/6, 1/3, 1/2, 1
(in days), which will correspond to 10, 20, 30 minutes, 1, 2, 3 hours and 1 day
(assuming a trading period of six hours per day). Figure 1 plots the sampling
mean ¯̂σδ and the bands ¯̂σδ ± std(σ̂δ) against the different time spans δ as well
as the corresponding graphs for κ, based on 100 simulations of the VG process
on [0, 3 ∗ 252] (namely, 3 years) with the parameter values (i) above. Similarly,
Figure 2 shows the results corresponding to the parameter values (ii) with a time
horizon of T = 252 days and time spans δ equal to 10, 20, and 30 minutes, and
also, 1/6, 1/4, 1/3, 1/2, and 1 days, assuming this time a trading period of six
and a half hours per day and taking 200 simulations. These are our conclusions:

1. The MME for σ performs as well as the computationally more expensive
MLE for all the relevant frequencies. Even though increasing the sampling
frequency slightly reduces the standard error, the net gain is actually very
small even for very high frequencies and, hence, does not justify the use
of high-frequency data to estimate σ.

2. The estimation for κ is quite different: Using either high-frequency data
or maximum likelihood estimation results in significant reductions of the
standard error (by more than 4 times when using both).

3. The computation of the MLE presents numerical issues (easy to detect)
for very high sampling frequencies (say δ < 1/6).

4. Disregarding the numerical issues and extrapolating the pattern of the
graphs when δ → 0, we can conjecture that the MLE σ̂ is not consistent
when δ → 0 for a fixed time horizon T , while the MLE κ̂ appears to be a
consistent estimator for κ. Both of these points will be investigated in a
future publication.

For completeness, we also illustrates in Figure 3 the performance of the esti-
mators for b and θ for the parameter values (ii) based again on 200 simulations
during [0, 252] with time spans of 10, 20, and 30 minutes, and 1/6, 1/4, 1/3,
1/2, and 1 days. There seems to be some gain in efficiency when using MLE
and higher sampling frequencies in both cases but the respective standard errors
level off for δ small, suggesting that neither estimator is consistent for fixed time
horizon. One surprising feature is that the MLE estimators in both cases do not
seem to exhibit any numerical issues for very small δ in spite of being based on
the same simulations as those used to obtain σ̂ and κ̂.

4.2.2. Normal Inverse Gaussian

We now show the estimation results for the NIG model. Here, we take sampling
frequencies of 5, 10, 20, and 30 seconds, also 1, 5, 10, 20, and 30 minutes, as
well as 1, 2, and 3 hours, and finally 1 day (assuming a trading period of 6
hours). Figure 4 plots the sampling mean ¯̂σδ and bands ¯̂σδ ± std(σ̂δ) against
the different time spans δ andthe corresponding graphs for κ, based on 100
simulations of the NIG process on [0, 3 ∗ 252] with the parameter values (i)
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Fig 1. Sampling mean and standard error of the MME and MLE for the parameters σ and κ
based on 100 simulations of the VG model with values T = 252∗3, σ =

√
6.447 ∗ 10−5 = .0080;

κ = 0.422; θ = −1.5 ∗ 10−4; b = 2.5750 ∗ 10−4.
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Fig 2. Sampling mean and standard error of the MME and MLE for the parameters σ and
κ based on 200 simulations with values T = 252, σ = .0127; κ = 0.2873; θ = 1.3 ∗ 10−3;
b = −1.7 ∗ 10−3.
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Fig 3. Sampling mean and standard error of the MME and MLE for the parameters θ and
b based on 200 simulations with values T = 252, σ = .0127; κ = 0.2873; θ = 1.3 ∗ 10−3;
b = −1.7 ∗ 10−3.

above. The results are similar to those of the VG model. In the case of σ,
neither MLE nor high-frequency data seem to do better than standard moment
estimators and daily data. For κ, the estimation error can be reduced as much
as 4 times when using high-frequency data and maximum likelihood estimation.
The most striking conclusion is that the MLE for the NIG model does not show
any numerical issues when dealing with very high-frequency. Indeed, we are able
to obtain results for even 5 second time spans (although the computational time
increases significantly in this case).

