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Abstract

By means of the quantum-mechanical form of the Cramér-
Rao inequality, a lower bound is set to the mean-square error
in an unbiased estimate of a parameter of an incoherently
radiating object observed in the presence of thermal back-
ground light by an optical system ‘admitting light through a
finite aperture. Estimates of absolute radiance, frequency,
and position of the object are specifically analyzed. The
bounds reduce in the classical limit to those previously
obtained, but are valid in the quantum limit as well. When
the background vanishes, the bounds depend only weakly on
the effective number of independent spatiai and temporal
degrees of freedom of the object light at the aperture.
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An optical instrument such as a camera or telescope not only
detects objects in its field of view, but also facilitates measuring
certain of their parameters. Typical parameters are the absolute radi-
ance of an object, its diameter, the coordinates of its center, and--
if its light is quasimonochromatic--its frequency or wavelength.
Estimates of parameters arc always subject to random and systematic
errors. If measurements are made on images recorded on photographic
film, the granularity of the film and inaccuracies in specifying its
H-D curves introduce error. When photosensitive surfaces are used, as
in image intensifiers, emission fluctuations and dark currents create
random noise. Many of these causes of error might in principle be elim-
inated, but one will always remain, the stochastic nature of the inci-
dent light itself,

The insurmountable error due to the stochastic properties of
light can be assessed by regarding an optical instrument as processing
the electromagnetic field at its aperture. We envision the class of
all possible instruments that might analyze that field and produce an
estimate of the parameter in question. The methods of statistics permit
us to calculate a lower bound to the mean-square error in an unbiased
estimate of a parameter in temms of the probability distributions of the
incident light field. This has already been done for incohererit objects
whose light is received in the presence of strong énough background
light so that the net field can be treated by the methods of classical

1,2

electromagnetism. The bound was based on the Cramér-Rao inequality

of conventional statistics.
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liere we shall derive corresponding lower bounds that apply when
the light is so weak that the quantum-mechanical properties of the field
must be taken into account. The accuracy of paramcter estimates is now
limited by the quantum fluctuations arising from the photonic nature of
the light from the object and the background.

The sane conditions will be postulated as in our analysis of the
detectability of incoherent objects by a quantum-limited optical system.3
The light field at the aperture of the optical instrument is observed
for a time T much longer than the reciprocal W ! of the bandwidth of
the object light. The diameter of the aperture is much greater than
both a wavelength of the object light and the correlation length of the
thermal background light. The bandwidth of the background light is much
greater than that of the light from the object.

Section I will review the specification of the fields due to ob-
ject and background. The notation is the same as in III,3 In Section
II the quantum-mechanical form of the Cramér-Rao inequality is used to
derive a general formula for the lower bound on the mean-square error in
an unbiased estimate of a parameter.4’5 Section III treats parameter
estimation when the object light is spatially incoherent at the aperture;
Section IV takes the object light as having complete first-order coher-
ence. Estimates of the absolute radiance of an object, its frequency,
and its position are analyzed. Section V deals specifically with estimates

of radiance and frequency of a uniform circular object whose light is

2k pess s T LR R

received at a circular aperture.
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I. The Aperture Field

The electromagnetic field, taken for simplicity as a scalar, is
represented by the function y(r', t) of coordinates r' = (r, z)
and time t . Here r is a 2-vector of cocordinates in a plane parallel
to the aperture and normal to the z-axis, which points toward the object.
The field is decomposed into its positive- and negative-frequency parts,

V(' 0 =¥, (', t) + ¥ (£, t), (1.1)
which are hemmitian-conjugate quantum-mechanical operators. The mutual
coherence function of the field is defined by

¢ (r;, t; 515, t, 5 8) =Trpy_ (x,, t2> v, (X, €)) (1.2)
where p = p (8) 1is its quantun-mechanical density operator and ''Tr"
stands for the trace. The density operator and the mutual coherence
function depend on the parameter 6 to be estimated.

Onto the aperture falls light both from the background and from
an incoherent object whose parameter 6 is the estimandum. As the ob-
ject and background radiate independently, the mutual coherence function
in Eq. (1.2) is the sum of two corresponding terms,

P (ry, t) 5 55, £, 5 8) =%y (x], £) 5 £), t))

+ @ (r], t) 5 £, t, 5 0), (1.3)
(Henceforth the subscript 0 refers to the backgrdund, s to the
object light, or 'signal''.) The object is assumed tc lie in the plane

z = R , far away in the z-direction; as a result, the mutual coherence

function of its light has, at the aperture, the form
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Py (xys &) 5 Ly, £, 5 0) =

o]

W; (gl, £ 3 T, t2 3 0) exp [-iq (tl'tz) - i (21-22) /[ e],(1.4)
where & is the central angular frequency of its spectrum and ¢ is
the velocity of light.

