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ABSTRACT 

We review the general analysis of the contributions of electroweak vacuum po- 

larization diagrams to precision experiments. We first, review the representation of 

these contributions by three parameters S, T, and U, and discuss the assumptions 

involved in this reduction. We then discuss the contributions to these parameters 

from various models of new physics. We show that S can be computed by a disper- 

sion relation, and we use this technique to estimate S in technicolor models of the 

Higgs sector. We discuss the reliability and the gauge invariance of this estimate. 

Finally, we present the limits on S and T imposed by current experimental results. 
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1. Introduction 

While no one seriously doubts the validity of the SU(2),5 x U( 1)y gauge theory 

of electroweak interactions, the nature of the Higgs sector which is responsible for 

breaking the sum x U(l)y symmetry, and thus giving the W’s and the 2’ 

their masses, is still a mystery. A variety of theories-from the minimal model 

with one scalar doublet to technicolor models with elaborate dynamics-have been 

proposed, but none of the new particle states predicted by these theories has yet 

been observed. 

Since experiment has not yet offered direct evidence to distinguish these theo- 

ries, it is important to make the best use of all sources of indirect information that 

current measurements provide. The most important of these indirect constraints 

come from precision measurements of weak interaction parameters. In the past 

year, these measurements have reached the level of 1% accuracy in the determina- 

tion of the W mass and the parameters of the 2’ resonance. Measurements at this 

level already allow us to distinguish among different models of the Higgs sector. 

The most general models of the Higgs sector allow for large deviations from the 

predictions of the minimal version of the standard model. However, more than ten 

years ago, Veltman PI pointed out the relevance of the natural zeroth-order relation 
of the minimal standard model 

p- m2w --1 
rni ~0~2 8, ’ (14 

Experimentally, this relation is satisfied to better than l%, so that it is reasonable 

to assume that the corrections to this relation arise only from radiative corrections. 

That requirement restricts the nature of the Higgs sector (forbidding, for example, 

expectation values for scalars which transform as SU(2) triplets). However, Sikivie, 

Susskind, Voloshin, and Zakharov 13’ have argued that (1.1) is naturally valid up 

to electroweak radiative corrections in a large class of models in which the Higgs 

sector has an unbroken SU(2) global symmetry, called by these authors a custodial 

symmetry. Large deviations from the predictions of the minimal standard model 

can also occur if the gauge structure of the model is extended, so that there exists 

a new neutral boson 2” which mixes with the 2 ‘. In this paper we will restrict 

our attention to models with only SU(2) x U(1) gauge bosons and in which (1.1) 

is a natural relation. This case still includes the full variety of models of the Higgs 

sector. We will show how to distinguish these models by comparing the values 

predicted for their radiative corrections with those obtained from experiment. 

In models in which the Higgs sector is weakly interacting, the computation of 

the electroweak radiative corrections due to the Higgs particles is a straightforward 
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endeavor involving only ordinary ‘perturbation theory. However,’ we would also 

like to discuss models, such as technicolor, in which the Higgs sector is strongly 

interacting. In this case, we face not only the practical problem that perturbation 

theory is unreliable but also the conceptual problem that the massless Goldstone 

bosons which play an essential role in the Higgs mechanism do not appear in any 

purely perturbative approach. 

In this paper, we will argue that this problem is naturally solved by the use 

of dispersion relations. We will relate the experimentally relevant electroweak 

corrections to dispersive integrals over the states of the Higgs sector and illustrate 

the theoretical evaluation of these integrals in some cases of interest. We will also 

explain how the values of these integrals for the true Higgs sector can be extracted 

from experimental data. We expect that, as the values of these dispersive integrals 

are determined experimentally, they will become important integral constraints 

on the content of the Higgs sector. Already, experiment can exclude technicolor 

models with large strongly interacting sectors, independently of any considerations 

of extended technicolor, quark mass generation, or flavor-changing neutral currents. 

We will argue carefully to this conclusion in the course of this paper. 

Some of the analysis of this paper is new, but a large part of our intent is to col- 

lect a number of results from the literature and to explain them clearly in a unified 

way. The idea that the Higgs sector is constrained by precision electroweak exper- 
[Ul iments was, of course, originated by Veltman. Many authors have studied the 

detailed effects of the Higgs boson of the minimal standard model in electroweak 

corrections; the current status of this subject and a review of the literature may be 

found in the valuable 1989 LEP study volume.[41 The effects of technicolor models 

of the Higgs sector have been computed by the two of us in collaboration with 

Renken,[51 Lynn and [cl Stuart, and Appelquist, Einhorn, and PI Wijewardhana, and 

more recently by Golden and Randall,18’ Holdom and Terningp’ Johnson, Young, 

and McKay,[r” 1111 and Dobado, Espiru, and Herrero. Though most papers on tech- 

nicolor model-building stress the constraint of the p parameter, even ref. 5 made 

clear that the pattern of weak-interaction renormalizations due to technicolor is 

more complicated, and cannot be summarized in a single parameter. 

In parallel with these model-dependent studies, the authors of ref. 6 suggested 

that one could probe for the effects of new physics in electroweak corrections in 

a general way, by concentrating on the effects of vacuum polarization diagrams 

(oblique corrections) and searching for these effects independently of the underlying 

model. This idea was incorporated into a complete theory of electroweak radiative 

corrections by Kennedy and 112’ Lynn. This K ennedy-Lynn formalism has had an 

important influence in providing a langua.ge which is simultaneously precise and 
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conceptually transparent for describing the results of experiments on electroweak 

corrections. 

Most recently, we proposed a simple two-parameter representation of the ef- 

fects of oblique electroweak corrections, in a form appropriate for a direct compar- 
P31 ison with experiment. This representation was obtained by approximating the 

Kennedy-Lynn formalism in a manner appropriate for corrections due to particles of 
very large mass. We argued that one of these parameters could be represented by a 

dispersive integral and thus could be readily estimated in models with a strongly- 

interacting Higgs sector. Our parametrization has subsequently been discussed, 
[14-181 

extended, and analyzed by several groups. Since all of the papers of refs. 

13-18 are brief communications, we feel that there is a need for a comprehensive 

review of these recent developments. 

In this paper, then, we will review the parametrization of oblique electroweak 

corrections and the evaluation of these corrections by dispersion relations. In 

Section 2, we will review the Kennedy-Lynn parametrization of electroweak cor- 

rections. In Section 3, we will analyze a subset of the Kennedy-Lynn parameters 

which give the corrections to the most important weak interaction observables. We 

will present general formulae for the renormalization of these parameters in terms 

of vacuum polarization amplitudes. Then we will show how these formulae can be 

reduced to linear functions of two parameters S and T. In Section 4, we will study 

the the example of electroweak radiative corrections due to a heavy fermion dou- 

blet to illustrate the approximations involved in this reduction. This example will 

also clarify the physical significance of these parameters: T quantifies the strength 

of weak isospin breaking through the radiative corrections (including the familiar 

effect of the top quark proportional to mf/m$), while S is an isospin-symmetric 

measure of the size of the Higgs sector. 

Sections 5-8 will discuss the estimation of oblique corrections for the case of a 

strongly interacting Higgs sector. In Section 5, we will present a formula for S in 

terms of a dispersive integral. In Section 6, we will discuss the gauge-invariance of 

this expression, emphasizing the subtleties which arise when the Goldstone bosons 

appear only nonperturbatively. In Section 7, we will evaluate the dispersive integral 

for S in simple technicolor models and discuss the accuracy of this estimate for 

more realistic models including extended technicolor. In Section 8, we will briefly 

remark on the estimation of the parameter T. We have not been able to obtain a 

reliable dispersive formula for T; this remains an important open problem. 

In Section 9, we will discuss the current experimental constraints on S and 

T. We will first review the sensitivity of various precision weak interactions mea- 

surements to S and T. We will show that the various measurements fall into 

three general classes: those sensitive mainly to T, those equally sensitive to T and 
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S, and those mainly sensitive to S. The first class includes all of the best-known 

weak interaction observables: mw , the ratio of neutral to charged-current neutrino 

cross sections R,, and the width of the 2’. The second class includes the weak- 

interaction asymmetries at the Z”-peak: ALR and AFB. The third class, which 

gives a direct restriction on S, includes the magnitude of parity violation in atomic 

physics.[141 We will show that combining these three classes of experiments already 

places quite a strong constraint on S and T. We will discuss the improvement in 

this constraint which can be expected from future experiments. At a marginal level 

of significance, the current data favor a sizable negative value of S. This result is 

surprising, and, if confirmed, would be very problematic to reconcile with simple 

extensions of the standard model. On the other hand, this result already excludes 

technicolor models, which produce positive contributions to S, if the technicolor 

sectors of these models are sufficiently large. In Section 10, we will present some 

general conclusions. 

2. Formalism of Oblique Corrections 

In this section, we review the general formalism developed by Kennedy and 

Lynn 1121 for treating radiative corrections to weak-interaction processes with light 

external fermions. While the formalism of Kennedy and Lynn encompasses ra- 

diative corrections from physics both within and beyond the standard model, we 

will only be considering the latter. Therefore, we will not go into the subtleties 

that must be taken into account for the standard model corrections. In this pa- 

per, we will not be trying to improve upon or even reproduce the full results of 

Kennedy and Lynn, which are already highly accurate perturbative computations. 

Rather, we wish to simplify their formalism by seeking approximations which do 

not compromise this accuracy excessively while making the results as transparent 

as possible. 

We concentrate on weak-interaction processes involving only light fermions 

as external particles since those are the only processes accessible to present day 

experiments. As pointed out by the authors of ref. 6 and 12, this restriction has 

some important consequences which simplifies our analysis considerably. The first 

is that we can neglect the terms proportional to qpq’ in the W and 2 propagators. 

