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Abstract A new method is proposed for estimation of

nonlinear elastic properties of soft tissues. The proposed

approach involves a combination of nonlinear finite ele-

ment methods with a genetic algorithm for estimating

tissue stiffness profile. A multipoint scheme is introduced

that satisfies the uniqueness condition, improves the esti-

mation performance, and reduces the sensitivity to image

noise. The utility of the proposed techniques is demon-

strated using optical coherence tomography (OCT) images.

The approach is, however, applicable to other imaging

systems and modalities, as well, provided a reliable image

registration scheme. The proposed algorithm is applied to

realistic (2D) and idealized (3D) arterial plaque models,

and proves promising for the estimation of intra-plaque

distribution of nonlinear material properties.
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Introduction

Cardiovascular disease is a leading cause of morbidity and

mortality, primarily through atherosclerotic plaque forma-

tion and rupture often followed by myocardial infarction or

acute cerebral stroke (Thom et al. 2006). Elevated levels of

(cyclic) strain/stress are believed to be likely indicators of

unstable plaques (Kaazempur-Mofrad et al. 2003; Lee et al.

1996; Loree et al. 1992; Richardson et al. 1989). This has

motivated recent efforts to construct quantitative images of

strain, named elastograms, and elasticity modulus distri-

bution for assessment of the stability or vulnerability of the

atherosclerotic plaques. Arterial elastograms and modulus

distribution patterns will provide further insight into plaque

morphology, composition, biomechanics and rupture risk

(Fig. 1) (Baldewsing et al. 2005; Lee et al. 1993; Schaar

et al. 2003, 2004).

Stress is a local quantity describing force carried by an

object normalized by the area on which the force acts.

Force application introduces deformation on the object.

Deformation is typically described by strain, which has the

units of length change over length. Strain can vary with

spatial coordinates and the elastogram is the graph that

depicts the strain variations over a certain area or volume.

Elastography deals with elastograms and hence begins with

image registration, i.e. identifying how each image point

corresponding to a single material point of tissue is moving

within different frames. The gradient of the displacement

field, computed in the registration step, generates the strain

(tensor) field or elastogram (Ophir et al. 1991).

Elastography was originally developed as a quantitative

palpation technique to diagnose breast cancer with ultra-

sound (Ophir et al. 1991). Arterial elastography is more

challenging than breast tissue elastography due mainly to

the smaller length scales involved, time varying blood flow
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and presence of several plaques with different sizes,

geometries, and compositions. Breast elastography typi-

cally deals with a large single inclusion that is usually less

than ten times stiffer than the normal breast tissue (Ophir

et al. 1997). On the contrary, modulus of lipid pools in

atherosclerotic plaques can alone span four orders of

magnitudes (Duck 1990). Moreover, a time varying pres-

sure is exerted on the arterial plaques, whereas static

compression forces are often used in breast elastography.

Extensive efforts have been devoted to developing

elastography. Intravascular ultrasound (IVUS) has been

successfully used to estimate the arterial radial strain,

despite its limited resolution (Baldewsing et al. 2005;

Schaar et al. 2003, 2004). However, a drawback in IVUS

elastography is that the catheter must be located at the

center of artery and hence IVUS is only capable of regis-

tering axial displacement. Correlation-based OCT

elastography (Chan et al. 2004), does not have this limi-

tation. OCT elastography based on Doppler or phase

information is however also limited to estimating radial

motion (Wang et al. 2007). The MRI (visco) elastography

has been also developed extensively (Sinkus et al. 2005),

but not applied to arterial wall, due mainly to its lower

resolution.

Stress and strain are related through material constitu-

tive relations. The simplest form of such relations is the

isotropic linear elastic model, which has only one unknown

for incompressible materials. That unknown is called the

(elastic) modulus. Traditional elastography protocols typi-

cally assume a ‘constant stress field’, implying that

elastogram is equivalent to the modulus image (for

incompressible tissue with isotropic linear elastic behav-

ior). However, arteries are typically characterized by

asymmetric geometries, which together with the presence

of plaques with varying compositions lead to a nonhomo-

geneous stress field in arterial wall. This prevents a direct

match between strain levels and stress or modulus images.

In such cases, the displacement field can still be used to

find the elastic modulus field but requires a more elaborate

solution strategy. This type of problem is called the inverse

elasticity problems (Kallel and Bertrand 1996), in contrast

to a simpler case of direct (or forward) elasticity problem

wherein the displacement field is computed for a known

modulus field.

Conventionally ‘gradient-based techniques’ are used to

solve the inverse elasticity problem, allowing to resolve

elastic properties on a fine mesh (Doyley et al. 2000; Kallel

and Bertrand 1996; Khalil et al. 2005; Oberai et al. 2004).

Since elastic properties in arterial plaque can span four

orders of magnitude (Duck 1990), gradient-based parame-

ter estimation techniques face several challenges, e.g. lack

of accurate estimation of the relatively softer regions of the

plaque, necessity of finding a ‘good’ initial guess and

adopting higher error levels due to regularization.

As an alternative to gradient-based techniques or at least

as a means for providing a reasonably good initial guess for

gradient-based methods, we previously introduced a new

approach using genetic algorithm (GA) (Khalil et al. 2006).