Because the light from the object is a stationary stochastic
)

process, @_ is a function of £, and £, only through tl -t

and it can be expressed in terms of its Fourier transform as

P (Zys ) 3 1,5 £y 5 0) =
I¢S(gl, r, 3w 8) exp [~-iw (tl—tz)] dw / 27 . (1.5)

Under the assumption that the object light is cross-spectrally pure, the

transform ¢, can be decomposed into a spatial and a temporal part,6

(ps (51, 52 ;w3 0) =CPS (El’ r, s 8) X (w ; 6), (1.6)

where the angular frequency w 1is measured from € . The temporal spectral

density X (w ; ) 1s so normalized that

IX (w3 6) doe/ 2n=1. (1.7)

(ool

The bandwidth W cf the object spectrum is definea by
wetrxws e

do / 21 37} . (1.8)

--cf. I, Eq. (1.5). The total energy received from the object during

the observation interval is

ES = 20° cT Py (r, r ; 0) dzg . (1.9

A
where A stands for the aperture of the optical instrument.

g e TR e e ge
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The background light, on the other hand, is taken to have the
properties of themmal light of absolute temperature € . The average
nunber A’ of photons per mode of the field is given by the Planck
formula,

N=lexp b 0 /KT) - 117}, (1.10)

where @ is the frequency of the mode, K is Boltzmann's constant, and

 is Planck's constant h / 2w .
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II. The Quantum-Mechanical Cramér-Rao Inequality

In order to set a lower bound to the accuracy with which the para-
meter 6 can be estimated, we suppose the optical instrument replaced
by an ideal receiver, which consists of a large lossless cavity having
the same aperture.7 The cavity is initially closed and empty. During
the observation interval (0 , T) , the aperture is opened and the inci-
dent light allowed to enter the cavity. At time t = T the aperture is
closed, and at some time t thereafter, the best possible measurenents
are made of the field within the receiver. The field at that time is
described by a density operator p(6) depending on the estimandum 6 .

Once again we specify the field in the receiver in temms of its
normal modes um(g) exp (—iwmt) ; the functions u (r) are solutions
of the Helmholtz~equation corresponding to angular frequency w --See

III, Eq. (3.11). The amplitudes of the modes are, as before, the oper-

. . . . 8
ators a , SO nomalized that their commutation relations are

. +. + _ v
8y » 8y ] = a @ % %k akm ’

~ -~ ~

la, 5 a]=I[a t, am*] =0 . (2.1)

~ ~

These mode amplitudes are linearly related to the field at the aperture

during the interval (0 , T) ,

a = OIP(]-) w+(§i ’ tl) ’

m

a’=0*1) vy (], t) , (2.2)

~

where (%n(l) is the integro-differential operator defined in III, Eq.

(3.21).
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Both the background and the object consist of a myriad of indepen-
dently and randomly radioting ions and electrons. The density operator
of the field they generate, thercefore, has in the P-representation a
gaussian form specified by the correlation matrixg

P(0) = 9, +‘?S(U)
of the amplitudes of the normal modes. Its elements are

m + ,
¢kw(@) = Trp(6) % al (2.3)

~

which are bilinecarly related, through the operators ()k(l) ,()m*(z) ,

b d

to the mutual coherence function ¢(51 » £ 3 gé » £, 3 0) of~the field
at the aperture during the interval (0 , T).

A lower bound to the mean-square error in an unbiased estimate 6
of the parameter 6 is set by the quantum-mechanical counterpart of the
Cramer-Rao inequality,4

EB - 0)° = [Tr pL®1 7! = [Tx(L 5p / 38)17", (2.4)
where E stands for expectation and L is the symmetrized logarithmic
derivative of p(0) with respect to 6 , defined by

29 /38 =pL +Lp . (2.5)
The derivatives are evaluated at the true value of the estimandum.

When the gaussian form of the density operator p(6) 1is used, the
inequality becomes5

E(6 - 0)°xa b | (2.6)

Ay = Trla, (3% / ae)] (2.7)
where A is the solution of the matrix equation |

209 [/ 30 = @A (T +9) + (T +P 9 (2.8)

I being the identity matrix. It is convenient to put
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A = 52H(o

o y 0 9) /a0y 3”zlu1 .y omy (2.9)

2
where

HEO, b,) = Tr L(8,) ?(Uz) (2.10)
corresponds to the ambiguity function of signal estimation theory.10
Here L(8,) is the solution of the matrix cquation

2.9 (0,) = 90 L(0)) [T +90)] +

[T+ ¢C0)] L(v)) 9C) (2.11)
and Ay is 0L(0,) / 00, cvaluated at 0, = 9 .,

It is now necessary to translate this prescription into a form
involving the mutual coherence functions of the ficld at the aperture of
the observing instrument. The analysis is much like that in III, Sections
IIT and 1V, and it is given in Appendix A. As in III, it is assumed
that the bandwidth W of the object light is much smaiser than that of
the background light, K% / #. In addition, the diameter a of the
aperture is much greater than both a wavelength 2mc / 9 = 27 / k of
the object light and the correlation length +4c / KT of the thermal
field.ll The condition a>tec / KT is equivalent to ka4 / KT ,
and ‘ka>1 . It is only at very low temperatures that 4% / KZ be-
comes comparable with ka , and Eq. (1.10) shows that the average num-
ber W(9) of thermal photons per mode is thereupon exponentially
small, so that whatever correlation the thermal background field may
have will be inconsequential. |