5. Empirical results

5.1. The data and data pre-processing

The data was obtained from the NYSE TAQ database of 2005 trades via Whar-
ton’s WRDS system. For the sake of clarity and space, we focus on the analysis
of only one stock, even though other stocks were also analyzed for this study. We
pick Intel (INTC) stock due to its high liquidity (based on the number of trades
or ticks). The raw data was preprocessed as follows. Records of trades were
kept if the TAQ field CORR indicated that the trade was “regular” (namely, it
was not corrected, changed, signaled as cancelled, or signaled as an error). In
addition, the condition field was use as a filter. Trades were kept if they were
regular way trades, that is, trades that had no stated conditions (COND=”” or
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Fig 4. Sampling mean and standard error of the MME and MLE for the parameters σ and
κ based on 100 simulations of the NIG model with values T = 252 ∗ 3, σ =

√
6.447 ∗ 10−5 =

.0080; κ = 0.422; θ = −1.5 ∗ 10−4; b = 2.5750 ∗ 10−4.

COND=”*”). A secondary filter was subsequently applied to eliminate some of
the remaining incorrect trades. First, for each trading day, the empirical distri-
bution of the absolute value of the first difference of prices was determined. Next,
the 99.9th percentile of these daily absolute differences was obtained. Finally, a
trade was eliminated if, in magnitude, the difference of the price from the prior
price was at least twice the 99.9th percentile of that day’s absolute differences
and this difference was reversed on the following trade. Figure 5 illustrates the
Intel stock prices before (left panel) and after processing (right panel).

5.2. MME and MLE results

The exact and approximated MMEs described in Section 3.1 were applied to the
log returns of the stocks at different frequencies ranging from 10 seconds up to
1 day. Subsequently, we apply the unconstrained Powell’s optimization method
to find the MLE estimator. In each case, the starting point for the optimization
routine was set equal to the exact MME. Tables 1 to 4 show the estimation
results under both models together with the log likelihood values using a time
horizon of one year. Figure 6 show the graphs of the NIG MLE and approximated
NIG MME against the sampling frequency δ based on observations during T = 1
year, T = 6 months, and T = 3 months, respectively.



Figueroa-López et al./Estimation of NIG and VG model for high frequency data 17

0 50 100 150 200 250
21

22

23

24

25

26

27

28

29

30

Raw Intel 5−Second Stock Prices
(Jan. 2, 2005 − Dec. 30, 2005)

Time in Days

S
to

ck
 P

ric
e

0 50 100 150 200 250
21

22

23

24

25

26

27

28

29

30

"Clean" Intel 5−Second Stock Prices
(Jan. 2, 2005 − Dec. 30, 2005)

Time in Days

S
to

ck
 P

ric
e

Fig 5. Intel stock prices during 2005 before and after preprocessing.
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5.3. Discussion of empirical results

In spite of certain natural differences due to sampling variation, the empirical
results under both models exhibit some very interesting common features that
we now summarize:

1. The estimation of σ is quite stable for “midrange” frequencies (δ ≥ 20
minutes), exhibiting a slight tendency to decrease when δ decreases from
1 day to 10 minutes, before showing a pronounce and clear tendency to
increase for small time spans (δ = 10 minutes and less). This increasing
tendency is presumably due to the influence of microstructure effects.