In this approach, the intraplaque boundaries are used to

divide different regions of plaque into lumped areas with

the same elastic properties. The GA-based approach is

viable and effective in dealing with parameters of different
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Fig. 1 Overall flow chart of the elastography and parameter estima-

tion procedures for arterial plaque characterization. Frames of images,

as obtained with IVUS/OCT/MRI modalities, are registered to find

the strain map. The images are segmented to build a lumped

mechanical model. Then an iterative scheme is used to match the

strain computed by image registration and the mechanical model.

Finally, when the process converges, a reliable strain/stress/modulus

map is achieved. This map can be validated with histological markers

of plaques (including their vulnerability level) and can then be used to

build biomechanical indices for plaques vulnerability and evolutions
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orders. Furthermore, the GA-based approach can generate a

coarse-grained map of elasticity distribution serving as a

robust and preconditioned initial guess for fine mesh

computations. This approach enables us to find the global

minima that cannot be captured by gradient-based methods.

Moreover, the elastic modulus computed by GA can also

serve as a lumped or effective elasticity map that can be

easily utilized for correlation with medical indexes of

interest (Khalil et al. 2006; Schaar et al. 2004).

The GA-based approach is an efficient technique that

provides accurate measurement of soft tissue linear iso-

tropic elastic modulus (Khalil et al. 2006). Encouraged by

the initial success of our GA-based approach for estimation

of linear mechanical properties of atherosclerotic plaques,

we set out to extend this approach to account for nonlinear

constitutive relations, representative of vascular tissues. It

is well known that arterial tissues exhibit a nonlinear

behavior and experience high cyclic strain levels in each

single cycle of heart beat, namely as large as 10% for

carotid bifurcation (Kaazempur-Mofrad et al. 2003; Loree

et al. 1992) or 20% at thoracic aorta (Draney et al. 2002).

Consequently, to limit the analysis to the linear regime,

IVUS-based elastography relies on radial linear stain, using

two closely correlated frames (Schaar et al. 2003). How-

ever, we are interested to ascertain the tissue’s nonlinear

behavior to resolve the more realistic loading regimes that

plaques experience. Furthermore, conventional OCT might

have an appreciably lower framing rate, namely 10–15

frames per second (fps) as opposed to 60 fps for IVUS, and

consequently it might be more likely to deal with nonlinear

and large scale deformations of arteries. The lower framing

rate might be resolved by using newer frequency domain

generations of OCT that allow for higher framing rates of

[30 fps (Yun et al. 2003). Nevertheless our technique

would still be viable for two reasons. First, there is no

alternative in vivo measurement technique for estimation

of nonlinear parameters. Moreover, if the frames corre-

spond to largely different pressure levels, the strain will be

increasingly more accurate due to higher signal to noise

ratio of the registration, provided that the strain induced

speckle decorrelation is not overly excessive.

The objective of this paper is, therefore, to extend our

elastography efforts in mechanical characterization of

arteries (Chan et al. 2004; Khalil et al. 2005, 2006) to

nonlinear regime. Here we will employ sharp boundaries

(for example as provided by high contrast images of OCT)

for lumped parameter estimation. Preliminary results are

presented using realistic 2D and idealized 3D arterial pla-

que models to evaluate the proposed GA-based nonlinear

elasticity estimation technique.

The present work is based on utilizing intravascular

optical coherence tomography (OCT) as an imaging

modality that offers a relatively high contrast and

resolution as compared to IVUS. The proposed techniques

for estimation of nonlinear material properties are, how-

ever, generic with respect to imaging modality and can be

implemented with other imaging modalities. OCT does,

however, allow for direct extraction of morphological

boundaries of common arterial tissue types (Yabushita

et al. 2002). This additional information was utilized to

solve the inverse elasticity problem and to accurately

evaluate the isotropic linear elastic properties of arterial

tissues in our previous work (Khalil et al. 2005, 2006).

The remainder of this paper is organized as follows.

Section ‘‘Backgrounds and methods’’ covers including

OCT imaging, parameter estimation based on genetic

algorithm and finite element modeling (FEM) of arterial

tissues. Section ‘‘Results’’ presents results of nonlinear

parameter estimation using genetic algorithms and random

exhaustive search. Finally, section ‘‘Discussion’’ discuses

remaining challenges, error sources and future improve-

ments for the present approach.

Backgrounds and Methods

OCT Imaging and Elastography of Arteries

Various imaging modalities like IVUS and magnetic res-

onance imaging (MRI) have been developed for

characterization of atherosclerotic plaques (Nighoghossian

et al. 2005). Vulnerable plaques are typically characterized

by a thin shoulder (0.06–0.2 mm), which is well beyond

the resolution of conventional imaging techniques. Con-

sequently we aim to utilize catheter-based OCT which has

up to 0.01 mm resolution, and thereby is an ideal and

unique modality for accurate identification of vulnerable

plaques (Fercher et al. 2003).