The result of our translation is most conveniently expressed in
terms of the orthonormal set of eigenfunctions n, (r) of the integral

equation

Vi M (xy) = (20T / H) J P(xys X, 5 8y (r) 4252 ’ (2.12)
A
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whose cigenvalues 9 Gre pure nunbers. ‘lhe functions vsqgl, r Oi)’

i = 1,2 arc expunded in 4 double series of these ecigenfunctions,

W ¢

Pelryy x, 3 ) = (0 / Luel) P M ty)

k=l  m=]
X (X)) no#(r,) (2.13)
and when g o= G, as in 111, Lg. \25),
IO R (2.14)

The ambiguity function H(y, , v.) then becomes

¥ (28] i-(v."

‘1 LA 3 4
HBy , 0,0 =T ) ) [ (0) u o (6) X(w; 0) X(w; 0,)
2 L1 m;l_lm km™ "1 mk " 1 2
1

XN+ = + K@ 5 0) T (M4 =+ v X 5 9) T - %}"1 dw / 27 ,
(2.15)
as shown in Appendix A, In exceptional cases it may be nossible to solve
the integral cquation (All) and cvaluate the ambiguity function by Eq.
(A12).

If there are several parameters (0, oy sov 5 U ) =0 to be

n
estimated at the same time, or if only one is to be estimated when the

» - “ o » . . 2
rest are unkzown, generalized forms of the Cramer-Rao 1nequa11ty1“’13

and its quantum counterparts

apply. The resulting beunds are best
described in terms of the concentration ellipscir., whose matrix can be
derived from the ambiguity function H(g, , 0,) , defined as in Eq.(2.15),
but with 8, and 0, replaced by the sets of parameters 6, and 6,
The method of specifying the bounds is straightforward and has been

described elsewhere.5
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The Clussical Limit

The sum of the ecigenvalues of the integral cquation (2.12) is14

il ~8

) \l)k =N, =E_ /&0 (2.16)
where N, is the average number of photons received from the object
during (0 , T) . When the object light possesses complete first-order
spatial coherence at the aperture, vy = Ny and v =0, k>1,. When,
on the other hand, the object light has only slight spatial coherence,

a rough approximation sets the M largest eigenvalues equal to

V= N, / M and the rest equal to zero, where14
.2 1% 2 2 2 -1
e[ oo i [ [f om0 d ey
A AA
=F (2.17)

with F  the spatial factor for detection, defined by I, Eq. (3.8).

In the classical limit, K2 > 40 and W'> 1 . For object
light providing an effective signal-to-ncise ratioc of the order of 1--
see III, Eq. (5.13)--, NS is of the’order of JVKMWT)% . Since the
spectral density X(w ; 6) is of the order of W , the temrms
Vi X(w ; ﬁ) T~1 in Eq. (2.15) will be of the order of N / MWT ~

MNQOWT) 2 < N when MWT > 1 . For objects of moderate detectability,

therefore, we can set the bracket in Eq. (2.15) equal to JV'2 . The
double summation can then be evaluated by using Eq. (2.13) and the

ortnonormality of the eigenfunctions n, (r) to obtain the ambiguity
k=~

function
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2 1
H(B,, 0,) = (NS /IN) T

o .
. . . . . 2 2
X JJLJO‘I’S(’ 52, W o, 61) ‘I’S(Ez, El’ W 62> d El d '52 (dw / 2m)

-2

X [f‘Ps(g,g;@)ng] .
A

When this is used in Lgs. (2.6) and (2.9), the same lower bound is ob-

(2.18)

tained as in I, Section VI for the mean-square error in an unbiased
estimate of a parameter 6 of an object by a background-limited optical

system.15

1
4
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1II. Estimation with Low Spatial Coherence

Turning now to the estimation of object parameters under a quantum
limitation, we first consider object light with a low degree of spatial
coherence at the aperture, and we work out a rough approximation to the
ambiguity function H(6, , 62) . The number M of effectively indepen-
dent spatial degrces of frecedom is now large, and the first M eigen-
values v, can be set equal to ¥ = N, / M in Eq. (2.15). With M > 1,
the double sum can again be cvaluated as in Eq. (2.18), and we obtain

H(6, , 6,) =
2 -1 » 2 9
N, T JJ Plxys T, 3 0.) ?,(t,, r, 5 0)) d r d°r,
AA

xr X 5 0) X ; 8,) {IN+ 2 +N x@w; o) wir ] =57 (aw / 2m)
3 1 ’ 2 2 s > Y L ™

) -2
[ [o@rsoas]” (3.1)
) T

When quantum limitations are significant, WM<« 1, but N and
S

NMWT may be of the order of 1, with N / MWT of the order of W

and very small.14 Eq. (3.1) can then be simplified to read
H(G1 s 62) =
N MOW {J p (., r, 36.)9 (., T 6,) d2 ¥ d2 r
s JjJ Ts~17 w2 7 Tt TgtR2? vl 7 T2 1 ~2
AA

