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Numerous theories within the social and behavioral sci-

ences hypothesize interaction, quadratic effects, or both 

between multiple independent and dependent variables 

(Ajzen, 1987; Cronbach & Snow, 1977; Karasek, 1979; 

Lusch & Brown, 1996; Snyder & Tanke, 1976). For exam-

ple, Ganzach (1997) studies the relationship between par-

ents’ educational level and child’s educational expectations. 

He hypothesizes and finds a simultaneous interactive and 
quadratic relationship: If at least one parent’s education lev-

el is high, the educational expectations of the child will also 

be high, even if the level of education of the other parent is 

quite low. In terms of the statistical model, this compensa-

tory hypothesis is represented by two positive quadratic ef-

fects (for each parent’s educational level) and one negative 

interaction effect. Within the measured variable framework, 

such hypotheses can be tested by specifying a multiple re-

gression model (see Aiken & West, 1991):

CEE = β
0
 + β

1
ME + β

2
FE +ω

12
ME•FE + ω

11
ME2 +  

           ω
22

FE2 + ε         (1)

where CEE is the child’s educational expectation, ME is the 

mother’s educational level, FE is the father’s educational 

level, and ε  is a residual. The γs are the coefficients of the 
linear effects. Following Klein and Moosbrugger's (2000) 

and Klein and Muthén's (2007) notation, the ωs are the coef-
ficients of the nonlinear effects.

To clarify the necessity for models with simultaneous 

interaction and quadratic effects consider, for example, 

Ganzach's compensatory hypothesis. The hypothesis that 

only one parent's educational level needs to be high for high 

educational expectations of the child could not be tested with 

an (ordinary) single interaction effect model. A model with 

a single interaction effect would predict that each parent’s 

education has to be high for a high educational expectation 

of the child. This would be the interpretation of a positive 

interaction effect which would result if the quadratic terms 

were omitted in the analysis1. In Equation (1), the opposite 
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1  The true negative interaction effect and the two positive quadratic 

effects could reduce to one single positive interaction effect when the 

quadratic effects are omitted.
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signs of the quadratic and interaction effects assure the com-

pensatory relationship.

Since most variables in the behavioral sciences are 

measured with less than perfect reliability, a regression 

analysis often is not appropriate. Having non-perfectly reli-

able predictors results in biased estimates of the regression 

coefficients, especially for the nonlinear effects (Bohrnst-
edt & Marwell, 1978; MacCallum & Mar, 1995). Structural 

equation modeling (SEM) produces theoretically error free 

estimates of the effects of latent variables, overcoming this 

reliability problem (Marsh et al., 2004; Schumacker & Mar-

coulides, 1998). But, structural equation modeling of interac-

tion and quadratic effects has rarely been used by practition-

ers. This is partly due to the error-prone model specification 
within the traditional product indicator approaches (for an 

overview: Marsh et al., 2006). And, it is partly due to the ne-

cessity to use specialized commercial software, e.g. LISREL 

(Jöreskog & Sörbom, 1996) or Mplus (Muthén & Muthén, 

2007), in order to specify and estimate nonlinear SEM.

Goals of the article

The major goals of this article are threefold: First, we 

will give a brief overview on the approaches for the estima-

tion of nonlinear SEM. Second, we describe the extended 

unconstrained approach for the simultaneous estimation 

of latent interaction and quadratic effects (Kelava, 2009; 

Moosbrugger, Schermelleh-Engel, Kelava, & Klein, 2009). 

Third, we will apply the extended unconstrained approach 

to data from work and stress research using the freely acces-

sible sem package (Fox, 2006) in R (R Development Core 

Team, 2008) and compare it with LMS (Klein & Moosbrug-

ger, 2000) which is implemented in the commercial Mplus 

(Muthén & Muthén, 2007) software. Example syntax will 

be given in the Appendices.