This is because contraction with the external fermion currents suppresses the qpq’ 

terms compared to the g p” terms by a factor of (m;/mb) where rnf is the external 

fermion mass. (The qpq” term of the photon propagator has no effect, due to 

the Ward identity.) Th e second is that we can assume that radiative corrections 

due to physics beyond the standard model appear dominantly through vacuum 

polarizations (oblique corrections) and that vertex corrections and box diagrams 
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1191 (direct corrections) can be neglected. For example, modifications of the Higgs 

sector give vacuum polarization corrections of order (Y while vertex corrections 

and box diagrams are suppressed again by an additional factor of (m;/m$). The 

rule of thumb here is that we can neglect anything that goes to zero in the limit 

mf + 0. For another example, the effects of new heavy quarks and leptons on 

the properties of the 2 and W bosons enter only through vacuum polarization 

diagrams. When we discuss the dynamical Higgs sector of technicolor models, we 

will need to argue that it is consistent with gauge invariance to neglect the vertex 

and box diagrams containing the Goldstone bosons absorbed by the W and 2 in 

the Higgs mechanism. We will defer this point to Section 6. In this section, we 

will assume that the effects of the new physics are purely oblique and work out the 

consequences of that assumption. 

We start by introducing some notation. J$, Jf, and Jz = Jr f iJl denote 

the electromagnetic and weak-isospin currents coupling to the electroweak gauge 

bosons via 

(24 

where s = sin 0, and c = cos 8,. 

We denote the coefficient of gp” in the photon, 2, and W propagators by GAA, 

GZZ, and GWW, respectively, and that of the photon-Z mixing by GZA. Then, 
the matrix elements of the charged and neutral current interactions mediated by 

the electroweak gauge bosons can be written formally as 

MNC = e2QQ’GAA + 

+ 

P2 

e2 - 
SC 

[Q(I; - s2Q’) + (13 - s2Q)Q’] GZA 

e2 
-&I3 - s2Q)(I; - s2Q’)Gzz, (2.2) 

M cc = zs2 u-I+LGww, 

where (13, Q) and (Ii,Q’) are the SU(2) arJ electric charges of the external 

fermions and I& are the isospin raising and lowering matrices. 

To leading order, the propagator GZA vanishes ano the other three propagators 

are given by 

D 
1 

BB = (4.2 - mgB)’ 

for B = A, 2, W, with the bare masses 

mgA = 0 , 
e2 vu2 

dz = $3 4 7 
e2 v2 

-- rniw = -- . 
s2 4 

P-3) 

(2.4) 
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These expressions are constructed -to satisfy the natural relation (1.1). 

Vacuum polarizations affect the above interactions by modifying the gauge 

boson propagators GAA, GZA, GZZ, and Gww. This is the reason why they are 

called “oblique” corrections as opposed to the “direct” vertex and box corrections 

which modify the form of the interactions themselves. We define the vacuum 

polarization amplitudes IIxy(q2), where (XY) = (ll), (2% (331, (3Q), and (Q&L 
bY 

waxy + (q pq” terms) E 
/ 

cPe-i*2 (J!gz)J;(o)). (2.5) 

It is useful to define I11,,(q2) by 

(2.6) 

Note that IIky(q2) is equal to dIIxy/dq2 only at q2 = 0. The unbroken U(1) sym- 

metry of electromagnetism implies that I111(q2) = I12z(q2). The QED Ward iden- 

tity implies further that II&O) = IIQQ(O) = 0. Therefore, nQQ(q2) = q2nbQ(q2) 

and n3Q(q2) = q2n;Q(q2)* 

We further define the following shorthand notations for the combinations of 

II’s that make up the 1PI self energies of the photon, W, and 2, and the 1PI 
photon-Z mixing, shown in Fig. 1. 

nAA=e2nQQ, 

e2 
nZA = --(n3Q-s2n,,), 

II 
e2 

ZZ = x(n33-2s2n3~+S4nQQ), 
(2.7) 

nww = 
e2 
-$hl. 

Kennedy and Lynn were careful to include the effects of the vacuum polariza- 

tion amplitudes to all orders, using the Dyson equations for the propagators GAB. 

Namely, 

G~A =DAA+DAA~AAGAA, 

GZA =DZZ~ZAGAA, 

Gzz = Dzz + DzznzzGzz, 
(24 

Gww = Dww -I- DwwnwwGww, 

where DAA, Dzz, and Dww are the bare propagators (2.3). If we insert the 
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solution to these Dyson equations-into (2.2), we find an expression equal to 

MNC = e2 
QQ' 

!I2 - HAA 

s2 -SC q2y;AA)Q] [Ii - (s2 - S~q2!Z;AA)Q’] 

(nZA12 
? 

q2 - r-r& - l-Izz - 
q2 - nAA 

M 
e2 I+I- 

cc= 2s2q2-mfw-nww- 

(2.9) 

Following Kennedy and Lynn, we define the running couplings e:( q2) and s:( q2) 

as 

e2 

1 - e2nbQ(q2) 

= e2 [l + e2&Q(q2)] , 

IIzAcq2) 

(2.10) 

sz(q2) - &$ - SC 
q2 - nAA(q2) = 

s2 - e2 [n’,Q(q2) - s2nbQ(42)] * 

It suffices to keep only the terms linear in the II’s since we are concerned with 

nonstandard corrections which are very small. Equation (2.9) can then be recast 

into 

M 
2~67 

NC = - 
q2 

e2 
~2~2 [I3 - s$Q] 

1 
+ 

q2- -& [$t(n33 -2s2&~tS4nQQ)] 

[I; - s:Q’] , 

e2 
Mcc = &+ 

q2- $ i;+ll$ 

(2.11) 

We have omitted terms that are quadratic and higher order in the II’s from the 

denominator of the 2 propagator. 

The W and 2 masses are the poles of their respective propagators. Therefore, 

from (2.11) we see that 

e2 v2 e2 
ms = &q + s2c2 - (n33 - 2s2n3~ i- S4n~~) (ms), 

e2 v2 e2 
(2.12) 

m2, = -2- s 4 + $w-&). 

Define the wave-function renormalization constants Zz and 2~ as the coefficients 
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of the poles in the 2 and W propagators: 

- s2c2g-p (n33 - 2s2n3~ + S4nQQ) Ig2=,,+ 

It is useful to define running masses A4& (q2) and and M&, (q2) by 

!12 - & 

1 ZZ 

II33 - 2s2rI 3Q + s~IIQQ)] = q2 - M,$, ’ 

these running masses satisfy 

(2.13) 

(2.14) 

(2.15) 

With these definitions, we can rewrite (2.11) in a compact form: as 

MNC = ezQLQr + 
q2 

-&i -s:QJq2 32 (1; - s:Q’,, 
z* 

e2 Zw I- 
(2.16) 

Mcc = &+ 
q2- M&, ’ 

We take one more step and define the running wave-function renormalization con- 

stants Zz,(q2) and Zw,(q2) byL201 

2 e2 
-zz* E -zz, 
s2c2 * * s2c2 

e2 e2 
-pw* = -y-w, 

* 
(2.17) 
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where cl: E 1 - sz. In terms of the II’s, they are expressed as follows: 

zz* = zz 1 - e2n’Q4(q2) - 

e2(c2 - s2) 
s2c2 

[n’,Q(q2) - S2nbq(42)]} 

e2 d 
=I$----- 

s2c2 dq2 
(n33 - 2s2n3~ $S4n~~)I,+m; 

e2s2 
- +bQ(q2) - 

e2(c2 - s2) , 

s2c2 n3Q(q2), 

Zw + = Zw 1 - e211’ 
1 

e2 
QQk2) - 3 [%Q(q2) - s2nbQ(q2)] 

e2 d e2 
= 1 + ,2-@11t+& - ,,n;Q(q2). 

(2.18) 

The final result of these rearrangements is: 

MNC = ezQ’Q’+ 
q2 

-&I3 - s:Q)v, ?;I2 (I; - s:Q'), 

ef 
Mcc = &+ 

Zw: * I- 

z* (2.19) 

* q2 - h!$,, ’ 

where all starred qua.ntities are now functions of q2. In ref. 12, Kennedy and Lynn 

showed that, with a proper definition of the starred functions, this definition is 

correct to all orders in vacuum polarizations and also subsumes the major part of 

the standard model direct corrections. 

The final equations (2.19) h ave exactly the same form as the tree level ampli- 
tudes, except that all the coupling constants and gauge boson parameters are re- 

placed by starred parameters. What this shows is that the oblique corrections affect 

weak interaction observables only via the starred functions. In other words, given 

an observable in terms of bare parameters at tree level, we only need to replace 

the bare parameters with their starred counterparts evaluated at the appropriate 

momentum to incorporate the corrections from vacuum-polarization diagrams. For 

instance, the obliquely corrected left-right asymmetry ALR will be given by 

ALR(s2) = 2P - 4s3cr2)1 
1 + [l - 4s$(q”)]Z * 

The Z width will be given by 

J--z = zz*s x(4f -s:QjJ2h'/ 
* * f q2=m; 

(2.20) 

(2.21) 

where a,(q2) z ef(q2)/4 r, and Nj is the effective number of colors of the fermion 
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flavor j: For leptons Nj = 1; for quarks 

T + - - .) = 3.12 f 0.01 at q2 = m2,, (2.22) 

corresponding to a,(mi) = 0.12 f 0.01. We can assess the effects of obl ique 

corrections on these observables through the effects of these corrections on the 

starred functions, which are simply described by the relations (2.10), (2.18). Of 

course ALR and rz also receive corrections from physics within the standard model  

which are non-obl ique. Kennedy and Lynn have shown that the most important 

part of these corrections can also be stuffed into the starred functions. The initial- 

state radiative corrections to the Z” parameters are large and must be separately 

assessed. However, the remaining non-obl ique corrections are smallonly a few 

tenths of a percent-at the Z pole and below. Therefore, the starred functions are 
extremely useful tools to summarize the effects of radiative corrections both from 

within and beyond the standard model . 

While (2.19) contains all the information necessary to see how various observ- 

ables are corrected over the range of energies, it is somewhat cumbersome to apply 

to low energy experiments. Therefore, let us return to (2.11) and take the limit 

q2 + 0. The Z and W exchange parts of (2.11) in this limit are 

MNC = - [I3 - s:(O)Q] 
[$ + i33(o)] 

[I; - d(o)Q’ ] , 

Mcc = -;I+ 
1 

[g + nldo)] 
I-. 