In OCT a beam of near infrared light is split into two,

one sent into the sample and one used as the reference

beam. Then optical interferometry is used to build an

image upon the back-reflections of tissue. Axial direction is

scanned by varying the optical path-length of the reference

arm and the lateral direction is covered by rotating the

sample beam. Compared to IVUS, OCT offers superior

resolution and higher tissue contrast, but has higher noise,

lower penetration depth and is still an invasive technique.

Catheter-based OCT generates high-resolution images

and is capable of identifying arterial tissue types directly

(Yabushita et al. 2002). A drawback of OCT is its low

penetration depth (2–3 mm), but this depth is still enough

for the study of vulnerable plaques, which are usually

located near lumen surface (Tearney et al. 2006). Mean-

while, OCT is characterized by a relatively high speckle

noise and low imaging rate, hence its registration requires

careful attention. Although OCT is the optical analog of
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ultrasound B-mode, the conventional IVUS-based elas-

tography techniques have not been successfully applicable

to OCT (Rogowska et al. 2004; Schmitt 1998). Newer

robust registration methods are therefore needed which are

specialized for OCT (Chan et al. 2004; Karimi et al. 2006).

In this work we utilize OCT images for building realistic

arterial models and use them to simulate artificial elas-

tography data. Future work will directly rely on registered

elastography data.

Two-dimensional (2D) OCT sections of excised coro-

nary arteries were obtained according to our previously

described protocol (Chau et al. 2004). Framing rate was

4 fps and the pullback rate was equal to 0.5 mm/s. The

axial and transverse resolutions were 10 and 25 lm,

respectively, corresponding to 500 angular pixels 9 250

radial pixels. OCT segmentation was performed by expert

OCT readers using previously published criteria for tissue

classification (Yabushita et al. 2002).

Here OCT images were used for simulation only; hence

the framing rate and other related details do not matter.

Yet, a brief description of eventual intravascular OCT

elastography setup is provided for completeness. In prac-

tice we plan to use high speed OCT like our newly

published setup with at least 108 fps (Yun et al. 2006).

The pullback rate is set such that each section is imaged

for at least one full cycle of heartbeat. The images can be

low sampled via median filtering in the time domain to

reduce the image noise and yet we can easily achieve 24

frames per heart cycle. Low diameter catheter is used and

saline is injected for OCT imaging, relying on blood

pressure as driving force (i.e. not using an occlusion

balloon). We have already developed techniques for 3D

registration and will use them for estimation of 3D dis-

placement vectors at nodes corresponding to our finite

element model (FEM). The strain map obtained with

elastography then can be compared with strain calculated

from FEM model to update and improve our estimate of

mechanical properties.

Finite Element Modeling

Finite element models, both in 2D and 3D, were employed to

test the viability of the proposed estimation algorithm.

Digital images were processed, imported into a commer-

cially available FEM package ADINA (Watertown, MA),

and used to construct finite element models (Fig. 2a). 3D

models can be made by combining multiple cross sections

obtained via pullback. We have published an example of a

3D reconstructed coronary artery (Yun et al. 2006). Recently

the dimensions of coronary stents have been measured with

OCT pullback in vivo and have been compared with direct

and IVUS measurements. It has been shown that the geom-

etries obtained with this method are reproducible and

accurate and hence we expect that we can build reasonably

accurate 3D models with OCT pullback (Kawase et al. 2005;

Yun et al. 2006). However, the tissue segmentation in 3D

cases is rather tedious and for simplicity here we rely on a

simulated 3D plaque model, given that our focus in this paper

is on the parameter estimation techniques. Our 3D model

consists of a cylindrical arterial segment with a crescent-

shaped fibrous plaque and a spherical lipid pool (Fig. 2b).

In both 2D and 3D cases, pressure is prescribed on the

inner and outer layers of arteries. The lumen pressure is

applied gradually, increasing from 0 to 16 kPa (120 mmHg)

in 24 time steps. The initial 80 mmHg pressure serves as

preloading and 80–120 mmHg pressure range represents the

physiological oscillation. Strain fields calculated at each

loading step are utilized as fictitious elastography data in our

current characterization study. In practice, they will be

obtained experimentally by registering consecutive imaging

frames. No axial movement is allowed for end segments to

mimic plane strain assumption and one node in lower seg-

ment is totally fixed to avoid rigid body motion. Specifically,

9-node 2D plane strain elements and pyramid 4-node 3D

elements, both with mixed (u,p) interpolation, are utilized

with a sufficient mesh density determined based on grid

convergence studies.

Fig. 2 Finite element models. a
2D geometry of OCT-derived

image of segmented

atherosclerotic vessel. b Finite

element mesh of a 3D idealized

arterial segment and solid

bodies of a fibrous plaque and a

lipid pool
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The Mooney-Rivlin model (Bathe 1996; Rivlin 1948) is

used to estimate the mechanical behavior of the corre-

sponding regions in the FEM model, namely normal vessel

wall, fibrous plaque, and lipid pool. This model is defined

by the strain energy density function:

W ¼ D1 eD2 I1�3ð Þ � 1
� �

ð1Þ

where D1 and D2 are material constants, and I1 is the first

invariant of the Cauchy-Green deformation tensor. The

product D1D2 is proportional to the elastic modulus of

the material and D2 is related to strain-stiffening behavior.