2. The point estimators for κ are less stable than those for σ but still their
values are relatively “consistent” for mid range frequencies of 1 hour and
more. This consistency of κ̂ abruptly changes when δ moves from 1/6 of a
day to 30 minutes, at which point a reduction of about half is experienced
under both models. To illustrate how unlikely such a behavior is in our
models, we consider the simulation experiment of Figure 2 and find out
that in only 1 out of the 200 simulations the exact MME estimator for κ
increased by more than twice its value when δ goes from 30 minutes to 1/6
of a day (only 3 out 200 simulations showed an increment of more than
1.5). In none of the 200 simulation, the MLE estimator for κ increased
more than 1.5 its value when δ goes from 30 minutes to 1/6 of a day. For
the NIG model, using the simulations of Figure 4, we found out that in
only 3 out 100 simulations the MME estimator for κ increased by more
than 1.2 when δ goes from 30 minutes to 1/6 of a day (it never increased for
more than 1.5). Such a jump in the empirical results could be interpreted
as a consequence of microstructure effects;

3. According to our previous simulation analysis, the estimators for κ are
more reliable when δ gets smaller. Hence, we recommend using the value
of the estimator for δ as small as possible, but still in the range where we
suspect that microstructure effects are relatively low. For instance, one can
propose to take κ̂ = 0.1662 under the VG model (resp. κ̂ = 0.2621 under
the NIG model), or alternatively, one could average the MLE estimators
for δ > 1/2.

4. Under both models, the estimators for κ show a certain tendency to de-
crease as δ gets very small (less than 30 minutes).

5. Given the higher sensitivity of κ to microstructure effects, one could use
the values of this estimator to identify the range of frequencies where a
Lévy model is adequate and microstructure effects are still low. In the case
of INTC, one can recommend using a Lévy model to describe log returns
higher than one hour. As an illustration of the goodness of fit, Figures 7
shows the empirical histograms of δ = 1/6 returns against the fitted VG
model and NIG model using Maximum Likelihood Estimation. We also
show the fitted Gaussian distributions in each case. Both models show
very good fit. The graphs in log scale, useful to check the fit at the tails,
are shown in Figure 8.
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6. Conclusion

Certain parametric classes of exponential Lévy models have appealing features
for modeling intraday financial data. In this article, we lean towards choosing
a parsimonious model with few parameters that has natural financial inter-
pretation, rather than a complex over-parameterized model. Even though, in
principle, a complex model will provide a better fit of the observed empirical
features of financial data, the intrinsically less accurate estimation or calibration
of such a model might render it less useful in practice. By contrast, we consider
here two simple and well-known models for the analysis of intraday data: the
Variance Gamma model of Carr et al. (1998) and the Normal Inverse Gaussian
model of Barndorff-Nielsen (1998). These models require one additional param-
eter, when compared to the two-parameter Black-Scholes model, that controls
the tail thickness of the log return distribution.

As essentially any other model, a Lévy model will have limitations when
working with very high-frequency transaction data and, hence, in our opinion the
real problem is to determine the sampling frequencies at which a specific Lévy
model will be a “good” probabilistic approximation of the underlying trading
process. In this paper we put forward an intuitive statistical method to solve this
problem. Concretely, we propose to assess the suitability of the Lévy model by
analyzing the signature plots of statistical point estimates at different sampling
frequencies. It is plausible that an apparent stability of the point estimates for
certain ranges of sampling frequencies will provide evidence of the adequacy of
the Lévy model at those scales. At least based on our preliminary empirical
analysis, we find that a Lévy model seems a reasonable model for log returns as
frequent as hourly and that the kurtosis estimate is a more sensitive indicator
of microstructure effects in the data than the volatility estimate, which exhibits
a very stable behavior for sampling time spans as small as 20 minutes.

We also studied the in-fill numerical performance of the two most widely used
parametric estimators: the method of moment estimators and the maximum
likelihood estimation. We discover that neither high frequency sampling nor
maximum likelihood estimation significantly reduces the estimation error of the
volatility parameter of the model. Hence, we can “safely” estimate the volatility
parameter using a simple moment estimator applied to daily closing prices. The
estimation of the kurtosis parameter is quite different. In that case, using either
high-frequency data or maximum likelihood estimation can result in significant
reductions of the standard error (by more than 4 times when using both). Both
of these results appear to be new in the statistical literature of high frequency
data.