(2.23) 

These matrix elements should be compared with the standard form of the low 

energy effective Lagrangian of weak interactions: 

L eff = -% {J&P + p*(O) [J3” - sf(O,J($] :} , (2.24) 

We denote the low-energy ratio of charged- to neutral-current ampl i tudes by p,(O), 

to avoid confusion with the Vel tman definition (1.1). We can now make the fol- 

lowing identifications: 

1 V2 

41/% 
= 4 + h(o), 

- = $ + n,,(o) 1 
(2.25) 

P* (0) $ + h(O) 

= 1 - 4diG~ [n,,(O) - n,,(o)]. 

The predictions of weak-interaction theory for low-energy experiments are ex- 

pressed through the parameters of the low-energy effective Lagrangian, and so the 
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relations (2.25) and (2.10) for sf(0) codify the dependence of these predictions on 

oblique corrections. For example, the factors gi and gi that relate the ratios of 

cross sections in deep inelastic neutrino scattering experiments 

where 

R 
v 

= +PN + QX) 
a(v,N + ,x-X)’ 

RF= 
U(QN + QX) 

a&N + p+X) ' 

T= 
a(FpN + ,x+X) 

a(+N + p-X) ' 

are given by1211 

(2.27) 

(2.28) 

We can then apply (2.25) and (2.10) to determine the influence of general oblique 

corrections on the value of these parameters. 

We may summarize the results of this section as follows: The effects of oblique 

electroweak radiative corrections on weak interaction observables maybe computed 

from the lowest-order expressions for these observables by replacing the bare pa- 

rameters by the corresponding starred parameters of Kennedy and Lynn. The 

dependence of the starred functions on oblique corrections is relatively simple; it 

is expressed in eqs. (2.10), (2.18), (2.25). Th “0 relations my be reduced further 

by judicious approximations, and we will do this in the next section. 

In the course of this section, we have given a few examples in which weak inter- 

action observables are expressed in terms of the starred parameters. For reference, 

we list in Appendix A a table of these relations for the most important observables 

of the current generation of weak-interaction experiments. 
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3. The S, T, U Parameters 

As we have seen in the previous section, the effect of oblique corrections on weak 

interaction observables can be summarized in the starred functions of Kennedy and 

Lynn. However, the formulae we wrote are not yet quite straightforward to apply, 

because even at lowest order, the formulae depend on three parameters e2, s2, 

and v2, that is, on the SU(2) x U(1) g au g e couplings g and g’ and the Higgs 

boson vacuum expectation value. To make predictions based on the Kennedy 

and Lynn formalism, we must eliminate these three parameters in terms of three 

observables. If we were considering a theory without custodial symmetry, the 

lowest order expressions would ha.ve contained p as a fourth parameter, and we 

we would have needed a fourth observable to fix this variable. We will restrict 

ourselves to the three parameter case in the following. 

The logical choice for the three input observables is o, GF, and mz. They are 

the most accurately measured parameters of electroweak interactions and serve as 

excellent reference points. Their measured values are currently 
tw31 

a-’ = 137.0359895(61), 

GF = 1.16637(2) x 10-5(GeV)-2, 

mz = 91.174(21)GeV. 

(34 

It is convenient to represent this information as a value of the weak mixing 

angle. Here one must be a bit careful, since there are many ways of defining the 

weak mixing angle, and each of these appears as the favored definition in some 

paper in the literature. In general, we follow the usa.ge of ref. 4, which defines 

four versions of sin2 8 w: the MS definition, which will not appear in this work; the 

Sirlin[241 definition, based on the values of mw and mz: 

m2, +1--. 
rni ’ 

(3.2) 

a definition based on Z” asymmetries: 

Sb 5 sf(m$J (3.3) 

(up to details of the treatment of box diagrams which are numerically unimportant 
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at the Z’); and a definition si based on cy, GF, and mz: 

sin280 z (34 

where 

cr,,o(mi) = 128.80 f 0.12 (3.5) 

is the running electric charge evaluated at the Z” mass, with the running from 

q2 = 0 to q2 = rni [251 calculated from known physics only. The Sirlin definition is 

often called the ‘on-shell scheme’, though si and s”~ are also on-shell definitions. 

These various versions of sin2 6, are all equivalent at lowest order to the bare 

value s2, but they differ significantly from this value and from one another as a 

result of radiative corrections. Since si requires only the values (3.1), (3.5) as 

inputs, it is extremely accurately known: 

s; = 0.23146 f 0.00034 (3.6) 

Taking this value as a reference, we ma.y predict the value of any other sin2 8,, or 

any other weak-interaction observable, in terms of radiative corrections. 

We will now work out explicitly the part of that relation which is due to oblique 

corrections. To begin, we need the relation between si and the bare value s2. This 

is found by using the identity 

6(sin2 0,) = 2~~x58, = 2sc 
2s2c2 6 sin 30 

2 cos 28, 
6sin28, = n sin2i w, (3.7) 

W 

where s = sin 8, and c = cos O,, together with the relations (2.10), (2.12)) (2.25) 

which give the shifts of o, GF, and m,y due to oblique corrections. This gives 

s2c2 =s2+- 
c2 - s2 e2H(QQ(o) $ s2c:m2 wo> (3.8) 

e2 - 
s2c2m2 Z 

(n,: - 2s2&Q + S4nQQ) (m:,), 

where we have included only oblique corrections due to new physics. 
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Combining (3.8) with (2.10) and (2.12), we find 

!I!&- 

m2, 
co” 

=s ; - s”w 

1 

e2c2 
=- 

s2(c2 - s2)mi 
n33(m;) 

S2 

- 2s2H3Q(mi) - -Hll(O) - 
C2 1 

e2s2c2 
+- 

c2 - s2 [nbQ(m2,) - nbQ(0)] 

= 
n33(m$) - 2s2JJ3Q(mi) - h(O) 

"22 

e2s2 
+- 

c2 - s2 
[ s2r$Q(mi) - c2nbQ(o) $ (c2 - s2)$JQ(q2)] , 

(3-9) 

The remaining starred functions are defined as deviations from 1, and so the 

formulae of Section 2 may be evaluated directly. From (2.25) and (2.18), we have 

e2 P*(O) - 1 = s2c2m2 [J&l(O) - n33&91, 

2 e2 

‘z*(q l-l== 
[ 

Ih( 
dq2 n33 - 2s2n3~ + S4nQQ) (q2=m< 

I 
(3.10) 

- (“2 - s2)&Q(q2) - S4nbQ(q2) . 

e2 
‘w*(q2) - ’ = 2 dnll (qz=mZ, dq2 - %Q(q2) * 

3 

We note again that (3.9) and (3.10) present only the oblique corrections to the 

various starred parameters. The calculation of the full standard model corrections 

is much more involved and cannot be expressed in such simple formulae. But it is 

remarkable that the entire influence of new physics, to the extent that it is purely 

oblique, follows from the relatively simple relations (3.9) and (3.10) and the use 

of the starred functions to renormalize the tree-level formulae. This point has, of 

course, been known for a long time; for example, it is the major result of ref. 6. 

If the physics included in the vacuum polarization diagrams is associated with 

new heavy particles of mass much larger than mz, the vacuum polarization am- 

plitudes will have rapidly convergent Taylor series expansions in q2. Thus, it is 
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natural to expand the various II’s in q2 and to neglect terms of order q4 and above. 

This gives 

nQQk2) = q2nbQ(o>, 

n3Q(q2) = q2n;Q(0), 

H33(q2) = n,,(o) + q2r&(0), 

(3.11) 

Gl(2) x I-h(O) + q2r&(0). 

This approximation should only induce a relative error of (mi/m$), where rnT is 

the scale where the new physics resides. 

When we insert the approximate formulae (3.11) into (3.9) and (3.10)) three 
linear combinations of the six Taylor series coefficients must cancel out, since these 
equations are differences of radiative corrections which fix o, GF, and mz. These 

subtractions remove the ultraviolet divergences of perturbation theory, and so the 

three combinations which remain must be differences of coefficients with cancelling 

ultraviolet divergences. It is natural to define these three ultraviolet-finite combi- 

nations of Taylor series coefficients as new weak interaction parameters: P3J41 

as = 4e2 [n;,(o) - &Q(o)] , 

aT E e2 s2c2m2 
Fhl(o> - H,,(O)] ) (3.12) 

Z 

crU E 4e2 [II:,(O) - l&,(O)] . 

Several different notations for these parameters appear in the litera,ture; we review 

these notations and their interrelations in Appendix C. 

We have already noted that, when the approximation (3.11) is inserted into 

(3.9) and (3.10)) th ese formulae reduce to linear functions of S, T, and U. In fact, 

the relations are quite transparent: 

m2W --c;= 
mii I 

, 

s9(q2) - s; = -& [,S-s’c?,], 

p*(O) -Y 1 = oT, 

Zz*(q2) - 1 = -&s. 

zw*,qQ2 - 1 = S(S + U). 

(3.13) 

The error involved in the reduction from the original perturbative formulae to 

(3.13) is of order a(mz/mT)2, where mT is the scale of new physics. Subject to 
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this uncertainty, the relations (3.13) contain the most general oblique corrections 

from new physics at very high energy. 

It is a shame that (3.13) involves three new parameters, since it is easier to 

think about the relation of observables in a two-parameter space. However, the 

parameter U plays a fairly unimportant role. The functions sf ( q2), p*(q2) and 

Zz*(q2) have no dependence on U. This means that all neutral current and low 

energy observables depend only on S and 2’. In fact, the only accurately measured 

weak interaction observable that depends on U is mw. In addition, U is often 

predicted to be very small. We are already assuming that a custodial symmetry 

constrains the llrr (0) and II,,(O) to be equal to the level of order l%, with the 

difference generated by radiative corrections. In most models, this approximate 

equality holds for all q2, so that U should differ from zero by only a percent of 

?‘. Altarelli and BarbierilIsl have pointed out that this argument does not apply to 

[‘J61 models with anomalous W interactions, so there is value in expressing constraints 

in the three-parameter space. However, we will often add to the assumptions 

above the further assumption that U = 0 and project down to a two-dimensional 

parameter space in which the experimental constraints are easy to visualize. 