Approaches for the estimation of nonlinear SEM

Most of the early literature focused on models with a 

single latent interaction or quadratic effect (e.g. Jöreskog & 

Yang, 1996; Kenny & Judd, 1984). Recently, the literature 

has begun to consider more complex models like Ganzach’s 

(1997) model of children’s educational expectations involv-

ing simultaneous interaction and quadratic effects (Kelava, 

Moosbrugger, Dimitruk, & Schermelleh-Engel, 2008; Ke-

lava et al., under revision; Klein & Muthén, 2007; Lee et al., 

2004; Lee, Song, & Tang, 2007; MacCallum & Mar, 1995). 

Equation (2) expresses Ganzach’s model with one interac-

tion and two quadratic effects (see Equation (1)) within the 

latent variable framework:

η = α + γ
1
ξ

1
 + γ

2
ξ

2
 + ω

12
ξ

1
 · ξ

2
 + ω

11
ξ2

1
 + ω

22
ξ2

2
 + ζ     (2)

Figure 1. Nonlinear SEM with one interaction effect and two quadratic effects. Each latent variable is operationalized by three indicators. 

Within the nonlinear measurement model, the measurement error covariances have to be specified, when the latent linear predictors ξ
1
 and  

ξ
2 
are correlated (Kelava, 2009).
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In Equation (2), η denotes the latent criterion, ξ
1
 and ξ

2 

are latent predictors, the product ξ
1
ξ

2
 represents the interac-

tion term, ξ1

1
 and ξ2

2
 are quadratic terms, α is the intercept, γ

1
 

and γ
2
 are linear effects of the predictors, ω

12
 is the nonlinear 

effect of the interaction term, and ω
11

, ω
22

 are the nonlinear 

effects of the quadratic terms, and finally, ζ is the distur-
bance term. Figure 1 depicts this nonlinear SEM model with 

one interaction effect and two quadratic effects.

Kenny and Judd (1984) were the first who developed an 
approach for the estimation of nonlinear SEM. It is called 

product indicator approach, because multiple product indi-

cators are used for the specification of each nonlinear term’s 
measurement model. Suppose that the normally distributed 

and centered latent variables ξ
1
 and ξ

2
 are measured by cen-

tered indicators 321 ,, xxx  and 654 ,, xxx , respectively 

(Equation (3)):

      (3)

whereas the λχ s are factor loadings and the δ s are normally 

distributed measurement errors. The interaction term ξ
1
ξ

2
 is 

measured by products of each latent variable’s indicators, 

for example 635241 ,, xxxxxx  (see Figure 1). The quad-

ratic term ξ2

1
 is measured by 

2

3

2

2

2

1 ,, xxx , and so on. Un-

fortunately, this approach (in its original form) has rarely 

been used by applied researchers. The main reason is that it 

involves the specification of nonlinear parameter constraints 
that are difficult for researchers to implement. Suppose that 

2x  and 5x  are indicators of the linear latent predictor vari-

ables ξ
1
 and ξ

2
 (with  and ), 

then the indicator 52 xx  of the interaction term ξ
1 
ξ

2
 would 

be:

     (4)

The variance decomposition of the indicator product 

52 xx  which is required for the model specification and 
estimation (for example) in the LISREL software, is given 

by: 

      (5)

where:

     (6)

      (7)

  (8)

Because factor loadings and variances of the indicator 

products are functions of the factor loadings and variances 

of the linear indicators, this estimation approach demands 

the specification of nonlinear parameter constraints, which 
is very error prone. Furthermore these constraints only hold 

if the latent predictors are normally distributed (see Wall & 

Amemiya, 2001).

Fortunately, two different trends recently emerged, one 

trying to simplify and expand the product indicator ap-

proach, which is the biggest class of approaches, and one 

coming from a different perspective and using a distribu-

tion-analytic approach.

The product indicator approach was particularly de-

veloped as reflected in contributions by Jaccard and Wan 
(1995), Ping (1995, 1996), Jöreskog and Yang (1996), Al-

gina and Moulder (2001), Wall and Amemiya (2001), Marsh 

et al. (2004), Little, Bovaird, and Widaman (2006). These 

developments led to simplifications of the specified model. 
The simplest approach has been published by Marsh et al. 