The values for D1 and D2 were taken from previous liter-

ature (see Table 1; Huang et al. 2001).

Parameter Estimation

Fitness Function

An estimation method is composed of defining a fitness

function and choosing an iteration scheme. The iteration

(or update) scheme is implemented to update the solution

guess for the next step, based on the best solutions of the

current step. Usually a certain number of possible solutions

must be examined via a fitness function. Here, an effective

strain, computed at the center of each finite element, is

used for fitness evaluation:

Effective Strain =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2

xx þ e2
yy þ

1

2
e2

xy

r
;

x,y: directions in axial sections

ð2Þ

The error in effective strain is divided by the number of

elements corresponding to a particular region and then the

second (L2) norm of this vector is interpreted as a fitness

measure for that region. Total fitness is defined as the

equally weighted summation of individual fitness

measures. The same effective strain is used for 3D cases,

because the cyclic strain in longitudinal direction is small

and also difficult to measure.

Multipoint Scheme

Uniqueness is a central concern in the parameter estimation

realm. Some elementary sufficient conditions for unique

estimation of linear homogeneous elastic models in inverse

elasticity problem are extracted (Barbone and Bamber

2002). One of those conditions is to know the displacement

field in different independent loading conditions. This is

not usually feasible in linear problems in practice, but it is

valuable for nonlinear models where almost all load set-

tings result in linearly independents displacements.

However, the problem is far more complicated in the

nonlinear models due to extra unknowns. Consequently,

the knowledge of one loading point will not be at all suf-

ficient to find a unique solution. For instance, the Mooney-

Rivlin model requires a minimum of two (displacement/

strain) points to uniquely capture the stress-strain curve.

Moreover, the result of the estimation is sensitive to the

noise and the uncertainty in the elastography data. Thus to

ensure the uniqueness of the solution as well as reducing

noise effect, we propose to use multiple loading points at

incremental pressure loads and we refer to it as a multipoint

scheme. Note that the multiple image frames are distinct

from multiple data points of displacement/strain. Indeed we

have an extra base image frame with respect to which the

displacement field is computed. For example, if we have 10

image frames, the multipoint scheme can rely on at most

9 strain frames/points.

Here we use evenly spaced pressure increments to

generate multiple points of strain data, but in practice we

must rely on increments associated with fixed time interval.

As a result, by fitting the stress–strain curve to a number of

linearly independent points, we expect to obtain an opti-

mized robust unique solution.

Genetic Algorithm

Another aspect of a parameter estimation technique is the

way that the guess is updated. Here we use random

exhaustive search (RES) and genetic algorithm (GA)

(Haupt and Haupt 2004; Khalil et al. 2006). RES is mainly

used for discrete problems in which no efficient solution

method is known, making it necessary to test each possi-

bility sequentially in order to determine the solution. Such

exhaustive examination of all possibilities is known as

‘exhaustive search’, ‘direct search’, or the ‘brute force

method’ (Fig. 3a; Haupt and Haupt 2004). A large number

of guesses are generated and examined to search for the

Table 1 True values of Mooney-Rivlin parameters and search fields for RES/GA used for different regions of the arterial plaque

Mooney-Rivlin parameters True values Search field for RES Search field for GA

D1 [Pa] D2 D1 [Pa] D2 D1 [Pa] D2

Arterial wall 2644.7 8.4 2000–4000 7–10 1000–10000 1–10

Fibrous plaque 5105.3 13.0 4000–6000 10–14 1000–10000 10–100

Lipid 50.0 0.5 20–60 0.3–0.6 10–100 0.1–1
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best solution. It must be emphasized that the RES tech-

nique is highly inefficient and is used here only to evaluate

feasibility of nonlinear mechanical parameter estimation

and to assess the effectiveness of GA.

Genetic algorithm is expected to be a ‘smarter’ and

more effective way of finding the best solution. In GA, a

small set of initial guesses is created and by evaluating

their fitness a next generation of guesses is generated. The

update scheme in GA simulates biological evolution

through naturally occurring genetic operations on chro-

mosomes (Haupt and Haupt 2004). GA applies the

Darwinian principle of ‘survival of the fittest’ on string

structures to build unique searches with elements of

structure and randomness (Fig. 3b). RES can be considered

as a limiting case of GA, having a large population in

which GA stops after the first iteration. Genetic algorithms

begin with a predefined initial population of ‘individuals’,

typically created at random from a field of possible solu-

tions. Through pseudo-genetic operations, such as mating

pool selection, crossover reproduction, and mutation, the

fittest individuals in the population survive to the next

generation and facilitate the proliferation of new

individuals.

The settings of GA operations largely follow our pre-

vious work with linear constitutive relations (Khalil et al.

2006). However, to explore a wider range of unknowns and

a great degree of randomness in the population size, our

GA method must be extended to incorporate a ‘mutation’

operation. Mutation operation involves addition of a stream

of independently generated random parameters, or ‘new

blood’, into the population in each step. The purpose of

mutation in genetic algorithm is to increase evolution rate

as well as to avoid local minima by preventing individuals

to become very similar to each other at early stages of

evolution.