The problem of finding the MLE based on very high frequency data remains
a challenging numerical problem, even if closed form expressions are available
as it is the case of the NIG and VG models. On the contrary, in this paper,
we propose a simple numerical method to find the MME of the NIG and VG
models. Moment estimators are particularly appealing in the context of high-
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frequency data since their consistency does not require independence between
log returns but only stationarity and ergodicity conditions.

δ 20 min 30 min 1/6 1/4 1/3 1/2 1
κ̂ 0.0354 0.0542 0.1662 0.1724 0.2342 0.2098 0.2873
σ̂ 0.0115 0.0117 0.0120 0.0121 0.0123 0.0125 0.0127

θ̂ 0.0010 0.0023 0.0019 0.0011 0.0020 0.0020 0.0013

b̂ -0.0014 -0.0027 -0.0023 -0.0015 -0.0024 -0.0023 -0.0017
logL 2.2485e+4 1.4266e+4 6.0015e+3 3.7580e+3 2.6971e+3 1.6783e+3 745.8689
κ̂ 0.0571 0.0834 0.1839 0.1804 0.2694 0.1579 0.1383
σ̂ 0.0116 0.0119 0.0120 0.0121 0.0123 0.0124 0.0125

θ̂ 0.0016 0.0010 0.0032 0.0019 0.0024 0.0028 0.0041

b̂ -0.0020 -0.0014 -0.0036 -0.0022 -0.0028 -0.0032 -0.0045
logL 2.2438e+4 1.4243e+4 5.9946e+3 3.7578e+3 2.6966e+3 1.6780e+3 745.5981
κ̂ 0.0573 0.0835 0.1887 0.1819 0.2749 0.1603 0.1423
σ̂ 0.0116 0.0119 0.0121 0.0122 0.0124 0.0124 0.0126

θ̂ 0.0016 0.0010 0.0031 0.0018 0.0024 0.0027 0.0040

b̂ -0.0020 -0.0014 -0.0035 -0.0022 -0.0027 -0.0031 -0.0043
logL 2.2437e+4 1.4243e+4 5.9942e+3 3.7577e+3 2.6965e+3 1.6781e+3 745.6023

Table 1
INTC: VG MLE (Top), Exact VG MME (Middle), and Approx. VG MME (Bottom).

δ 10 sec 20 sec 30 sec 1 min 5 min 10 min
κ̂ 0.0128 0.0112 0.0183 0.0354 0.0501 0.0191
σ̂ 0.0465 0.0300 0.0303 0.0293 0.0173 0.0120

θ̂ -0.0004 -0.0004 -0.0004 -0.0004 -0.0004 -0.0002

b̂ 0.0000 -0.0000 0.0000 0.0000 0.0000 -0.0002
logL 5.2980e+6 2.4338e+6 1.5115e+6 6.6256e+5 1.0540e+5 4.7949e+4
κ̂ 0.0010 0.0023 0.0052 0.0080 0.0153 0.0282
σ̂ 0.0169 0.0152 0.0145 0.0138 0.0125 0.0121

θ̂ -0.0001 0.0014 0.0025 -0.0040 -0.0013 0.0011

b̂ -0.0003 -0.0018 -0.0029 0.0036 0.0009 -0.0015
logL 4.3254e+6 2.0063e+6 1.2823e+6 5.8998e+5 1.0203e+5 4.7897e+4
κ̂ 0.0010 0.0023 0.0052 0.0081 0.0153 0.0282
σ̂ 0.0169 0.0152 0.0145 0.0138 0.0125 0.0121

θ̂ -0.0001 0.0014 0.0025 -0.0040 -0.0013 0.0011

b̂ -0.0003 -0.0018 -0.0029 0.0036 0.0009 -0.0015
logL 4.3254e+6 2.0063e+6 1.2823e+6 5.8987e+5 1.0203e+5 4.7897e+4