(2004). The “unconstrained approach” was developed for 

the estimation of single interaction effects. It relaxes all non-

linear constraints. This means that, for example,  in 

Equation (8) is not constrained to the right-hand side com-

bination of the parameters, but instead is estimated freely. In 

the next section, we will go into detail about this approach 

and about its extension for the simultaneous estimation of 

interaction and quadratic effects.

Since the traditional product indicator approach suffers 

from the violated assumption of multivariate normally dis-

tributed variables2 when ML estimates are derived, so-called 

distribution-analytic approaches have been developed that 

address the nonnormal distribution. Klein and Moosbrugger 

(2000) developed a Latent Moderated Structural Equations 

(LMS) approach which approximates the nonnormal distri-

bution of the multivariate indicator vector by a mixture of 

normal distributions. By applying the EM algorithm (Demp-

ster, Laird, & Rubin, 1977), ML estimates are obtained. 

LMS computes unbiased standard errors for the nonlinear 

effects, which are slightly underestimated when applying 

the product indicator approach (Jöreskog & Yang, 1996; 

Kelava et al., 2008). Unfortunately, this approach becomes 

computationally (numerically) intensive as the number of 

2 When applying the ML estimator, it is assumed that the product indi-

cators (e.g., x
1
x

4
) and the y-indicators are normally distributed. This 

assumption never holds, because products of normally distributed 

variables are never normally distributed (Aroian, 1944).
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nonlinear effects increases. In addition to this, LMS is only 

available within the commercial Mplus software, but not 

available within a freely accessible software. In order to 

overcome the problem of high computational burden and 

in order to develop a more robust approach when indica-

tors are nonnormally distributed, Klein and Muthén (2007) 

published a Quasi-Maximum Likelihood (QML) approach. 

QML permits the estimation of multiple nonlinear effects. It 

approximates the likelihood of the multivariate nonnormally 

distributed indicator vector by a normal and a conditionally 

normal distribution. The parameter estimates are obtained 

by using a Newton-Raphson algorithm.

In addition to the distribution-analytic approaches (LMS 
and QML) and product indicator approaches, a variety of 
less-established, alternative approaches has been developed 
(for an overview: Marsh et al., 2006; Schumacker & Mar-
coulides, 1998). For example, there are also Bayesian ap-
proaches (Arminger & Muthén, 1998; Lee et al., 2007), a 
2-step method of moments (2SMM) approach (Wall & Am-
emiya, 2000), and a 2-step least squares (2SLS) approach 
(Bollen, 1995). Elaborated simulation studies need to be 
conducted with the Bayesian approaches and the 2SMM 
approach in order to assess the robustness and competitive-
ness with the established approaches. 2SLS estimates were 
substantially less efficient when compared to alternative es-
timation approaches (Klein & Moosbrugger, 2000; Scher-
melleh-Engel, Klein, & Moosbrugger, 1998).

In the following, we will describe the well-known un-
constrained approach (Marsh et al., 2004) and its extension 
for the simultaneous estimation of interaction and quadratic 
effects. The unconstrained approach can be implement by 
using commercial structural equation modeling software 
(e.g., LISREL) or by using the freely available sem pack-
age in R (see Appendix A). The unconstrained approach has 
proven to have robust properties in specific circumstances 
(Kelava, 2009; Kelava et al., under revision; Marsh et al., 

2004, 2006).

The extended unconstrained approach

In this section, we will summarize the unconstrained 

approach for the estimation of single interaction effects as 

proposed by Marsh et al. (2004, 2006). After this we will 

present an extension of the unconstrained approach for the 

simultaneous estimation of interaction and quadratic ef-

fects as proposed by Kelava (2009) and Moosbrugger et al. 

(2009). We provide a detailed Technical Appendix show-

ing how to estimate the models using the freely accessible 

sem package (Fox, 2006) in R (R Development Core Team, 

2008).

Marsh et al.’s (2004) unconstrained approach

The main idea of the unconstrained approach is to relax 

all constraints formulated by Kenny and Judd (1984) that 

make the specification of the interaction model complicated 
(see Equations (5) - (8)) and to estimate these parameters 

freely. Suppose we have a simple interaction model:

      (9)

with normally ξ
1
, ξ

2 
distributed and ζ variables with means 

equal to zero. The linear measurement models are given 

by:

      (10)

and

      (11)

with centered and normally distributed δ and ε measurement 

error variables. The nonlinear measurement model is given 

by:

      (12)

Although we assume that  and  

the latent expectation  will be equal to  

and thus needs to be estimated (or otherwise constrained).