In either its two- or three-parameter form, the set of relations (3.13) can be di- 

rectly compared to observables of the weak interactions. To make this comparison, 

we simply use the formulae (3.13) t o evaluate the shifts in the starred functions, 

then use the formulae of Appendix A to convert these to shifts of observables. Of 

course, (3.13) contains only the influence of new physics and is not in any way a 

correct representation of the standard model contributions. But these shifts are 

small and accurately represented. Thus, the relations (3.13) tell us what to add on 

to a highly accurate standard model calculation to represent the effects of heavy 

physics. For example, from the first line of (3.13), we infer 

m2, = mb(ref) + ,,zmi 
c2 - s2 [ 

-iS+c2T+ $$J 1 ) (3.14) 

where mw(ref) is the value of mw computed as accurately as possible in the 

standard model. We present the full set of these relations for the most important 

weak-interaction observables in Appendix B. 

A bit of further care is required to make relations of the form of (3.14) precise. 

The values of weak-interaction observables in the standard model depend on the 

unknown masses of the top quark and the Higgs boson. In order to specify properly 

the standard model from which S, T, and U parameterize the deviations, we must 

specify the values of rnt and ??2H used in the standard models computation. Thus, 

when we determine the constraints on S and T from the experimental data, we 
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will specify that these refer to a specific set of reference values: ml = 150 GeV, 

mH = 1 TeV, in our analysis. (If the true values of rnt and mH differ from these, 

the discrepancies will be approximately parametrized by shifts of S and T; we will 

see how this works in Section 9.) Predictions for S and T from specific models 

of new physics may also depend on the reference point chosen, and this must be 

taken into account in comparing theory and experiment. 

On the other hand, if the values of rnt and mH were known, the relation (3.14) 

and the other relations tabulated in Appendix B would be a set of direct rela- 

tions between observable quantities in terms of the three parameters S, T, and 

U. The relations among the various formulae in Appendix B are the observable 

consequences of the assumption that new physics, beyond the standard model, is 

heavy and contributes obliquely. The final formulae are independent of any calcu- 

lational scheme. It is this feature that motivated us to add the S and T parameters 

to the already lengthy and confusing list of notations for weak intera.ction ra.dia- 

tive corrections. Once one has understood the standard part of the calculation 

in one’s own favorite notation, these parameters provide a representation of the 

discrepancies expected from nonstandard physics in a manner independent of the 

calculational conventions. 

4. S, T, and U in Perturbation Theory 

The parameters S and T have one additional important property: They parti- 

tion the contribution of electroweak radiative corrections into pieces with distinct 

physical significance. This separation is most clear in models where U x 0, so that 

a two-parameter representation applies. The parameter T obtains contributions 

only from effects which violate the custodial isospin symmetry. On the other hand, 

S is an isospin symmetric observable which measures the momentum-dependence 

of II33 (or, more properly, the ultraviolet-finite part of this dependence). In this 

section, we will see in several examples that 5 IS a dimensionless measure of the 

size of the sector which contributes to II33. 

The simplest example of oblique electroweak corrections are those due to new 

heavy fermions. As long as we can ignore small elements of the quark or lepton 

mixing matrices, the contributions of new fermions to electroweak processes ap- 

pear via the simple one-loop diagrams shown in Fig. 2(a). For concreteness, we 

consider a fermion doublet (N,E) with th e usual left-handed coupling to SU(2), 

hypercharge Y, and masses mN, mE. It is straightforward to evaluate the vacuum 

polarization diagrams which contribute to (3.12). In the limit ??2N, mE >> mz, we 
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find the contributions 

S=&[l-Ylog(%)], 

T= 
1 

16ns2c2m2 
m&+mg- , 

Z 

5m4, - 22rngrng + 5m4, 

3(mg - mi)2 

+“’ 

- 3m$m$ - 3mRm4, + rn; 
(m$ ,2)3 - 

E 

(44 

The above expression for T is positive semi-definite [27l while those for S and U are 

not. However, if we assume that Am E IrnN - mE[ < m,N, mE, we find 

T% 
1 

127rs2c2 
7 (4.2) 

This shows that S and U are also positive in the limit where the isospin breaking 

in the doublet is small. Also, as conjectured, U is suppressed compared to T by a 

factor of (m2,/m2,). 

Note that each extra fermion doublet that we put into the theory will contribute 

additively to S and T. Therefore, S can be thought of as the measure of the total 

size of the new sector while T is the measure of the total weak isospin breaking 

induced by it. The contribution S x 1/67r is the origin of the additive effect of 

degenerate heavy generations on the W mass and the Z” polarization asymmetry, 

highlighted by Bertolini and Sirlin [281 and in ref. 6. 

As another example of the evaluation of S, T, and U, let us consider the 

contribution of the Higgs boson. Though the Higgs boson does not exactly qualify 

as belonging to physics beyond the standard model, it is true that the only one- 

loop diagrams which depend on the Higgs boson mass are the oblique corrections 

shown in Fig. 2(b). Wh en the mass of the Higgs boson is very large compared to 

mz, these contributions should be well represented by S, T, and U. Keeping only 
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the leading logarithms in the Higgs mass, we find 

, (4.3) 

u M 0, 

where mH,ref is the reference value of the Higgs boson mass from which S, T, and 

U are defined. Note that U is small compared to S and T for this case as well. 

As a third and final example, we consider the contribution of the t-quark. 

Again, as was the case with the Higgs boson, discussing the t-quark contribution 

in terms of S, T, and U is only strictly correct when mz < ml. Also, unlike 
the Higgs boson, non-oblique t-quark corrections cannot be neglected when the 

external fermion is a b-quark; this affects the prediction for I’(Z’ + bb). With 

these caveats in mind, we can compute the top quark contribution to S, T, and U 

by evaluating (4.1) in the limit ??ZE + 0, with an additional factor of 3 to account 

for color. We obtain 

(4.4) 

U mf R3 &log 2 ) 

( > mt,ref 

where mt,ref is the reference value of the t quark mass used in defining the S and T 

parameters. Again, we find U to be much smaller than T. In this case, S is small 

also, so that the major effect of a shift of rni is just a shift of T. 

For contributions to the electroweak vacuum polarizations from new heavy par- 

ticles, the relations (4.2) g ive a good idea of the generic situation. The contributions 

to T are proportional to isospin-violating mass difference. On the other hand, S 

receives isospin-independent contributions which grow systematically with the size 

of the new sector. In the next few sections, we will argue that these properties of 

S and T also hold when the new physics is essentially nonperturbative. 

20 



I : 

5. A Dispersive Representation of S 

Let us now consider how we would calculate the values of the parameters of 

oblique corrections for theories in which the relevant vacuum polarization diagrams 

cannot be computed by perturbation theory. The most important examples of such 

theories are models of technicolor, in which the Higgs sector is a strongly inter- 

acting gauge theory with a characteristic scale near 1 TeV. As they are usually 

constructed, technicolor theories have a custodial SU(2) symmetry-the isospin 

symmetry of the technicolor strong interactions-which protects the relation (1.1) 

from receiving large radiative corrections. Additional interactions, called extended 

technicolor, must break this symmetry to generate the observed isospin asymmetry 

in the quark and lepton mass spectrum; in general, then these additional interac- 

tions will contribute to T and U. However, since the isospin-violating effect on 

the vacuum polarization must be small, the effect on the U parameter is doubly 

suppressed: U w T . (m’$/m$), where 7nT is the technicolor mass scale. Thus, 

quite generally in technicolor theories, we can ignore U and adopt a two-parameter 

(S, T) description of oblique corrections. 

By distinguishing in this way between the effects of technicolor and extended 

technicolor, we also clarify the separate significance of S and T in these techni- 

color models. Contributions to T are generated by extended technicolor. These 

corrections are large and troublesome, but they are difficult to estimate precisely 

and also strongly dependent on the detailed implementation of extended techni- 

color. (We will review various estimates of T in Section 8.) The contributions 

to T thus resemble the other prominent experimental constraints on technicolor, 

such as the absence of light charged scalar particles and flavor-changing neutral 

currents: In the simplest models, they are severe restrictions on the theory, but 

one can reinterpret the problem as a constraint on the specific structure of the 

extended technicolor couplings. 

On the other hand, the basic idea of technicolor-that the weak interactions 

are broken by dynamical chiral symmetry breaking due to a new set of strong 

interactions-is a very attractive one. It would be wonderful if we could test 

this idea directly without needing to analyze a highly embellished model. The 

parameter S gives just such a test. In technicolor models, S receives contributions 

from the largest effects in the new strong-interaction sector. These effects are 
independent of isospin or flavor violation. Thus, to the extent that we can obtain 

a bound on S independently of T, this bound constrains the basic idea that the 

Higgs sector is built from a strongly interacting gauge theory. 

In this section, we will set up a formalism for computing S in technicolor and 

related models in which the Higgs sector is strongly interacting. Our strategy 
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will be to write a representation for S as a dispersive integral over the technicolor 

mass spectrum. In this analysis, we will make the assumptin that the technicolor 

interactions have an exact isospin symmetry. For simplicity, we will also assume 

that the technicolor sector conserves parity; this is a property of most technicolor 

models. 

To begin, we rewrite the electromagnetic and the left-handed isospin currents 

in terms of the (conventional) hypercharge current and the isospin vector and 

axial-vector currents. 

5; = f [J; - J;] , 

J6 = J; + ;J;. 
(5.1) 

By our assumption that technicolor interactions conserve isospin and parity, we 

find 

fl33 = ; [bV + nAA] , 

1 (5.2) 

where the II’s on the right hand side are the correlators of isospin vector and axial- 

vector currents. Since the vector symmetries are exact, while the axial-vector 

symmetries are spontaneously broken, 

hw(42) = 421-&v(42), 
nAA(q2) = flAA(o> + q21-&A(q2) = F,” + q2n;A(q2)r 

(5.3) 

where FK = 250GeV is the technipion decay constant, which is identified in tech- 

nicolor models with the parameter v in (2.4). In terms of IIvv and IIAA we find 

’ = -4T [n;,,(o) - n;,(o)] . (54 

The vacuum polarizations in (5.4) are expectation values in a strong interaction 

theory and cannot be computed by perturbation theory. The problem is quite 

similar to another problem in precision electroweak theory, that of computing the 

electromagnetic vacuum polarization due to the familiar strong interactions, to 

compute the renormalization of Q. This latter problem was solved by using a 

dispersion relation to connect llbQ(q2) to the measured quantity R(s), the ratio 
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of the cross sections for e+e- annihilation to hadrons and to ~1 p + -12’1 Since 

a(e+e- + +y + hadrons) 

= -127rImIIbQ(s) 

we have the relation 

q2 ?s R(s) -- 
= 12n J &(s - q2)' 

0 

(5.5) 

(5.6) 

The integral in (5.6) can be evaluated directly from the e+e- data. 