Table 2
INTC: VG MLE (Top), Exact VG MME (Middle), and Approx. VG MME (Bottom).
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δ 20 min 30 min 1/6 1/4 1/3 1/2 1
κ̂ 0.0557 0.0874 0.2621 0.2494 0.3412 0.2024 0.2159
σ̂ 0.0116 0.0118 0.0121 0.0122 0.0124 0.0124 0.0126

θ̂ 0.0019 0.0017 0.0017 0.0012 0.0018 0.0019 0.0019

b̂ -0.0022 -0.0021 -0.0021 -0.0016 -0.0022 -0.0023 -0.0022
logL 2.2498e+4 1.4274e+4 5.9988e+3 3.7575e+3 2.6969e+3 1.6777e+3 745.6436
κ̂ 0.0570 0.0833 0.1791 0.1789 0.2640 0.1554 0.1343
σ̂ 0.0116 0.0119 0.0120 0.0121 0.0123 0.0124 0.0125

θ̂ 0.0016 0.0010 0.0033 0.0019 0.0025 0.0028 0.0042

b̂ -0.0020 -0.0014 -0.0037 -0.0022 -0.0028 -0.0032 -0.0046
logL 2.2498e+4 1.4274e+4 5.9952e+3 3.7564e+3 2.6963e+3 1.6775e+3 745.5409
κ̂ 0.0573 0.0835 0.1887 0.1819 0.2749 0.1603 0.1423
σ̂ 0.0116 0.0119 0.0121 0.0122 0.0124 0.0124 0.0126

θ̂ 0.0016 0.0010 0.0031 0.0018 0.0024 0.0027 0.0040

b̂ -0.0020 -0.0014 -0.0035 -0.0022 -0.0027 -0.0031 -0.0043
logL 2.2498e+4 1.4274e+4 5.9957e+3 3.7563e+3 2.6964e+3 1.6776e+3 745.5465

Table 3
INTC: NIG MLE (Top), Exact NIG MME (Middle), and Approx. NIG MME (Bottom).

δ 10 sec 20 sec 30 sec 1 min 5 min 10 min
κ̂ 0.1349 0.0061 0.0012 0.0024 0.0125 0.0220
σ̂ 0.0341 0.0190 0.0149 0.0134 0.0119 0.0114

θ̂ -0.0002 0.0007 0.0086 0.0095 0.0042 0.0037

b̂ -0.0000 -0.0009 -0.0088 -0.0097 -0.0044 -0.0038
logL 3.8974e+6 1.8740e+6 1.2188e+6 5.8072e+5 1.0206e+5 4.7957e+4
κ̂ 0.0003 0.0007 0.0012 0.0031 0.0157 0.0252
σ̂ 0.0194 0.0161 0.0148 0.0134 0.0119 0.0114

θ̂ 0.0194 0.0187 0.0160 0.0134 0.0070 0.0042

b̂ -0.0196 -0.0189 -0.0162 -0.0136 -0.0072 -0.0044
logL 3.8863e+6 1.8718e+6 1.2135e+6 5.7856e+5 1.0204e+5 4.7955e+4
κ̂ 0.0003 0.0007 0.0012 0.0031 0.0160 0.0255
σ̂ 0.0194 0.0161 0.0148 0.0134 0.0120 0.0114

θ̂ 0.0194 0.0187 0.0159 0.0132 0.0069 0.0042

b̂ -0.0196 -0.0188 -0.0161 -0.0134 -0.0070 -0.0044
logL 3.8863e+6 1.8718e+6 1.2135e+6 5.7850e+5 1.0204e+5 4.7955e+4

Table 4
INTC: NIG MLE (Top), Exact NIG MME (Middle), and Approx. NIG MME (Bottom).
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Fig 7. Histograms of INTC returns for δ = 1/6 and the fitted VG and NIG models using
Maximum Likelihood Estimation.
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Fig 8. Logarithm of the histograms of INTC returns for δ = 1/6 and the fitted VG and NIG
models using Maximum Likelihood Estimation.
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