X J X(w ; 61) X(w 3 62) [1 + DOWX(w 3 6)]- (dw / 2mw)

— )

-2
X [ f ¢ (x, r ; 0)d g] , (3.2)
A

where
D = N/ NWT . (3.3)
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For cstimates of parameters ¢ , such as absolute radiance and
position, that do not enter the spectral density X(w ; 6) = X(w) , the
lower bounds on the mean-square error derived from Eq. (3.2) have the

same form as thosc obtained in I, Section VI, except that the ratio

|e 3 B T

(N / E) must be replaced by [NS MWT f1 (.0)]~ , where the function

% -1
f1 (J) = Jw J [X(w)]2 [1+DWX(w)] dw / 27 (3.4)

-0

depends on the form of the spectral density of the object light, For

1
D«1l, £ (D) = p, and (N / E) dis replaced by JV/Z/ N, - For
D>1, £, (L) £ 1 . In particular, for an estimate of the absolute
radiance B, of the object,
A 2 2 . -1
E(B, - By) /By =[N, £ (D)] ; (3.5)

which becomes independent of the number MWT of spatial and temporal
degrees of freedom when the background vanishes (M= 0)
When the object spectrum has a rectangular form,

X(w) = W_1 R le < 7mW 3 X(w) = 0, lw[ > W,

£.(0) = O/ (J+1 , (3.6)

which is plotted as a dashed curve in Fig. 1. For a Lorentz spectrum,
X(w) = 2W(w” + w‘z)-]L . : (3.7)
£(D) =280 +25) 2 [1+ L+252] (3.8)

which is plotted as a solid curve in Fig. 1. The minimum mean-square
error attainable is smaller when the spectrum is rectangular than when

it is Lorentz.
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LEstimation of Frequency

In spectroscopy it may be necessary to measure the central fre-

quency or wavelength of a weak spectral line. This corresponds to esti-

mating the location w, of the spectral density X(w ; wo) = X(w - w,) .

0 0

According to Egs. (2.6), (2.9), and (3.2), the relative mean-square
error of an unbiased estimate @) is bounded by

N 2 2 -1
BBy = w)) /W =[N (D)] (3.9)

0
where

fz('D) = Ou’ J [X'(w )]2 [1+ -D'WX,(w)]-l dw / 21 , (3.10)

00

the prime denoting differentiation with respect to w .

For the Lorentz spectrum %n Eq. (3.7) this i§ 8

£,(0) = [3+ @L+252] [1+ Q+20)2] , (3.11)
which is plotted in Fig. 1. For O<1, £,(D) £ .05/2 ; for O>1,
f2(17) = % . The corresponding bound in the classical limit WN>1 is

g(&o - wo)z /w2 = 2(JV‘/NS)2 MWT , (3.12)
where N_ /M = E/N, M = %% in the notation of I .

The lower bounds on the mean-square errors in the estimates of both

absolute radiance B, and frequency w, become independent of the num-

0
ber MWTI of spatial and temporal degrees of freedom when the background
vanishes (MN'= 0). As there may be some question about the limit pro-
cesses involved, an independent derivation is presented in Appendix B,

where it is shown that these results are valid when MWT > NS .

s

DL b i &
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Lstimation of Position

For the estimates of the coordinates (ex s ey) of the center of
a uniformly radiating object of radius b , the mean-square error is
subject in the classical limit to the lower bound
BG, - e)?/6% = 20 ) WiV,
o =b/d, 8 =R/ka , (3.13)
where U (o) is given in I, Eq. (6.5), and a is the radius of the

circular aperture. For o >>1 the integral there can be approximated

to yield
U) & 64/3n°a° . (3.14)
By I, Eq. (3.10), on the other hand, the number M of independent
spatial degrees of freedom is, for o >1 , given by16
F2=n"t =4’ . (3.15)
Hence the classical bound is
A 2,.2 3 2 2 3
E(e, - sx) /8" = ¢m (JVVNS) TWM 2, (3.16)
In the quantum limit, therefore, for M>1 ,
- 2 2 3 2 fie -1 3/,
E(E, - e ) /6" = gn [N £ (L))" M7, (3.17)

which in the limit JV'—’0; D=1 depends weakly on the number M of

independent spatial degrees of freedom, and not at all on WT .
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IV. Istimation with First-Order Coherence

When the object is a point source far from the aperture, its light
upon reaching the aperture will possess first-order spatial coherence.
Let a source of total radiant power B, be located at the point (e , R) .
At the aperture its light will have a mutual coherence function whose
spatial part is

P (r,, r, 5 g) = (N_/20cTA) E(r , e) €*(r,, &) , (4.1)
with

(G, e) = exp(iklg - §|2/2R) sy k=2Q/c . (4.2)
Here, by Eq. (1.9),

N = B AT/4TR A0 (4.3)
is the average total number of photons received during the interval
(0, T) . In order to derive Eq. (4.1), we put B(u) = Boé(g - ¢) into
I, Eq. (1.8) and use the point-spread function in I, Eq. (1.9), dividing
by 20%¢ to convert to the normalization in this paper.