Results

Random Exhaustive Search

To assess the utility of multipoint scheme and the feasi-

bility of nonlinear mechanical parameter estimation, we

utilized the random exhaustive search (RES) method. Since

the RES solution is highly sensitive to its randomly gen-

erated initial population, we repeated the solution

procedure for many (namely 8) times and used the mean

and standard deviation of the solution to quantify our

evaluation.

An initial population was generated randomly with 400

sets of 6 material parameters (D1 and D2 for arterial wall,

fibrous plaque, and lipid pool) in the search field (Table 1).

Different white Gaussian noise levels, namely 1%, 5%, and

10%, were added to the elastography strain data to test the

sensitivity of the overall multipoint algorithm. Conse-

quently, the robustness of the parameter estimation

algorithm was tested against the noise using both single

point and multipoint schemes. Furthermore, the effect of

pressure inaccuracy on the parameter estimation was

assessed by applying 1%, 5%, and 10% pseudo errors in

pressure. As a result the computed displacement field

inherited the corresponding error due to variations in the

force boundary condition.

Using 2 data points, noise free data produces estimated

parameters fairly accurately (see Table 2). However, a

considerable error is always observed in the estimation of

lipid parameters. This can be associated with the ‘near-

singular’ behavior of lipid pool. That is, a small change in

the magnitude (although large in percentage) of lipid’s

mechanical property yields negligible effect on the overall

strain map. However, some normalizing techniques can

alleviate poor lipid estimation as implemented in our pre-

vious work (Khalil et al. 2006). Nevertheless, thanks to the

minimal contribution of the lipid to the overall stress field,

the stress calculation in atherosclerotic vessel wall is not

compromised. To evaluate the overall error in each case,

we used the average error for the material parameters

Generate random initial 
population

Evaluate the cost 

Find the lowest cost 

Start

End

Select parent chromosomes, or 
mating pool 

Do crossover or mating Introduce new blood by mutation 

Generate random initial population 
and decode them by chromosomes 

Evaluate the cost 

Start

Find the lowest cost 

Converge

End

No

Yes

a b

Fig. 3 a Flowchart of random exhaustive search. b Flowchart of

genetic algorithm

Table 2 Estimation results with 2-point RES using noise-free data

Mooney-Rivlin

parameters

2-frame estimated results (based on 8 runs)

D1 [Pa] (error) ± SD D2 (error) ± SD

Arterial wall 2613.4 (1.2%) ± 7.1% 8.5 (1.2%) ± 5.2%

Fibrous plaque 4966.2 (2.7%) ± 2.3% 13.0 (0.3%) ± 1.0%

Lipid 43.4 (13.2%) ± 20.2% 0.5 (5.9%) ± 19.5%
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excluding the lipid pool, which has a relatively large

standard deviation and yet minor mechanical role. Note

that since lipid elasticity modulus is approximately two

orders of magnitude lower than the other constituents, it is

not reasonable to directly compare its relative error with

other constituents, given that its absolute error is very

insignificant compared to others.

The sensitivity of the algorithm to the image (strain)

noise was next evaluated using different levels of noise and

different numbers of data points. The overall error

decreased as the number of points used in the algorithm

was increased (Fig. 4a). In presence of 1% strain noise,

using 12-loading points instead of 2-loading points lowers

the estimation error by approximately 6-fold, demonstrat-

ing the utility of the multipoint technique. In the remainder

of this paper, the 12 point algorithm is used for parameter

estimation. The parameter estimation error increased as the

underlying (imposed) noise was elevated from 1% to 5%

and 10% (see Fig. 4b). At a 10% noise, the maximum error

level was less than 7% which is reasonably small (Wil-

liamson et al. 2003). This suggests that the algorithm is

robust and shows a reasonably low sensitivity to the noise

in the strain data. Although no comparable algorithm exists

for nonlinear models, the present algorithm is in general

less sensitive to strain noise when compared with the cal-

culus-based ones for linear elastic models (Doyley et al.

2000; Kallel and Bertrand 1996; Khalil et al. 2005; Oberai

et al. 2004). We next tested the sensitivity of the algorithm

to the error in pressure measurement (see Fig. 4c). A 5% or

10% uncertainty in the pressure data yielded overall error

levels up to 5% or 15%. That is, the algorithm is nonlin-

early sensitive to pressure error and care must be exercised

to keep the pressure uncertainty to a minimum.

To test the performance of the present scheme in esti-

mating the mechanical properties of plaques in 3D, a

preliminary study was conducted using our idealized 3D

geometry. The error average between the real and esti-

mated mechanical properties for intra-plaque regions,

excluding the lipid region, was 3.6% (Table 3). The present

results suggest the viability of our algorithm in 3D models.

Further investigation is needed to verify the feasibility of

the algorithm in realistic 3D applications in the presence of

noise.

Genetic Algorithm

Our GA-based parameter estimation algorithm for linear

mechanical models (Khalil et al. 2006) was extended to

analyze nonlinear models, incorporating a new mutation

operator. Hence, like RES at least after infinite number of

evaluations, the scheme should accurately find the global

minimum, but with a smarter search and a lower compu-

tational cost.