In summary, since parameter estimation is based on em-

pirical and model implied covariance matrices (like in LIS-

REL or in the sem package), the following parameters have 

to be estimated freely:

• regression coefficients: 
  and 

• variances and covariances of the latent predictors: 

 and 

• variances of the disturbances: 

 and  

• latent expectation of the nonlinear predictor: κ
3
 (or oth-

erwise constrained to )
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For purposes of model identification,  and 

 have to be fixed at 1 and need not to be estimated.
Instead of estimating the structural model’s latent in-

tercept α and the latent expectation κ
3
, latent intercepts of 

the outcome indicators (
321 ,, yyy ) and product indicators 

( 635241 ,, xxxxxx ) can be estimated, too. For example, α 
could be omitted in Equation (9). Then, the latent intercepts 

 and  must be estimated within a modified out-
come measurement model:

     (13)

In the modified product indicator measurement model, then 
 and  must be estimated, when omitting κ

3
:

      (14)

If the indicator variables 
61 ,..., xx  are nonnormally dis-

tributed, Marsh et al. (2004) propose to estimate Cov(ξ
1
ξ

2
,ξ

1
) 

and Cov(ξ
1
ξ

2
,ξ

2
) additionally, because these covariances are 

not equal to zero, if the latent predictors ξ
1
 and ξ

2
 are non-

normally distributed. If it can be assumed that nonnormal-

ity results from nonnormally distributed measurement error 

variables of the linear indicators (e.g., ceiling effects can 

produce a nonnormal δ
2
 measurement error variable), then 

measurement error covariances between the linear and their 

related nonlinear indicators (e.g., Cov(δ
2
,δ

8
)) should be spec-

ified and estimated, too (because both, 2x  and 852 : xxx = , 

contain the nonnormal δ
2
 which is also part of δ

8
). A nonlin-

ear SEM with a single quadratic effect, instead of an interac-

tion effect, is specified analogously.

The extended unconstrained approach for the  

simultaneous estimation of latent interaction  

and quadratic effects

In this subsection we present the extension of the uncon-

strained approach for the simultaneous estimation of inter-

action and quadratic effects. In order to keep it as simple as 

possible, we will assume that the latent predictors ξ
1
 and ξ

2 

and their indicators are normally distributed and centered 

(with zero means).

Equation (15) shows the nonlinear SEM with both effect 

types:

    (15)

The linear measurement models for ξ
1
, ξ

2
 and η are giv-

en by Equations (10) and (11). The nonlinear measurement 

model is given by (cp. Figure 1):

      (16)

Once again, κ
3
=E(ξ

1
ξ

2
), κ

4
=E(ξ2

1
) and κ

5
=E(ξ2

2
) are not 

equal to zero in general. These expectations of the nonlinear 

latent variables have to be constrained or estimated freely.

When estimating a nonlinear SEM with simultaneous in-

teraction and quadratic effects, additional measurement er-

ror covariances of the nonlinear indicators (e.g. Cov(δ
8
,δ

11
)) 

must be specified, because they are not zero when Cov(ξ
1
,ξ

2
) 

≠ 0 (Kelava, 2009; Kelava et al., 2008). This should be the 
case in most research situations. If the covariances are not 

specified, the estimates of the nonlinear effects will be se-

verely biased (Kelava, 2009). Unfortunately, these addition-

al covariances have been omitted not only in early literature 

(Kenny & Judd, 1984), but also in recent literature (Lee et 

al., 2004). Suppose that 52 xx  is an indicator of ξ
1
ξ

2
 and 2x  

is an indicator of ξ2

1
 (see Figure 1). Then Cov(δ

8
,δ

11
) must 

be estimated, because 2x ’s measurement error δ
2
 is part of 

52 xx  (see Equation (4)) and part of 
2

2x ). In Figure 1, we 

have used double-sided arrows to show that the measure-

ment error covariances have to be estimated freely.