When the object light has complete first-order spatial coherence,
the first eigenvalue of Eq. (2.12) is v, = NS , and its associated
eigenfunction is

n,(x) = A'l/?- €, 0) . (4.4)
The remaining eigenvalues vanish, and as their eigénfunctions we can take
an arbitrary set of functions orthonormal among themselves and to n, (x)
over the aperture A .

For estimates of the radiant power B, and the frequency w, of

0 0
a point source located on the z-axis (¢ = Q) , Eq. (2.14) applies, and

PO S
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the series for the ambiguity function in Lg. (2.15) contains a single
tem,
-1
Hie, , 02) =T Vl(el)vl(gz)
® 1.2 1
XJ X(w 3 61) X(w 3 02) {(UN+ -i- + le(w s )T 1T - =)} 7 dw/2m
—w (4.5)

I

For an estimate of radiant power By » vl(ei) = (Bi/Bo) v, 1=
1,2, and after substitution into Lq. (2.9) and the differentiations
with respect to Gl = Bl » 0, = B2 , We put B, =B, =B, . We find that
an unbiased estimate ﬁo of radiance has a relative mean-square error
bounded below by

BB, - B /B)" 2 g (17 (4.6)

0
where £, (0) is given in Eq. (3.4), but .0 is now
L = NS/AWWT . ‘ (4.7)
Before integrating, we have again passed to the quantum limit and set
N'<1 , N /WT <1 in Eq. (4.5). The graphs in Fig. 1 apply with M = 1.
For an estimate of frequency, vl(el) =V, and X(uw ; ei) =

X(w - wi) , i =1,2, with w and w, set equal to W, after the differ-

1
entiations in Eq. (2.9). We find in the quantum limit,
- 2,2 . -1
- =
E(w, = w))"/W [N, (D)1 ° (4'. 8)
where fZ(IT) is given by Eq. (3.10) and graphed in Fig. 1. Thus the
approximate lower bounds on the mean-square errors in estimates of

absolute radiance and frequency obtained in Section III for M>1 be-

come exact for point objeéts if M 1is set equal to 1.
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Lstimation of Position
The coordinates (ex N ay) = ¢ of the point source in the plane
z = R can be estimated independently when the aperture is circular and
the object is located near the optical axis. It is now necessary to

evaluate the coefficionts

(g,) =

ukm, 1
AA

) 2
2 7 si) ”m<52> dz,d Sy 2
i=1,2, (4.9)
of the expansion in Lq. (2.13). After the ambiguity function is sub-

stituted into Eq. (2.9), we shall differentiate these coefficients with

respect to i OF €y (1 =1, 2), and set e, =g, =0.
We tind from Lq. (4.1),
Men (810 = Ny e leg) e *(ey) (4.10)
L .
Ry ,
ek(gi) = A 2J nk*(g) 6(1:, gi) dz’g . (4.11)
A
In particular, from Lq. (4.4),
-1
ey(ep) =47 [€u(x, 0 €Cx, £ a¥r = Gy (4.1
A
in terms of the Fourier transform
-1
9, = a j exp (iky-r/R) d°r (4.13)

A
of the indicator function of the aperture--see 1, Eq. (A4). For a cir-

cular aperture of radius A,
J, () = 268/ [g]) 3, (|]/8)

=1 - (eX2 + ayz)/&s2 + O(lelq/éu) s (4.14)
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where ¢ = R/ka and I, (x) is the Bessel function of order 1.
ey 4yt . . £ o 1.1~ | . v PN W & H - v 3
The temn gy Gy, (o) = Ns]ul(gl)f !Ll(gx)] in the sum in
Eq. (2.15) will thus yield 0 af'ter substitution into Lg. (2.9), differ-

entiation, and the setting of &, and ¢, equal to 0 .

-1 ~g
Since v = 0, k » 1 , we can write lig. (2.15) as applied to the
estimation of g, OF £y in the form

Hg, ,e,) = WA+ D17 T

OO P s )
Sy oy . ‘
o k=1 m=1
1 L 1 1 wola _ 1y-1
= (WV+3) NX@) T {((M+2) [Vt 5+ NXw T 7] -3
><k£1[ukl(gl) M Ce) F i () Wy (e )10 du/2m
+ term &y (ep) wy(e,) (4.15)
the last term contributing 0 to the bound. As in Lq. (2.18),
00 a7
Do) ow (e) n(e) =
k=l pel KmTLT Tmktea
(ZS'ZCT/'ﬁ)2 [ P (r., r. ;)9 (r., x, 5 €, dzr dzr =
j TstR1? R2 ? %17 Tgtwa? Rl 0% 22 ~17 =g
AA
2 2, .2 2
N8, e R N - g, - e (7480 (4.16)

In addition, we obtain by using the orthonormality of the eigenfunctions
ny (1)

[4¢]
You . (e) u(e,) =
kel ki‘~1 1k ~27

2
@oem)” [[[ k) vy g, 58 Bate x5 8 0y
AAA
2

a’y d’y,d%r, =
X dx,dx,d =
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(f
il
i

(g “1a?) j{ | @z, 0 &y v EH(r,, £,) O(xy, €) E*xy, g)

X e(r?’ U) d‘SIdVEQd’gg =
2 :
Ny Ipl-ey) kgA(&?:z e Ialey)
G PO 7 P 7 T 6, 151865 (4.17)
When these are put into Ly, (4.15) and the result into Eq. (2.9), we find
A P RV
g(ex - Cx) /é = L(z - g,y) /87 =

27 N_” J [X(w)]” [J\/'(J\/'+ D+ (M+ 5 N KW T dw/en}
2 (4.18)

In the classical limit N »1 , this becomes

B(E, - ) /6% = 200" W, (4.19)
as in Eq. (3.13), in which “a) = 1 because the object light is com-
pletely coherent in first order.