A similar method can be used to estimate (5.4). Define vector and axial isospin 

analogues of R(s) by 

Rv(s) E -127rImII’vv(s), 

RA(s) E -lkId&A(s). 
(5.7) 

These quantities would give the normalized e + - e total cross sections for a photon 

coupled to vector or axial isospin rather than electric charge. Of course, Rv(s) 

and RA(s) are not measured for any technicolor theory, but we can infer many 

of their properties from our general knowledge of gauge theories. For example, as 

s + 00, Rv and RA both approach the sum of the squares of the technifermion 

isospins, and thus also become asymptotically equal. On the other hand, at small s, 

Rv(s) gets a contribution only from 7rrsr- production. For m, = 0, Rv(s) + l/4 

as s + 0. RA(s) gets its first contribution from three-pion production, and so 

vanishes proportionally to s as s --f 0. At intermediate values of s, Rv and RA 

should have peaks at the vector and axial-vector resonances of the technicolor 

sector. 

Using (5.7) and (5.3), we may write the dispersion relation: 

&v(q2) - nAA(q2) = (I2 [&v((?) - l?4A(q”)] - nAA(o) 

q2 =-- - J 
a3ds b(s) - RAN _ F2 

127r r s - q2 
7rT 

0 

(5.8) 

This equation gives 

gauge theories, one 

some further properties of Rv and RA. In asymptotically free 

may show that the left-hand side of (5.8) is of order l/q4 as 
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q2 + L3’ l Th ccl. us, the first two terms in the expansion of (5.8) for large q2 give 

the fol lowing identities, cal led the the first and second Weinberg sum rules: [311 

00 

& Ids [Rv(s) - RA(s)] = 47rF’z, 

0 

co 

& /- ds s [Rv(s) - RAN] = 0, 

(5*9) 

b 

It is likely that at least the first of these sum rules is also true in gauges theories 

with nontrivial ultraviolet fixed 1321 points. 

Taking the q2 3 0 limit of (5.8), we can evaluate the formula for S given in 

(5.4). This gives the fol lowing, still preliminary, result: 

s=& mds 

J T [h(s) - RAN] . 

0 

Thus S is a ‘zeroth Weinberg sum rule’  of the strongly interacting Higgs sector. 

We can estimate S by making a reasonable model  of the spectral functions Rv and 

RA, consistent with the general  constraints given above, and then using this model  

to evaluate (5.10). W e will describe such an evaluation in Section 7. 

Before attempting to estimate (5.10), h owever, we should point out two un- 

satisfactory aspects of this formula and repair them. First, we noted above that 

Rv(s) + l/4 whi le RA(s) + 0 as s + 0. Thus, the integral in (5.10) is divergent 

at the lower limit. (The Weinberg sum rules imply that it is quite convergent as 

s + 00.) Second, we defined S as a difference between the vacuum polarization 

effects in a new theory and those in the standard model . If we a.re using the tech- 

nicolor strong interactions to break sum x :‘ [l)y, the standard Higgs sector is 

superfluous and we should subtract its contribution from the l-loop diagrams. 

Fortunately, these two difficulties cancel one another. This is most easily seen 

by working in the Landau gauge. In this gauge, one must include, in addi tion 

to the physical Higgs bosou, the unphysical Goldstone bosons which are absorbed 

into the IV+, W-, and 2’  in the Higgs mechanism. In the Landau gauge, these 

Goldstone bosons are massless. We may neglect the coupl ing to external fermions, 

since this is proportional to the fermion mass. Thus, at one loop order, these 

particles contribute only to vacuum polarization diagrams; their contribution to 

S comes only from the dia.grams shown in Fig. 3. These diagrams are easily 
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evaluated and subtracted. The diagram with a two-Goldstone intermediate state 

gives a contribution to the dispersion relation identical to the contribution from 

the two-pion state. When we subtract this contribution from (5.10), the infrared 

divergence in (5.10) cancels and we are left with a well-defined formula. 

Explicitly subtracting the diagrams of Fig. 3 from (5.10), we find final disper- 
sive formula: 

s = & 
mds 

J 0 
s &v(s) - &(S)] - ; 

0 

[1- (1-~)30(s-m%,l). (5.11) 

Notice that this formula depends on mH, the mass of the physical Higgs boson in 

the standard model calculation taken as a reference point in defining S. In our 

evaluation of S, we will take mH = 1 TeV; one should take care to use the same 

reference point in deriving predictions for weak-interaction experiments. 

We conclude this section by describing the relation between the parameter S as 
we have defined it and the parameters of chiral perturbation theory. Several of the 

early papers15’6’81 attempted to estimate the electroweak radiative corrections from 

technicolor from the leading logarithms of chiral perturbation theory. However, 

the constant terms of the same order in derivatives are often equally or more 

important, and this should properly be taken into account. In their classic paper 

on renormalized chiral perturbation theory, Gasser and Leutweyler 1331 discussed 

the sum rule (5.10) in a theory with nonzero pion ma.ss and gave the following 

expression for it in terms of renormalized parameters: 

1 OOds 

5i J 
s [Rv(s) - RA(S)] = 735 - 1). 

0 

(5.12) 

The integral is infrared finite because of the assumed nonzero value of m,. The 

infrared logarithm is absorbed into the parameter ?5. To extract this dependence, 

define 

25(p) = Z5 + log(&/$). (5.13) 

Then .&j(p) gives the high-mass contribution to the sum rule, and we have separated 

out the leading chiral logarithm. To relate this expression to S, one should modify 

the standard model subtraction terms in (5.11) to include a Goldstone boson mass 

m,, carry out the integral over these terms, subtract the result from (5.12), and 
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then take the limit m, + 0. This gives: 

i5(/.4 + log JC - 1 . 
rn5 6 I 

(5.14) 

This reproduces (with a slightly more careful evaluation) the computation of the 

technicolor electroweak correction in refs. 9, 11. The value of i5(p) is known 

in the familiar case of two flavors and three colors from the work of Gasser and 

Leutweyler; however, in more general situations, one needs a method of estimating 

this parameter. This leads us back to the dispersive formula (5.11). We will 

illustrate the use of this formula in Section 7. 

6. Gauge Invariance of the Dispersive Integral 

At this point, it would be natural to present numerical estimates for S based 

on the integral representation (5.11) d erived in the previous section. However, in 

this section, we will pause to settle a lingering theoretical issue. The derivation of 

(5.11) that we gave in the previous section made essential use of the Landau gauge. 

We should, then, discuss to what extent (5.11) can be considered a gauge-invariant 

result. Our discussion will be somewhat formal. To simplify our notation, we will 

ignore the hypercharge gauge boson and consider a pure SU(2) weak interaction 

theory. 

Before beginning this discussion, we would like to describe a bit more clearly the 

question we wish to address. Weak-coupling perturbation theory in the standard 

model usually relies on the Rt gauges, which are defined by a gauge-fixing term of 

the form 

where W; are the gauge fields, W’ are the Goldstone boson fields, and [ is a.n 

arbitrary gauge parameter. In this class of gauges, the Goldstone boson fields have 

a gauge-dependent mass equal to firnw. The inclusion of this mass would distort 

the dispersive integral (5.11) in a gauge-dependent way. In fact, in the minimal 

version of the standard model, the [-independence of fermion-fermion scattering 

amplitudes follows from series of subtle cancellations involving the Higgs and gauge 

boson 2-point functions, the gauge-boson-fermion vertices, and the box diagrams. 

In a model in which the gauge symmetry is broken dynamically and the Goldstone 

bosons are composite, it is not clear whether it is convenient or useful or even 

possible to define an analogue of the Rt gauges. But the properties of these gauges 

in the minimal version of the standard model cast doubt on any claim that a pure 
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self-energy calculation such as (5.11) has gauge-invariant significance. Let us now 

address and answer this question. 

The Lagrangian of a general weak interaction theory may be written in the 

form 

l = -;(F;,)2 + lf + LH , WV 

where FiV is built from SU(2) gauge fields W;1”, Lf is the Lagrangian governing the 

coupling of fermions to the W bosons, and ~ZH is the Lagrangian of the Higgs sector. 

In principle, this last piece of the Lagrangian may contain the interactions of any 

other heavy particles. We will make three assumptions about the nature of LH: (1) 

,cH is a self-contained quantum field theory with a global SU(2) symmetry which is 

gauged by the W bosons; (2) LH spontaneously breaks this SU(2) symmetry; (3) 

LH predicts no massless particles except the SU(2) Goldstone bosons. In the spirit 

of the previous sections, we might wish to add a fourth assumption of obliqueness: 

(4) LH does not contains any terms involving light fermions. What we do not 

assume about LH is whether it is weakly interacting (e.g., standard model) or 

strongly interacting (e.g., technicolor). If it is weakly interacting, the Goldstone 

bosons will be elementary and will have corresponding Goldstone boson “fields” in 

,CH. If it is strongly interacting, the Goldstone bosons will be composite and their 

existence cannot be seen until the complete dynamics of LH has been worked out. 

Because the theory LH is well-defined in its own right, we can integrate it 
out, producing an effective Lagrangian with nonlocal vertices for the fermions and 

gauge bosons. In this procedure, we consider the W;I fields as external classical 

sources acting on the LH field theory. The W fields then acquire new vertices 

corresponding to the connected multi-current amplitudes of the AZH theory. To be 

more explicit, let I’H[W;] be th e e ec ive action of the LH theory: ff t 

rH[w;]= -ilog [ JDDexp (i Jd4xLH [a,w;])] , (6.3) 

where ip is a generic expression for the the dynamical fields of the LH theory. 