To test the performance of the GA method for nonlinear

parameter estimation, we first limited our search solely to

D1, by assuming a known D2 value. This was carried out

with initial populations of either 16 or 40 individuals (see

2 point

6 point

12 point

0%

2%

4%

6%
8%

10%

12%

14%

Error Percentage

1% noise

5% noise 10% noise

0%

2%

4%

6%

8%

Error Percentage

1% pressure
error

5% pressure
error

10% pressure
error

0%

5%

10%

15%

20%

Error Percentage

a

b

c

Fig. 4 Sensitively analysis of the random exhaustive search (RES)

algorithm to the measurement noise and error. Overall error in

parameter estimation defined as the average error among all the

parameters excluding the error associated with the lipid pool. a
Comparison of 2-point, 6-point and 12-point methods subject to 1%

white Gaussian noise of strain. b Trend of error percentage increases

up to 7% when strain noise increases from 1% to 5% and 10%, while

using a 12-point method. c Effect of the pressure error on the overall

error in the parameter estimation, while using a 12-point method

Table 3 Estimated properties of 3D noise-free model using 2-point

RES

Mooney-Rivlin parameters 2-point estimated results

D1 [Pa] (error) D2 (error)

Arterial wall 2801.0 (5.9%) 8.4 (1.2%)

Fibrous plaque 5084.9 (0.4%) 12.1 (6.9%)

Lipid 57.0 (14.0%) 0.46 (8.0%)
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Fig. 5). As in the linear elastic case, as well as the non-

linear problem solved by RES, GA-based results for lipid

parameters are subject to larger errors. The errors in esti-

mation of parameters other than in the lipid pool were

approximately 5%, after nearly 200 simulation calls to the

FEM solver; which is comparable with the linear-elastic

results (we used about 250–500 calls for linear case; Khalil

et al. 2006).

To achieve a certain accuracy level with minimal

computational cost, an optimal population number exists;

as too small or too large population sizes are both practi-

cally inefficient (see Fig. 6). However, the difference

between initial population of sizes 40 and 16 is negligible.

By using the initial population size (IP) of 40, the initial

stationary solution is closer to the true value than that using

IP = 16; but after about 200 FEM simulation runs, both

have achieved reasonable accuracy (*5% error). It must

be remarked that the introduction of mutation operator may

yield abrupt changes in solution, which will, of course,

eventually yield better final accuracy. The results show that

GA can be used for efficient estimation of one parameter of

a nonlinear model by using one loading point. Next we

focus our attention toward estimation of two parameters (6

unknowns) using the multipoint technique and fixing initial

population to 40 individuals. Note that the initial search

field covers 10 folds (see Table 1), which is up to 5 times

larger compared to the RES search range. In fact, RES did

not generate satisfying results with such a large search

field.

The utility of multipoint technique for one and two

parameters estimations is demonstrated in Fig. 7. The 1-,2-

or 4-point techniques produced similar results for the one-

unknown case. For the two-unknown case, at least 2

loading points are required, and extra points can reduce the

estimation error. With the 4-point technique, the error

reaches less than 10% after 28 iterations (Fig. 7). By using

the 1-point technique, the algorithm failed to converge on

the true values. The 2-point method improves the accuracy

of nonlinear parameter estimation. Yet, to deal with noise

which is inevitable (even in the current study where sim-

ulated strain maps are employed), at least 4 loading points

were needed to substantially improve the performance of

the algorithm. It is worth noting that the number of frames

or loading points used in the algorithm does not necessarily

increase the computational cost of the overall parameter

estimation procedures, given that nonlinear FEM compu-

tations require incremental application of load (here we

needed 24 load steps).

As mentioned previously, GA can perform the estima-

tion within a much wider range of possible values as

compared to RES. The efficiency of these two methods for

the same search field and the same number of loading

points (namely 4) were next compared. Both methods were

eventually able to capture the true values but at different
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rates. Higher efficiency and lower error bounds were

observed with GA (Fig. 8). However, it must be noted that

due to the randomness in generating the initial population,

the results of RES may vary. Hence, standard deviations

are calculated for the RES results, each based on 8 inde-

pendent runs.

As shown previously, with the RES method, extra

loading points can be employed to reduce the effect of the

image noise. For example, with a low image noise of 1%

increasing the number of multiple points from 2 to 12

lowered the estimation parameter by 2-fold. Higher levels

of noise were tested, showing that eventually estimation

fails for a 5% noise; even if we use 12 loading points. This

indicates that image noise will play the major limiting role

in the application of the GA multipoint technique.

It must be noted that the RES method is successful for

10% image noise and has also a lower error in 1% noise

(see Figs. 4b, 9). At the first glance this may sound

surprising but in fact it is only an artifact caused by unequal

search regions for RES and GA. Comparing the search

domain for RES and GA (Table 1), one notices that GA is

covering a domain about 5 times larger in each direction.

Consequently, using equal search domains for RES and GA

can yield similar or superior performance in GA in dealing

with the noise issue. This is of course expected as the GA

algorithm is a smarter method as compared to RES.