In the quantum limit, on the other hand, WN<«1 , NS/WT <1 ,
the bound becomes

B, - e ) /6" = TR ERE- (4.20)
where

fs(.D’) = fl(.D’/Z)- (4.21)
The function fg(D) is plotted versus /O in Fig. 1 for the Lorentz
spectrum in Eq. (3.7).

The position of a point source might be estimated by focusing its
light on a photosensitive surface and processing the numbers of photo-
electrons emitted from each of many elements of the surface. The joint
probability distribution (:Jf these numbers would be maximized with respect
to the parameters €, and €y to provide maximum-likelihood estimates.
The mean-square error of such estimates has been calcu‘lated”; in our

present notation it is
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§(£x _ ?x);;’;/é,* - E(*;y - Ly):’/fiﬁ

x 187" (97"~ 6471 (E D) = 7.16/,D, (4.22)
where n_ is the quantum cefficiency of the surfuce, 0 < n < 1 . It was
assumed that the object light is much weaker than that from the back-
ground, but that this weakness is compensated by a long observation time
T . In addition, the spectrum was taken as rectangular of width W .,

In the correspending circumstances, our bound in Lg. (4.19) becomes

(6, =16 = 2 b, (4.23)

&

2

which lies below the mean-square error given by LEg. (4.22). General
Cramér-Rao bounds on the mean-square error in estimating the position
of a stellar image on a photosensitive surface have been worked out by
Farrell, with nunerical results for images with a gaussian pattern of

illumina:nce.18

The difference between those essays and the present one
lies in the nature of the primary data. There the data arc numbers of
photoelectrons emitted from the image plane; here they are the values of
the electromagnetic field at the aperture of the optical instrument,

whatever it may be.
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V. Lstimation for Circular Objects

A quasimonochromatic circular object of unifor.n radiance B, and
radius b is centered at (0, R) . Its light falls on a circular aper-
ture of radius a . We scek lower bounds on the mean-square errors in
unbiased estimates of its radiance B, and its frequency w, The
spatial part @S(yl, 32) of the mutual coherence function of its light

at the aperture is, by (I), Lgs. (1.8) and (1.9),

_ . 2’2 il( 2— 2]
P lrys r,) = (By/8mil cR) eXP{Eﬁ(zl r,)

x f ex4%%.9-(52 - Eli]dzg , (5.1)
@)
where O denotes the circular object.

The integral equation (2.12) can now be identified with the two-
dimensional one studied by Slepian.19 The eigenfunctions of Slepian's

Eq. (12) are

Yy (x) = n, (ax) exP(-ikazgz/ZR) , (5.2)
and the eigenvalues are
2
)\k = (o /4) Vk/Ns’ (5.3)
where o = kab/R 1is equivalent to Slepian's parameter c¢ . The kernel

of Slepian's integral equation (12) is

KC(>5) = (oc/27r)2 [ ekp(iag';‘g) dzg , (5.4)

C
where C denotes the wiit circle.
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In the quantum limit A<l ,the mean-square errors in unbiased

estimates ﬁo and o of radiance and frequency are bounded below by

0

B(B, - B)?/B,2 = O, Uyles 17, (5.5

B, - u) /W = N U017, (5.6)
with

D= N /NWT (5.7)

where by Eq. (2.15), (3.8) and (3.10),

[oe)

V(3 D) = )
k=1

(v, /M) fi(vk137NS), i=1, 2, (5.8)
the functions f£, and £, being given by Eqs. (3.4) and (3.10).

When a single eigenvalue is significant, we get the boundc in Eqs. (4.6)
and (4.8); when M >>1 , those in Eqs. (3.5) and (3.9) appear.

The twelve largest eigenvalues A have been tabulated by Slepian19
as functions of «a .20 For values of o missing from the tables we
calculated the eigenvalues by Lagrange's interpolation formula applied to

2n(~-2n Ak). The eigenvalues of higher order are small, and for them the

approximations
£,(v D/N) = v DN, (5.9)
f?_(vkﬁ/NS) = v D72 N (5.10)

can be made. Indicating by a pri-e the summation over these remaining

eigenvalues, we write their contribution to ‘L{(a; L) as
2 U (o3 &) = [ N L (5.11)
a similar formula holds for A‘Ié(a; L) .