Integration over @ produces an effective action for the W bosons and fermions 

S= d4a: J 1 -;(F;v)2 + Lf} + rH [rv,“] 

The last term of (6.4) modifies the W propagator and produces new vertices propor- 

tional to the successive functional derivatives of I?H with respect to W;(x). These 

are.the connected correlation functions of the pure Higgs theory. In particular, the 
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2-point function 

will have the Goldstone pole required by our assumption (2): 

flH(q2) = F + 42cd72). (6.6) 

Notice that, from our assumptions (l)-(3) a b ove, the vertices of PH are well-defined 

and SU(2)-symmetric. As a result, the complete effective action is invariant under 

local SU(2) gauge transformations. It is also important to note that, since LH is 

a globally symmetric theory coupled to external gauge bosons, the transition from 

(6.2) to (6.4) q re uires no gauge-fixing. This procedure of integrating out the Higgs 

sector can be appl ied to both weakly interacting and strongly interacting Higgs 

sector theories. 

Let us now modi fy the action (6.4) by introducing a parameter X as follows: 

We may now compute ampl i tudes governed by the action Sx as a perturbation series 

in X. At this stage of the calculation, we must introduce a gauge-fixing term and 

a Faddeev-Popov determinant. However, X has been defined before gauge-fixing, 

and so physical quantities computed from this action will be gauge-invariant order 

by order in X. This situation is analogous to the usual  perturbation expansion in 

ii. 

To carry out the X expansion explicitly, we must choose a gauge. Note that the 

usual  I$ gauges cannot be used here. The Goldstone boson fields which a.ppear in 

(6.1) have already been integrated out. Also, if the Higgs sector had been strongly 

interacting, there would have been no Goldstone boson “fields” to begin with. 

We should therefore consider adding a gauge-fixing term which involves only the 

unintegrated fields, for example, 

&3@ w;)2. WY 

We may then display the X perturbation theory diagrammatically. We will repre- 

sent the vertices fol lowing from PH, that is, the functional  derivatives of PH, as 

shaded blobs, as shown in Fig. 4. To these must be added the usual  three-W 
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and four-W vertices coming from-the (F&)2 term. We represent the sum of the 

elementary Yang-Mills and Higgs-induced vertices by unshaded blobs, as shown in 

Fig. 5(a). When the gauge fixing term (6.8) is used, the W propagator in the 

X-expansion is given by 

-i 
spu - QY/Q2 

q2 - ag2F; - q21’11,(q2) 
WI 

this expression represents the sum of diagrams shown in Fig. 5(b). We represent 
this propagator with a wavy line with an unshaded blob on it. 

Using these diagrammatical notations, we find that the tree and one-loop order 

contributions (in the X-expansion) to fermion-fermion scattering are those shown 

in Fig. 6. We emphasize here again that this expansion is gauge invariant order 

by order since ,!?A is gauge invariant. 

The tree diagram of the X-expansion already includes infinite orders of the 

&expansion through Fx and I11,(q2) in the W propagator. Comparing (6.9) with 

the usual W propagator of the &-expansion, we see that II’,(q2) includes precisely 

the oblique corrections we were considering in the previous sections. Indeed, 

Gdq2) = $ [%w(q2) + q‘L&“,] * 

Thus, our whole formula for the oblique correction due to the Higgs sector, includ- 

ing the specific piece (5.10) contributing to S, is gauge-invariant in the class of 

gauges for which the X-expansion makes sense. 

However, even though our expression for (5.10) is gauge-invariant, we must 

worry that it is not infrared-regular. In fact, we encountered massless Goldstone 

modes when we integrated out the Higgs sector to derive (6.4); also, in the gauges 

(6.8), unlike the usual RE gauges, the W propagator contains massless poles. As 

a result, quantities like II’H(q2) diverge logarithmically as q2 + 0. To cure this 

problem, we can apply in a quite general way the method used at the end of 

the previous section: Go back to the generating functional with action (6.2), and 

multiply and divide by the functional integral over Higgs fields of the exponential 

of the standard model Higgs Lagrangian C&. Performing one of these functional 

integrals, we find an effective action of the form 

s= d% J 1 -+‘$J2 + Lf + Lo, 1 + crH Lw,“l - ri [w,“] > (6.11) 

Since the leading infrared singularities of IH are associated with soft pions, they 

are determined by chiral symmetry and so are identical, and cancelling, between 
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rH and I’;. If we now carry out the A expansion by taking the term in parentheses 

in (6.11) as the perturbation, we find a formula for the oblique corrections which 

implies our final, subtracted formula (5.11). This derivation clarifies that this 

formula is both gauge-invariant and infrared-finite. 

Another point of view on this question has been emphasized to us by Golden 

and Randa11.[341 They point out that the parameters of the chiral effective La- 

grangian, such as e”s in (5.14), are gauge invariant. Our formalism can be thought 

of as giving a relation between this unambiguously defined parameter of the new 

strong interactions and observable parameters of the weak interactions. 

7. Estimation of S 

Now that we have clarified the theoretical foundation of the integral formula 

(5.11), let us put this formula to use by estimating the value of S in a number 

of technicolor models. Estimates of S in technicolor theories require nontrivial 

information about the technicolor strong interactions. Since no exact solution of 

strongly interacting gauge theories is available, such estimates will depend on the 

model assumptions used to treat the strong interactions. 

In our earlier paper, ref. 13, we gave an estimate for S based on scaling up the 

strong interaction data on the eSe- total cross section to hadrons. In the literature, 

a variety of other techniques have been used to estimate the radiative corrections 

due to technicolor, including computations based on vector meson dominance and 

chiral perturbation theory. Some of these methods have been assembled and com- 
* [351 pared by Cahn and Suzuki. In this section, we will review these simpler methods 

of estimation, then present an improved version of our calculation of S, and finally 

assemble all of this information to determine the approximate value of S and its 

uncertainty. 

The simplest model for Rv(s) and RA(.s) is the vector dominance model, in 

which we saturate each of Rv(s) and RA(s) with a, s; gle vector-meson pole: 

&V(S) = 12r2F& S(s - mi,), 

RA(s) = 12r2F,21,S(s - milT), 
(7.1) 

where mPT and malT are the techni-p and techni-al masses respectively. As Wein- 

berg observed in his original paper, the parameters of (7.1) are constrained by the 
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[311 first and second Weinberg sum rules, 

J 
ds [Rv(s) - h(s)] = 127r2F,2, 

J 
dss [b(s) - RA(s)] = 0, 

where Fx = 250GeV is the technipion decay constant, we find 

This gives 

s=& 
J 

f [Rv(s) - RA(s)] = 47r g. 
PT 

(7.2) 

U-4) 

Assuming the large-N resealing relations between the technisector and QCD,13” 

2 mP 
mf, ’ 
NTF NTC 

2 3 

with fir = 93MeV, mP = 770MeV, and ma, = 1260MeV, we find 

NTFNTC s = o*25 23’ w-3 

where NTF and NTC are the number of techniflavors and technicolors, respec- 

tively. Note that, in this estimate, the integral under the p contributes 0.29 to the 

prefactor, and so that the al gives a relatively small subtraction. 

A second simple model for Rv and RA is that of keeping only the leading 
logarithms of chiral perturbation theory. In this approximation, we replace Rv 
by the contribution of pseudo-Goldstone bosons (cut off at the scale of hadronic 

resonances, e.g., at mPT) and ignore altogether the higher-mass intermediate states 

which contribute to RA. In a model with NTF flavors, there are (NTF/~)~ pairs 

of pseudo-Goldstone bosons with I3 = fl. Each pair contributes i to Rv. Let 
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us remove the true Goldstone bosons (which are subtracted in (5.11)), and as- 

sign the remaining pseudo-Goldstone bosons an averaged mass mp. Then this 

approximation gives 

GF sz& 4 [ I 
2 

mPT - 1 log- 
m$ 

(7.7) 

In a minimal technicolor model with NTF = 2, this approximation gives no contri- 

bution to S. However, in a model with NTF = &-one generation of technifermions- 

and the values mPT = 900 GeV, mp = 200 GeV, in the logarithm, we find a quite 

substantial contribution: 

s x 1.2. (7.8) 

The estimate (7.8) is consistent with (7.6), but this consistency is misleading. 

The formulae (7.6) and (7.7) have a completely different dependence on NTF and 

and NTC .l351 This difference reflects the fact that the two formulae are based on 

completely different physics. In particular, (7.7) k nows nothing about the strength 

of the p resonance, which gives the major contribution to (7.6). Thus, one cannot 

obtain a reasonable estimate of the value of S in a particular technicolor theory 

by simple scaling, either from (7.6) or from (7.7). One needs a more sophisticated 

approach, which takes into account the fact that the contributions to S from differ- 

ent intermediate states have a different dependence on NTF and NTC and merges 

these dependences into a coherent picture of the spectrum of technicolor states in 

the vector and axial-vector channels. 

We have attempted to construct such a picture based on the general notion 

that technicolor dynamics is a scaled-up version of the familiar strong interactions. 

Our strategy is to write a parametric formula for Rv and RA which is a reasonable 

representation of the data from the familiar strong interactions. We then assign 

each piece of this formula its own characteristic dependence on NTF and NTC. For 

each value of these parameters, we obtain a distorted spectral function which we 

can then integrate to find the corresponding value of S. 

Much of the recent work on technicolor models has centered on the idea that 

technicolor dynamics is not simply a scaled-up version of the familiar strong inter- 

actions, but rather has a very different high-energy behavior. On the other hand, 

Cahn and Suzuki136’351 have argued that the technicolor strong interactions may 

also be different at low energies, if the the shape of the techni-p resonance is be 

distorted by the coupling of the techni-p to pseudo-Goldstone bosons. Our analy- 

sis takes a much more conservative picture of the strong technicolor interactions. 

However, we believe that it can be useful in addressing the effect of a modification 

of the technicolor theory, by indicating in one concrete scheme the fraction of the 
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final value of S which comes from the affected momentum region. This allows one 

to estimate the uncertainty in S that would result from a possible distortion of the 

technicolor spectrum in this region. 