Interestingly, while GA is producing reasonable solutions

for its large domain, RES was not at all applicable (with

current population size) to tackle GA large domain.

Following the same line of argument we can realize that

since RES is applicable to the 3D model, GA would be

naturally applicable as well. Furthermore, it must be noted

that 3D models, which can be viewed as a collection of 2D

sections, have in general a larger number of elements, i.e.

more multi-point input, and hence we expect 3D model to

be less sensitive to noise.

We have not compared RES and GA schemes with

respect to pressure uncertainties. It must be remarked

however that pressure error is mostly a fixed scaling error

uniformly applied to all elements, regardless of the chosen

scheme. On the other hand image noise has a totally dif-

ferent nature and it is a random error, affecting different

elements nonuniformly and randomly.

Discussion

To mimic the strain-stiffening behavior of vascular tissues,

nonlinear constitutive models must be used. The GA

method, described earlier (Khalil et al. 2006) as a robust

and efficient means for parameter estimation, was extended

here to incorporate material models with nonlinear con-

stitutive relations. Unlike calculus-based techniques for

parameter estimation, GA is a straight-forward and effi-

cient scheme, especially when applied to a model system

that features a reasonable number of lumped parameters.

Several numerical experiments were conducted to evaluate

the accuracy and noise sensitivity of the present GA-based

approach.

It is worthwhile to compare our GA scheme for linear

applications (Khalil et al. 2006) with the present GA-based

nonlinear estimation approach. Here we have incorporated

mutation and multipoint techniques with more realistic

geometries. In our linear models (Khalil et al. 2006), we

based our analysis on an initial population of 100 and up to

4 unknowns, corresponding to 4 lumped regions. Here we

use an initial population of 40 with mutation and up to 6

unknowns. As a result, our previous calculations converged

with at most 8 iterations while here at least 30 iterations are

required. This is because enough randomness cannot be

guaranteed just by enlarging the initial population and one

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 5 9 13 17 21 25 29 33 37 41 45

iteration or equevalent computational cost

er
ro

r 
pe

ce
nt

ag
e

GA:   IP=40

RES: IP=400

RES: IP=800

Fig. 8 Computational efficiency of RES versus GA, both based on

using 4 points. Note that standard deviation for RES is based on 8

runs. Overall error in parameter estimation defined as the average

error among all the parameters excluding the error associated with the

lipid pool

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71

iteration

er
ro

r 
pe

ce
nt

ag
e

2 Point 

12 Point 

Fig. 9 Comparison of GA convergence for a noisy image: a 2-point

method with a 12-point one

Cardiovasc Eng

123



has to rely on mutation. Also in our linear work we mod-

ified survival probability and weights of different regions

in fitness function to improve higher error in softer regions

(lipid). This was not implemented here but it is similarly

applicable and can be used to reduce error in soft tissue

estimation. Finally, while it is not trivial to compare two

approaches with respect to the noise, given the models’

different natures, the noise error seems to be lower here

due mainly to multipoint technique (Fig. 4).

Our 2D models, incorporating OCT-based subject-spe-

cific coronary slices (Chau et al. 2004), involved plain

strain element, which is only valid if the vessel is either

constrained longitudinally or if the longitudinal dimension

is sufficiently large and the longitudinal strains are negli-

gible. Since the elastography data was generated with the

same 2D FEM analysis, this does not influence the

parameter estimation results. This may not be the case

in vivo, as some segments of coronary vessels can undergo

curvature changes during the cardiac cycle. Axial varia-

tions in plaque geometry might also significantly alter

stress and strain fields, possibly affecting the accuracy of

FEM analysis and the overall parameter estimation algo-

rithm. Due to this consideration, 3D FEM analysis was

preliminarily investigated and the robustness of the algo-

rithm and its applicability to more complex and realistic

FEM models was demonstrated. However, the out-of-plane

strain is extremely difficult to obtain from 3D elastography,

due to the challenges in correlating the pixels between

adjacent slices during pullback. This could become a

serious obstacle that limits the accuracy of 3D estimation

and that is why we have only used plane strains for the

fitness function.

Another limitation of the present study is that the

residual strain was not considered. Unlike linear elastic

models, the presence of residual strain plays a major role in

nonlinear ones. In the current study, elastography data

obtained from the FEM model were used and hence

neglecting the residual strains does not affect the parameter

estimation algorithm. However, due to the lack of an

accurate model to quantify the residual strains in an artery,

it is difficult to assess the residual strain noninvasively. A

recent study found that the cyclic strain distribution

remains relatively unchanged by the inclusion of residual

stress (Kaazempur-Mofrad et al. 2003). Nonetheless, the

influence of residual strain on the nonlinear mechanical

property estimation remains to be rigorously addressed.

In the current study, we performed quasi-static FEM

analysis where the applied pressure load was incrementally

raised. This is a valid assumption for ex vivo elastography,

where the pressure load is applied slowly. However, for the

in vivo case due to the blood pressure oscillation, the

dynamic effects of the vessel wall and/or blood and tissue

surrounding it might not be negligible. Viscoelastic models

might also be needed for dynamic analysis, especially for

the lipid pool component of the plaques (Loree et al. 1994).