We observe that the squared spatial factor 5?2 is given by Eq.
(2.17) and (ITI), Eq. (5.10) as
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[F@1%= [ ),
k=1 16

and this we have calculated from (I), Eq. (3.10). By sunming the squares

of the eigenvalues given in Slepian's tables, multiplying by (4/0:2)2 ,
and subtracting from [Sﬁ(a)lz , we can evaluate Z' (vk/Ns)2 in Eq.
(5.11) and thus supply approximately the missing terms in Eq. (5.8).

By this protedure the functions QLGKa;.ET) , 1 =1, 2 , have been
calculated for three representative values of [ = NS/JVWT ; they are
plotted versus o = kab/R . A Lorentz spectrum was postulated. The
curves show that the larger [ (the smaller N'), the less sensitive

the bounds are to the number M of spatial degrees of freedom of the

object light at the aperture.
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Appendix A

Derivation of Bounds

The translation of Egs. (2.10) and (2.11) into forms involving the
field at the aperturc is effected by means of the function

L(gi,t '61)=L(1~:',t1;1:',t)=

9 3

@/2) ] T G o) ;1 (@) B )
m ~

k

X exp(=iw, t_ + iwmtz) (AD)

k™1
--cf. III, Eq. (4.3)--and the associated operators

L (1, 2) = ) O *(1) L (8,) O (2) (A2)
and 0 1(l, 2) ,

III, Eqs. (4.2) and (4.5).

2
k m
respectlvely deflned 11ke Q(1, 2) and (1, 2) of

We observe the similar structures of Eq. (2.11) and III, Eq. (2.7)
and conclude by a derivation of the same type as in III, §IV that the
fuaction Ll(gl, t, s fé’ 52) is the solution of an integro-differential
equation of the same form as III, Eq. (4.7),

1 . ' = , .1 . f .
2, (xls £, 5 1), t,) = L1, 3) 9z, £, 5 1), €, 5 6)
o+ L*G3, 2) 9(z], £ 5Ty, £ 5 8) +
2L,(3, 4) 9(ry, t) 5 1y, £y 5 0) Pz, £, 3 El, £, 5 6). (A3)

Furthermore, we can use Eq. (A2) and III, Eq. (4.10) to write Eq. (2.10)

as

H(el,e?_)-i ZL n(®1) Ppp(8)) =

-~

g ' . ' . =
1{ 1%ngy(el) 09(2) 015«(1) Plry, t 51, t 50)

~

kit s - H R
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0

L1(l’ 2) @(g;, t, 3 T, t =

2 ~1’ l ; 2)

. T
@ty | J

T 02
dt. dt, drdr
Jo 12 ~1 o~

0

- ,
X[L(xl, £, 3 &

L tz) (Q.Vl) (Q.Vz)

1
2’
- g.vl Ll(Ei’ t, s Eé’ tz) (E'Vz)

- E.Vz L (r', t

. ot
15 1 ? 529 tz) <B-V2)
y ! . 4 ' . ! £
+ (Q'Vl) (E.VZ) Ll(fl’ tl ’ 52, t2)] $<52’ t2 ’ El’ tl H 62) _ ’
z.=z,=0
1 72
(A4)

where n 1is a unit vector normal to the aperture.
Because of Lq. (1.4), we can argue as in III, Section IV that the
function L, has the form

g ' . ' ;: ‘ .
Lyrps €5 5y €)) = LTy £ 3 ~2

x exp[—iSZ(t1 - t2) -i&(zl - zz)/c] (A5)

) tz)

and that we can put for the mutual coherence function of the thermal
background light

' . et -
¢0(519 tl s Eg’ t2)

! . -] - - —
Polr s 5L, £,) exp[-if(e, - t)) -i0(z -z )/e] (A6)
@6(E19 tl > 52: t2) =

(h/20c) N(Q) 6, (r =-1) 8(t, - t) , (A7)

where NN = N() is given by Eq. (1.10). At this point the assumptions
are again being made that the diameter of the aperture is much greater
than the rorrelation length (he/KZ) of the thermal light, and that
the bandwidth W of the 6bject light is much less than the effective
bandwidth KZ/n of the themal light.l!

Eqs. (A3) and (A4) can then be simplified to read
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T
t, 5 Ly b, 3 Gl) = (Sic/n) f dt3 j d I,
0 A

L T, g 3 L, £y 0 F

' . - » ' »

£) P, ¢

T T
2 2
(2c/h) dt dt dzr dr

0’0 3 4 ~37 ~h

AA
X@'ry, t, 5L, £y 3 0) LiCr, €051, ) @1(x,, £ 5 1,, t) 5 0),
(A8)
2 (LT 2 2
H(B., 0.) = (20c/h) f f dt dt fj d“r. d°r
1’ 72 172 ~1° %2
6‘0
' @ ! ’ . .
X Ll(fl’ tl 3 Ty t2) ws(zz’ t2 3 Iy t1 ? 62) ’ (A9)
where

, 3 8) .