As long as variables are centered and normally distribut-

ed, measurement error covariances between linear and non-

linear indicators (e.g., Cov(δ
2
,δ

8
)) need not to be estimated, 

because they are third moments and are equal to zero. When 

the variables are nonnormally distributed, they will not be 

equal to zero and need to be estimated, too (assuming the 

model being identified).
Within the extended unconstrained approach, the fol-

lowing parameters have to be estimated freely:

• regression coefficients: 

                                      and 

• variances and covariances of the latent predictors:

                                                                   and 
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• variances of the disturbances:

                                                and 

• latent expectations of the nonlinear predictors: κ
3
, κ

4
 and 

κ
5
.

For purposes of model identification  

and  have to be fixed at 1 and need not to be estimated.
As before, instead of estimating α and κ

3 
-

 
κ

5
, latent in-

tercepts  and  of the outcome indicators ,, 21 yy
and 

3y , and latent intercepts  of the nonlinear 

product indicators 2

6

2

2

2

141 ,...,,,..., xxxxx  can be specified, 
too (cp. Equation (13) and (14)).

Empirical example from the work and stress research

In this section, we provide a very brief empirical exam-

ple from the work and stress research which is based on a 

data set that has already been published in a larger publica-

tion by Diestel and Schmidt (2009)3. In their publication, 

the authors examined the relationship between ‘work load’ 

(wl) and ‘anxiety’ (ax) and found that the variable ‘demands 

for impulse control’ (ic) is a significant moderator of that 
relationship. In detail, they found that higher work load and 

higher demands to control emotional impulses lead to in-

creased anxiety. In addition to these linear effects, higher 

work load leads to higher anxiety when the demands to con-

trol emotional impulses are high.

In terms of a regression model, this result can be ex-

pressed by the following Equation (17):

(17)

where the explained variance is R2 = .492 and N = 574.

The (standardized) data were analyzed with LMS (Klein 

& Moosbrugger, 2000) which is implemented in the the 

commercial Mplus (Muthén & Muthén, 2007) software. As 

can be seen from Equation (17), there is a strong effect of 

work load and a relatively high interaction effect of work 

load and demands for impulse control.

We reanalyzed the original data set and specified an 
additional quadratic effect for the demands for impulse 

control. We applied two approaches: First, we used the ex-

tended unconstrained approach which can be implemented 

in the non-commercial sem package (Fox, 2006) in R (R 

Development Core Team, 2008). Second, we analyzed the 

data with the additional effect using the LMS approach. A 

detailed description on how to apply both approaches is giv-

en in Appendix A (sem package) and Appendix B (Mplus).4 

In order to illustrate the procedure for both approaches, a 

hypothetical data set was generated and analyzed.

The analyzed model can be summarized by the follow-

ing Equation (18): 

               (18)

Results are given in Table 1. As can be seen, in both 

approaches, there are significant linear effects and a signifi-

cant interaction effect (according to the analyses of Diestel 

& Schmidt, 2009). But, in LMS there is also a significant 
quadratic effect of the demands for impulse control. In the 

unconstrained approach, we were modeling the additional 

(proposed) measurement error covariances of the product 

indicators and linear indicators, in order to account for the 

non-normality in the data, and found that there is no sig-

nificant quadratic effect. Since Diestel and Schmidt (2009) 
report substantive non-normality in the data, the significant 
additional quadratic effect in LMS might be spurious. Simu-

lation studies (Brandt, 2009) and theoretical considerations 

(Klein & Muthén, 2007; Kelava et al., under revision) have 

shown that LMS (but not QML!) should be more vulnerable 

to non-normality (due to its distributional assumptions).

DISCUSSION

In this article three goals were set. First, we gave a short 

overview on the different types of approaches for the esti-

mation of nonlinear structural equation models. Mainly two 

approaches have shown to be easily applicable by applied 

researchers. While the application of the distribution ana-

lytic approaches has been described in Kelava et al. (under 

revision), the user-oriented description on how to apply the 

product-indicator approach when estimating multiple non-

linear effects has not been published, by now.