We now present the details of our estimate. The first step is to obtain functional 

descriptions of the values of Rv and fiA in the familiar strong interactions. For 

QCD, &(s) can be extracted from the data on 

R(s) = 
a(e+e- + hadrons) 

a(e+e- + p+p-) ’ (7.9) 

This is because R(s) is the imaginary part of II& while Rv(s) is the imaginary 

part of I$,, and they are related by 

rI& = l-I;, + f&y (7.10) 

Below roughly 3 GeV, only the u, d, and s quarks are light enough to be pair 

created so the final hadronic products of eSe- annhilation will consist of pions and 

kaons. By looking at events in which only pions are produced we can effectively 

eliminate any s quark contribution to R(s). The remaining pure pion events will 

be partially I = 0 and partially I = 1. Because e+e- annhilation into hadrons 

goes through a vector current, the resulting hadronic state will have C = -1. This 

means that the I = 0 states will have G-parity G = C . (-1)’ = -1 while the 

I = 1 states will have G-parity G = +l. A pion’s G-parity is -1 so the G = -1 

states can only decay into an odd number of pions while the G = +l states can 

only decay into an even number of pions. Therefore, looking at only the even pion 

production events will give us Rv(s). 

On the other hand, RA(s) for QCD can be extracted from the data on r-decay 

into r-neutrino and hadrons. This decay goes through a virtual 14’ so it measures 

the imaginary part of 

(7.11) 

The I$, and II’ AA appearing on the right hand side are charged current objects but 

they are equal to their neutral current counterparts because of isospin invariance. 

This time, the virtual W only couples to I = 1 states. Therefore, states produced 

by the vector current will have C = -1 and G = +l, and the states produced by 

the axial-vector current will have C = $1 and G = -1. Again, the conservation 

of G-parity tells us that the vector states only decay into an even number of pions 

while the axial-vector states only decay into an odd number of pions. Looking at 

odd pions decays will give us RA(s). Unfortunately, r-decay can only tell us what 
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RA( S) is up to the r mass. The behavior of RA (s) above that energy must be 

deduced by other means. 

The analysis we present here improves substantially over that described, in a 

rather sketchy fashion, in our earlier paper. That analysis used only the eSe- 

total cross section data and used the two Weinberg sum rules to determine the 

contribution of the al. The numerical values of S which we obtain here are smaller 

than those of ref. 13, mainly because r decay data implies a larger coupling of the 

al to the axial vector current. 

For e+e- annihilation into hadrons we use the Novosibirsk VEPP-2M-OLYA 

and CMD1381 data in the energy range 360-1400 MeV, and the Orsay DCI-DM213” 

data in the energy range 1350-2400 MeV for the reactions 

e+e- -+ x+7r- 

+ 2r+2n-- 

+ 7r+7r-27r” 

+ 3=+3lr- 

+ 2r+2=-21r” 

(7.12) 

Note that the final state cannot consist of only TO’S because of C conservation. For 

r decay into hadrons we use the DORIS II-ARGUSl401 data for the reaction 

r- --f VT lr+27r- (7.13) 

In both cases, we must take into account the unmeasured channels such as e+e- --f 

n+r-4x0 and r- + vr 7r-27r”. This is done by assuming the simplest isospin as- 

signments of intermediate states in the decay processes. We assess the contribution 

of the higher pion multiplicity channels by smoothly matching to the measured 

e+e- total cross section at high energies. Our main interest here is to present 
relatively simple functions which represent the data but are amenable to scaling 

with NTF and NTC. The values of the various parameters of which appear in our 

representation of Rv and RA are presented in Appendix D. 

The most important contribution to Rv is the channel e+e- + 27r channel, 

which is dominated by the p. This channel is well represented by the following 

function:[411 

RPtS) = i (’ - ~)3’2ets-4m~) [ ts _ m;)~m$rp(s)2] (7.14) 
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where 

Note that T’,(mz) is given by 

Mm;) = g$(l-.$3’2. 

Therefore, (7.15) can be written as 

MS) = !&.-(l-%33’2e(s-4m~~, 

(7.15) 

(7.16) 

(7.17) 

which is the convenient form for resealing. Our fit to the e+e- ---i X+K- data of 

OLYA and CMD is shown in Fig. 7(a) 

To the e+e- + 471. channel data, we fit the following Breit-Wigner function: 

REw(s) = 9 
m2re+e-r(s) 

a2 (s - m2)2 + mT(s)2 
(7.18) 

where 

(7.19) 

Lips(s;47r) stands for the 4- pion Lorentz invariant phase space. The fit to the 
e+e- + 2n+27r- data of OLYA and DM2 is shown in Fig. 7(b). 

To the e+e- + 67r channel data, we fit a function intended to represent the 

sum of the total cross sections to 6 and more pions: 

Rcont(s) = Rasymp 

This function can be interpreted as a superposition of evenly spaced Breit-Wigner 

resonances: [421 

R c 
9 

cant N 

sr;+eT, 

n Z(s - mz)2 + mzl?; D(s) (7.21) 

with the condition 

lTn/mn = const E 7, r;+eTn = cord. (7.22) 

The parameter m is the mass of the lowest lying resonance contributing to this 

sum. The function D(s) is a damping factor for killing off the tail of Rcont(s) in 
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the infrared which we take to be 

D(s) = O(m - &)e-[(fi-m)z/m2r2] + 6(& - m). (7.23) 

The expression (7.20) is compared to the DM2 data on e+e- t 67r in Fig. 7(c). 

We should note again that (7.20) re p resents the sum of all mul tipion cross sections 

and so tends at high energy to the asymptotic value of Rv. 

Adding all these contributions together, we get the solid curve shown in Fig. 8. 

In the figure, our representation of Rv(s) is compared to the values of R(s) from 

OLYA, CMD,13’ l and ADONE1431. As we can see, our function roughly fol lows the 

contour of the R(s) data. The discrepancy comes from the I = 0 and ss channels. 

To the r- + v,37r channel  we fit the Breit-Wigner function (7.18) except this 

time with 

(7.24) 

Lips(s; 3~) is the 3 pion Lorentz invariant phase space. This function is compared 

to the ARGUS results for R>(s) in Fig. 7(d). While we have a fit for Rv(s) 

which goes up to roughly 3 GeV, no data is avai lable for RA(s) above 1.8 GeV. We 

therefore add the function (7.20) to RA(s) in th’  is region with its position adjusted 
so that the first Weinberg sum rule is satisfied. (Because the integrand of the 

second Weinberg sum rule has as extra power of s, the integral is dominated at 

higher momenta. As a result, it does not help us determine to the shapes of Rv(s) 

and RA(S) in the infrared.) The final  result of this fit is the dashed l ine shown in 

Fig. 8. 

Now that we have obtained a function representing the values of Rv and RA 

in the famil iar strong interactions, we can construct a model  of Rv and RA in a 

technicolor model  by scal ing the various fit parameters according to the predictions 

of the large-N expansion, just as we did for a resonance parameters in (7.5). The 

formula (7.14) 11 a ows us to disentangle the various dependences of the 27r inter- 

mediate state on NTF and NTC. We represent the techni-p contribution to Rv(s) 

by a sum over the various pseudo-Goldstone bosons into which the techni-p can 

decay: 

RpT(s) = k 5 (1 - 2) 3’2 O(s - 4mf) 

I 

In this formula, 

4, 

ts - mzT)2 + m;TrpT(S)2 

rpT(s) = &&$g-.$ PT C (1 - q)3’2B(s - 4mf), 
i 

. . (7.25) 1 
(7.26) 
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and m; is the mass of the i-th pseudoscalar technimeson. The sum runs over 

pairs of mesons with I3 = fl, including the true Goldstone bosons. The factor 

- (~/NTFNTc) in front of the sum in (7.26) comes from the large-N resealing of 

Qpm and the techni-p mass mPT is obtained from equation (7.5). The mass of true 

Goldstone boson is set to zero while the masses of the PGB’s are taken from ref. 

44. 

The dependence of the other pieces of Rv and RA on NTF and NTC is more 

straightforward. The parameters of the Breit-Wigner function (7.18) and the con- 

tinuum function (7.20) are resealed according to 

F, NTFNTC f: -=--- 
mCC 2 3 m&D ' 

rdm$c) = - NTF 3 rQdm&~) 
(7.27) 

mTC 2 NTC 
, 

mQCD 

and the entire function is multiplied by (NTFNTc/~). The phase space factors in 

(7.19) and (7.24) are calculated with massless pions and PGB’s. After resealing the 

the vector and axial spectral functions do not necessarily converge rapidly at high 

energy. We thus evaluate S by cutting off the integral at a value s+. We choose 

s+ so that the resealed spectral functions, integrated up to this cutoff, continue to 

obey the first Weinberg sum rule. 

We evaluate S in this scheme for two types of technicolor model. The first 

is the minimal model with only one doublet of technifermions (NTF = 2). The 

resealed spectral functions are shown in Fig. 9 for the three cases NTC = 2, 3, and 

4. We evaluate S using these spectral functions and find 

s = 0.22 NTC=~, 

z 0.32 NTC = 3, (7.28) 

x 0.45 NTC =4. 

For the value of NTC = 3, we estimate an error of f0.03 from the model- 

dependence of the fit. The other values contain additional uncertainties due to 

large-N resealing. We expect this uncertainty to be about 25%. As a check of our 

model of the spectrum, the value quoted for NTC = 3 should agree with the value 

obtained from (5.14), using the Gasser-Leutweyler [331 value of &j and mH = 380 

MeV (resealed from 1 TeV): 

s = &k +I,% - $) = 0.309 f 0.034. (7.29) 

The error in (7.29) reflects the experimental uncertainty in the value of the pion 
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charge radius and the structure term in n+ + e+vr, from which z5 is obtained. 

The agreement of (7.29) with our determination for the case NTC = 3 is quite 

pleasing. To our knowledge, this is the first accurate check of the sum rule (5.12) 

against data from high-energy e+e- reactions. 

The second model we considered was that with one generation of technifermions 

(NTF = 8). In this model, the techni-p decays through the following channels: 

4 -+ P+P- 8 8 color octet PGB’s, mp, = 230GeV, 

+ PiPi + p-q-l 3 3 color triplet PGB’s, mp, = 150GeV, 

+ P+P- color singlet PGB’s, mp = GOGeV, 
(7.30) 

+ “T+“~ technipions, m%T = 0, 

where we have used the notation of ref. 45. The masses of the color octet and 

tripet PGB’s were taken from ref. 44 while the mass of P* was chosen to be larger 

than the experimental limit of roughly 40 GeV placed by LEP.14”’ Incorporating 

these decays into our techni-p function (7.25), we obtain the spectral functions 

shown in Fig. 10 for the three cases NTC = 2, 3, and 4. The value of S turns out 

to be: 

S = 0.80 NTC =2, 

.z 1.20 NTC = 3, (7.31) 

x 1.62 NTC = 4. 