Such nonlinear dynamic analyses are much easier to

implement in GA with lumped parameter models than

calculus-based methods.

The multipoint scheme was introduced in this study to

determine the nonlinear material model, and was used as an

effective means for decreasing the sensitivity to noise. This

feature is not only useful for nonlinear material model; but

also can be applied for the estimation of linear elastic

models, much like increasing regression points for a linear

fit. GA was proven to be a viable and relatively efficient

method, but the image noise and pressure uncertainty

strongly affects the accuracy of the estimation.

Although the multipoint scheme may be helpful to

resolve the noise issue, the real cases might be far more

complicated than simple models we tested here. Hence,

noise is still the biggest obstacle in developing such an

estimation method. Work is in progress in our laboratory to

develop new techniques for robust elastography, exploiting

kinematics and mechanics of incompressible tissues

directly into image registration step to compute strains

(Chan et al. 2004; Karimi et al. 2006).

Unfortunately, the level of noise in OCT elastography is

not yet well characterized. The noise can vary based on

laser quality, system calibration, tissue types, loading rates,

rigid body motion and even strain level. More importantly,

the noise will vary inversely with strain resolution and the

imposed regularity constraints during image registration

(Chan et al. 2004). Regularity constraints impose addi-

tional criteria like incompressibility, strain uniformity and

lower levels of strain gradients to ensure that registration

process generates a physically meaningful displacement

field (Chan et al. 2004). If we use a larger window size for

image registration or median filtering, then the noise will

be filtered out as well as the fine details of displacement.

Penalizing the incompressible strain and strain gradients

leads to a lower noise but is also accompanied by sup-

pressing some high spatial frequency components of the

desired signal. Unfortunately, it is not trivial to define the

noise for a real setup because there is no other alternative

method to measure the strain, unless we test a uniform

sample, then the problem is that our priori knowledge

might lead to increasing weights of the regularity con-

straints which enforce uniformity (Chan et al. 2004).

Hence, the regularity settings are often prescribed and then

the noise effect on different samples is typically examined

(Chan et al. 2004; Khalil et al. 2005; Schmitt 1998). As

well demonstrated in our earlier publication, the noise can

vary from 100% error to 1% error, depending on the reg-

istration techniques and other settings (Chan et al. 2004).

Fortunately, reducing our strain resolution can lead to low

levels of strain noise, namely even below 5%. Therefore,
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while the typical resolution of OCT is about 15 lm, the

strain will be evaluated at a resolution about 150 lm or

larger. This might not work for conventional elastography

where elastic properties are evaluated at a fine mesh, but

here we are using a lumped model with a relatively large

length scale and therefore expecting little complication.

Further, it must be noted that pixilated images yield

spatially nonuniform errors in image registration, corre-

sponding to the nonhomogeneous magnitude of

displacements and displacement gradients during image

registration. However, it seems that if we use different

frames of varying displacement magnitude, those errors

will be cancelled out and the overall result of registration

can be more accurate and more reliable. Indeed this is

another advantage of multi-point technique.

It should be noted that incorporating multiple loading

points for multiple parameter estimation is a necessary

condition to assure solution uniqueness according to

degrees of freedom in elasticity curve. However, this is

not a sufficient condition for the inverse problem with a

fine mesh. Indeed, even for incompressible homogenous

linear elastic materials (one unknown), there is no unique

solution associated with one frame for practical loading

cases (Barbone and Bamber 2002). In that case, it is

proved that for a 2D problem, using four independent

loading conditions and measuring one component of dis-

placement, a solution with only one arbitrary unknown

constant can be constructed (Barbone and Gokhale 2004).

However, in practical cases it would be difficult to apply

four independent loading conditions to a linear material.

On the other hand, our multipoint technique, applied to

nonlinear material, can generate better results not only

due to robustness to noise, but also due to the higher

chance for construction of the unique solution of the

inverse problem.

Realistically, tissue mechanical properties are continu-

ous and inhomogeneous in space. Lumping parameters is a

strong assumption and can lead to artificial stress concen-

trations that undermine the viability of this method in

assessing the plaque vulnerability. However, the overall

algorithm can still serve as a pseudo-regularization tech-

nique, providing a robust and accurately preconditioned

initial guess as the low-resolution component of a multi-

resolution scheme. In addition, when provided with the

in vivo elastography data via OCT or high resolution MRI,

this algorithm can estimate the lumped patient-specific

mechanical properties by a minimally invasive or nonin-

vasive method and utilize those for medical correlations

(Schaar et al. 2004). For instance, ex vivo studies have

observed that lipid’s mechanical properties are influenced

by its components (Loree et al. 1994) and therefore are

very patient/case specific. Monitoring the change of such

parameters in vivo allows for longitudinal studies that can

potentially increase our understanding of the physiological

change of the tissue during the progression of atheroscle-

rosis. By differentiating the mechanical characteristics of

the vascular tissues with high or low risk of plaque rupture,

it is possible to set up a diagnostic tool for assessment of

plaque vulnerability that partly relies on the distribution of

the stress/strain as well as plaque geometry and composi-

tion (Fig. 1).
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