(A10)

Py, £ 5 x,, ) 5 0) =P(r, b 5T, ) F (), £y 5, t

1
The temporal stationarity of the light fields and the great length

of the observation interval (0, T) as compared with the reciprocal

bandwidths of object and background light permit us to replace the tem-

poral part of Eq. (A8) by Fourier transforms. As a result, Ll(gl, t, 5 I, t2)

1
have a Fourier transform Ll(gl, r, ; w) defined as in Eq. (1.5). Egs.

will to good approximation be a function only of t - t, and it will
(A8) and (A9) can now be rewritten as

2. (x;, £, 5w 0) =

(Qc/h) J dzr3 L, (z,, r, s w) o(r,, £, ; w; 6) +

A :
o(ry, T3 5 w3 6) Ly(r,, £, ; w)]

s e s T
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) 2 2 2
+ (2%c/h) JI d §3d I, @(gl, r

g 3w 0) Ly(ry, v, 5 w) o(x,, ¥, 5 w; 6) ,
Ad (A11)
and
2 * 2 .2
H(Gl, 62) = (20e/M)° T f (dw/2m) ff d E1d r,
s (XY AA
X Ll(gl, r, ; w) @8(52, £, ow; 62) , (Al12)

where by Lgs. (A6), (A7),
pr), r, 5 w5 0) =2 (), ¥, 5w 0) +(r,r 5w ,
@O(El, X, ; w) = (h/20ec) N(Q) 62(51 - 52) . (Al13)
We now expand all fuuctions in terms of the orthonormal eigenfunc-
tions nk(;) of the two-dimensional integral equation (2.12)., In par-

ticular, we write

w0

Li(g, gy, 50 = ) ) A (w;8) n (e ) np*(e) (Al4)
k=1 m=1
o (r , £, 5 05 0;) =
h/20cT) X(w ; 61)
x )] M (84) M (x) no*(x) , i=1,2, (A15)
k=1 m=1

’

and by Eq. (Al13) and the closure property of the eigenfunctions nk(g)

=

s w) = (@/20¢) M@ ]
k.—

(Do(gl’ r o1

2 M (r) ). (AL6)

When these are substituted into Eq. (All) and the orthonormality

of the eigenfunctions is used, the equation
(B/29cT) wy (8.) X(w; 6,) =

. 1 -1

Akm(w; 61) NV + i(vk + vm) X (w; 6) T

+ LN+ v X@w; 8) T7') [V + v X(w; 0) 1) (A17)



Helstrom 30

is obtained. From it we get the coefficients Akm(w;el) , which are
substituted along with Lgs. (Al4) and (Al5) into Eq. (Al2) to obtain
Eq. (2.15).



Helstrom 31

Appendix B

The Bound in the Absence of Background

In the absence of any background light, the integral equation, Eq.
(All), when written for an estimate of absolute radiance B, , is
(Sic/h) J d“r, (L (x
A
@S(Els 53 y W Bo) L1(£3’ £2 ; wl +
0, (xy, By 5 w3 By) Ly(rg, x5 w) o (x,, x, 3 B)) 3

0
(B1)
This equation can be solved by

(26 /1) Jf dzgsdzgq

AA

0 =B

we have put 6, = Bl, b, =B, 0

iteration; its olution takes the form of a series,

L(r, oz, 3 w) = (Bl/BO) {(h/289¢c) §,(x; - 1,)
=0 (xr;, 1, 5wy B+
2
(22¢/h) J o (r), T 5 w3 By o (x, £, 5 w; B))dg - ...} (B2)
A

as can be verified by substituting it into Eq. (B1). The ambiguity
function is now, by Eq. (Al2) with ¢S(52, r,o5 ow; Bz) = (Bz/Bo)

xo (r,, £, 5 ws By,

-2
H(B,, B,) = B, B B (20cT/h)
2
x { J QS(E’ r 3 w; BO) dx
A
2 2 2
- (29c/h) JJ l@s(gl, r, 5w BO)I d gld L, + ...}, (B3)

AA
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Using Lq. (1.6) with 0 = B the definition of the number M of spatial

0 ’
degrees of frcedom, Lq. (2.17), and the definition of the bandwidth W ,

Eq. (1.8), we finally obtain

H(B,, B,) = B, B,B,N_[1 - (NWI) + ...], (B4)

When this is substituted into Eq. (2.9) and the result into Eq. (2.6),

we find the lower bound

"~

E(B, - BO)2/302 = Ns"l[l + (NS/MWT) L S (B5)

0
When MWT > N this reduces to the result in Eq. (3.5) with fl(-B) =1,
A similar derivation can be carried through for an estimate of

frequency w, , but not for an estimate of position.
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Figure Captions

Fig. 1. Functions fi(Jﬁ), i =1, 2, 3 , appearing in lower bounds on
mean-square errors in unbiased estimates of absolute radiance, frequency,
and position, versus O = NS/A/MWT . Dashed curve: rectangular spectrum;

solid curves: Lorentz spectrum,

Fig. 2. Bounding functions U, (a; L) for mean-square errors in estimut:s
of radiance (i = 1) and frequency (i = 2) of a circular object of uni-

form radiance, versus a = kab/R . & = NS/AWWT = 0.1, 1, 10,
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