Second, we described the unconstrained approach in de-

tail (Marsh et al., 2004) and extended the original model 

with one interaction effect to a model with one interaction 

effect and two quadratic effects, because the unconstrained 

3 We gratefully thank Stefan Diestel for sharing the original data.

4 Appendices are available at the journal webpage  

http://psihologija.ffzg.hr/review.

Table 1

Results of the reanalysis of the Diestel and Schmidt (2009) data 

with the extended unconstrained approach and the LMS approach

Approach Parameter Estimate
Standard 

error
z-value p

Extended  

unconstrained 

approach

γ
1

.534 .060 8.881 < .001

γ2 .171 .043 4.018 < .001

ω
12

.238 .083 2.853 .004

ω
22

-.071 .041 -1.727 .084

LMS  

approach

γ
1

.545 .061 8.974 < .001

γ
2

.166 .041 4.014 < .001

ω
12

.190 .055 3.487 < .001

ω
22

-.072 .037 -1.943 .052
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approach has shown to have some robust properties (Ke-

lava, 2009; Marsh et al., 2004).

Third, we provided a brief example from the work and 

stress research finding an quadratic effect of ‘impluse con-

trol’ on ‘anxiety’ with LMS, but not with the unconstrained 

approach. The additional quadratic effect might be spuri-

ous. In the Appendix, we show how the original and ex-

tended unconstrained approach can be implemented in the 

sem package in R. This gives the opportunity for applied 

researches to estimate latent nonlinear effects within a non-

commercial software.

There are several advantages of estimating multiple non-

linear effects. One advantage refers to the development of 

behavioral theories containing interaction and quadratic ef-

fects (Ganzach, 1997). For example, Ganzach’s theory on 

educational expectations leads to completely different pre-

dictions when models are estimated that contain both effect 

types, interaction and quadratic effects, instead of contain-

ing one interaction effect only. A simple interaction effect 

model predicts a high educational expectation, if both par-

ents’ educational levels are high, whereas Ganzach’s theory 

hypothesizes a compensatory effect of the parents’ educa-

tional levels. Therefore, models with an adequate amount of 

nonlinear effects need to be estimated and need to be acces-

sible for a broad audience.

Another advantage results from a statistical perspective. 

A model with both effect types (i.e., with one interaction 

and two quadratic efects) serves better as a comparison 

model than a linear one when testing the significance of in-

teraction effects with the χ2-difference test (Klein, Scher-

melleh-Engel, Moosbrugger, & Kelava, 2009). In contrast 

to the hitherto widespread usage of the linear model as a 

comparison model for interaction effects, Klein et al. argue 

that an additive model containing quadratic and linear ef-

fects is more adequate. One important point is that spurious 

interaction effects can occur instead of true - but unspecified 
- quadratic effects due to the correlation of the nonlinear 

terms, if the linear predictors are correlated (cf. Ganzach, 

1997; Lubinsky & Humphreys, 1990).

Therefore the extension of the unconstrained approach 

for the simultaneous estimation of quadratic and interaction 

effect is an important issue for testing the significance of 
interaction effects.

There are some limitations that need to be considered. 

First, we concentrated on the usage of non-overlapping in-

dicators for each nonlinear term (e.g. ,, 5241 xxxx  and 
63 xx  

as indicators of ξ
1
ξ

2
, instead of using 

52615141 ,,, xxxxxxxx  

etc.). This was necessary in order to reduce the model com-

plexity and might lead to a slight decrease in validity. But, 

a modification with different numbers of indicators can be 
implemented with a reasonable amount of effort (for a com-

parison of different numbers of nonlinear indicators for the 

interaction model see Marsh et al., 2004). Second, although 

the approach has proven to be robust under some circum-

stances, an underestimation of standard errors of the nonlin-

ear effects can occur which leads to an increased Type I error 

rate if assumptions are violated (e.g. nonnormal distribution 

of the linear predictors, high multicollinearity). It might be 

an advantage to use bootstrap procedures to overcome this 

problem (Efron, 1979).
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