These values should again be assigned a 25% error. 

It is amusing that the results of this detailed computation are all roughly 

consistent with the simple formula: 

NTFNTC 
s x 0.3 23’ (7.32) 

only slightly larger than (7.6) and with the same dependence on NTF and NTC. In 

all cases, the two-pion intermediate state (dominated by the techni-p) contributes 

roughly (0.4) to the prefactor of (7.32); the other contributions sum to a small 

subtraction from this value. To our surprise, we see no sign of the quadratic 

dependence on NTF indicated in (7.7) except as a redistribution of spectral weight 

between the techni-p peak and the two-pion continuum. 

Using our scaled-up QCD model as a reference point, we can evaluate the effect 

of possible modifications of the strong interaction spectrum due to alterations of 

the short-distance behavior of technicolor. One might expect two distinct effects: 

First, if psuedo-Goldstone bosons receive large masses from extended technicolor 
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interactions, their contribution to-S is decreased. Second, if the asymptotic be- 

havior of the hadronic vacuum polarization is altered, this can in turn alter the 

spectrum of resonances and thus the value of S. Let us consider these two effects 

in turn. 

Within our model, it is straightforward to assess the effect of increasing the 

pseudo-Goldstone boson masses, since these masses appear as parameters in (7.25). 

This formula implies that, while increasing the pseudo-Goldstone boson masses 
does decrease the contribution of the mass region well below the techni-p, it also 
has the effect of making the techni-p a narrower and more prominent resonance. In 

Fig. 11, we show the effect on Rv(s) of varying the pseudo-Goldstone boson mass, 

assuming a common mass for all pairs of bosons into which the techni-p decays, 

and values of the other parameters appropriate to the case NTF = 8, NTC = 3. 

The main effect of this modification is to shift spectral weight from low mass to 

the techni-p resonance, approximately preserving the total area. The value of S 

decreases only slightly as the common mass m of the pseudo-Goldstone bosons is 

increased. For the case NTF = 8, NTC = 3, we find a minimum of S for mp = 400 

GeV at the value S = 1.00, compared to S = 1.20 in (7.31). 

On the other hand, changes in the short-distance behavior may induce larger 

changes in S. In a recent paper, Sundrum and Hsu 1471 have estimated the asymp- 
totic behavior of the hadronic vacuum polarization in walking technicolor theories 

and used this to compute the effect on S. For the case NTF = 2, NTC = 3, they 

find that, well above the low-lying resonances: 

A4 
bw(42) - K4A(!12) - -p (7.33) 

where A x 300 MeV.(F,/f,). T o compute the change in S, Sundrum and Hsu use 

an exotic method of analytic continuation whose accuracy is difficult to estimate. 

To understand how large an effect to expect, we find it useful to apply the simple 

two-resonance model discussed at the beginning of this section, using (7.33) as a 

replacement for the second Weinberg sum rule. We find that the formula for S 

given in (7.4) is corrected by a term 

4TA4 
AS = - 2 2 x -0.1. 

mm-malT 
(7.34) 

This is a substantial decrease. However, this calculation represents a worse case, 

the assumption that, while the asymptotic behavior of the vacuum polarization 

changes, this function is still dominated by the two lowest-lying resonances. This 

is quite unlikely, especially since the second Weinberg sum rule is rigorously valid 
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(although very slowly convergent) in walking technicolor theories. But if we model 

the change in the vector spectral function as a change in the contribution of the 

second, rather than the lowest, resonance, the correction (7.34) decreases to 0.03 

and is within the noise of our large-N resealing. 

Thus, we have some confidence that the simple formula (7.32) gives a reasonable 

value of S not only in the simple technicolor models based on scaled-up strong 

interactions but also in modified, more realistic models of technicolor dynamics. 

In all cases, the contribution to S in technicolor models is much larger than the 

value we would naively obtain from (4.2): 

(7.35) 

The factor of 2 enhancement from (7.35) to (7.32) is a low-energy signature of the 

presence of new strong interactions at the TeV energy scale. 

8. Estimation of T 

Up to this point in our consideration of technicolor theories, we have concen- 

trated on the effects of technicolor interactions on S while ignoring their effects on 

2’. However, there are good reasons to expect that T is also substantially modified 

by technicolor interactions. Contributions to T arise from interactions which break 

custodial SU(2) y s mmetry. In any realistic technicolor model, such breaking must 

be present in order that the two quarks or leptons belonging to the same SU(2) 

multiplet receive different masses from the dynamical symmetry breaking. 

However, such isospin breaking effects are extremely difficult to estimate. For 

a systematic calculation using the X-expansion technique discussed in section 6, 

we must include the next to leading order diagrams in X to get a result comparable 

to the standard model calculations. This is because the analogue of the standard 

model diagram shown in Fig. 12(a) is given by the diagram shown in Fig. 12(b). 

Therefore, in order to calculate T, we need not only the two current correlator 

(vacuum polarization) but also the three and four current correlators. Whereas the 

two current correlator can be treated by writing a dispersive integral, it is much 

more difficult to represent, and evaluate the higher-point functions in a general 

strong interaction theory. In addition, even the leading order contribution in X 

is uncertain, because it involves the difference of charged and neutral spectral 

functions, which arises from perturbations of the basic strong interaction dynamics. 

In addition, the major source of isospin violation in technicolor models is the 

extended technicolor interaction. The form of this interaction is usually the most 
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model-dependent part of a realistic theory of technicolor. A further complication 

comes from the fact that the isospin mass splitting of the (t, b) doublet is extremely 

large. In constructing a model of extended technicolor, it is usually a difficult 

problem to allow enough isospin violation to generate a large top quark mass 
while restraining this isospin violation from generating a large correction to the p 

parameter or, in our notation, to T. 

In the literature, two methods have been proposed to solve this problem. In 

refs. 7 and 48, it was proposed that extended technicolor could generate a large top 

quark mass by enhancing the effect of hypercharge interactions, which naturally 

create a larger condensate for the charge t-i member of a doublet of techni-quarks. 

The authors of ref. 7 estimated the effect of this mechanism on T by evaluating 

vacuum polarization loops of non-interacting technifermions with running masses 

Cu(lc2) and Co(lc2): 

T= 

00 

1 1 

I 

2 

k2 + xi(@) - k2 + C$(k2) * (W 

The momentum dependence of the C’s were obtained by solving the gap equation. 

The approximation which leads to (8.1) is valid at momentum scales much higher 

than the technicolor scale where technicolor interactions are asymptotically free. 

However, the integral is dominated by the contribution from the technicolor scale 

which makes this estimate highly unreliable. 

If we neglect the momentum dependence of the C’s and crudely assume Cu - 

CD = rnt, then (8.1) is reduced to (4.2) and we find 

The factor in the parentheses is the standard .’ quark contribution. Note that if 

the technifermion doublet carries color, (8.2) must be multiplied by a factor of 3. 

The values of T for technicolor shown in Fig. 1 of ref. ~3 were obtained from (8.2). 

This simple approximation is not a bad representation of the more sophisticated 

numerical evaluate of (8.1). g iven in ref. 7. Even with that more careful evaluation, 

the contribution of (8.1) to T is expected to be dangerously large if ml > 100 GeV. 

A second method for obtaining a large ml, explored by King and Mannan PI 

and by Einhorn and WI Nash, places the isospin asymmetry in the spectrum of 

extended technicolor gauge bosons. The lightest of these bosons generates the 

top quark mass. These authors have obtained specific models with in which the 
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contribution to T is only a few tenths. The final result, though, is sensitive to 

the detailed structure of the technifermion condensate as well as to the explicit 

coupling of extended technicolor. 

These two estimates of the contribution to T share the feature that they are 

highly uncertain, both because they are based on arbitrary and unsystematic re- 

ductions of the full set of contributions to T and because they use crude approx- 

imations to strong interaction dyanamics. It is unlikely that anyone would claim 

that technicolor models are ruled out if the true value of T turns out to be much 

smaller than (8.2); the problem would simply be returned to the theorists for a 

better calculation or a better model. We consider it an important problem to de- 

vise a more rigorous representation for T, which might be useful in computing T 

more accurately in any given model for extended technicolor. But even if T could 
be computed accurately in a given model, the model-dependence of this quantity 

limits its usefulness as a means of confirming or excluding the idea of technicolor. 

9. Experimental Limits on S and T 

In this section, we will discuss the determination of S and T using the measured 

values of weak interaction observables. In particular, we will be interested in 

what constraints we can put on S independently of 7’. We will see that, even if 

T cannot be reliably estimated in technicolor models, the present constraints on 

S are sufficiently strong to exclude technicolor models with a full generation of 

technifermions. 

Since the appearance of ref. 13, a number of authors have presented fits of 
[14--181 

weak interaction data in terms of S and T or related parameters. Because 

of the dramatic improvement in the measured values of the 2’ parameters and 

asymmetries from LEP, the constraints on S and T are now considerably stronger 

than those which could be obtained in the summer of 1990. The analysis we will 

present in this section is quite similar to the recent fits of Battacharyya, Baner- 

jee, and Roy 1rs1 11’31 and Altarelli, Barbieri, and Jadach, and our conclusions agree 

substantially with those of these authors. Given the progress of weak interaction 

experimentation, it will also probably very soon be obsolete. But we feel it is a 

valuable part of our general review of the (S, T) p arametrization to explain the 

physics behind the experimental determination of S and T. 

In our formalism, each observable z depends linearly on S and T. Let us write 

the relation for a general observable z as: 

z(S,T) = xsm(mt, mH> + aA + W, 

where xsm (mt,mH) is the standard model prediction, computed at the reference 
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values of ml, and mH. In appendix B, we list these formulae for various observables 

with rnt = 150 GeV and mH = 1 TeV. According to (9.1), a precise experimental 

determination of x will restrict S and T to lie on a line in the S-T plane. By in- 

tersecting the lines corresponding to different observables, we can determine S and 

T and also, eventually, test the consistency of the restriction to a two-parameter 

space. In practice, experimental measurements have associated errors, so that the 

lines become bands in the S-T plane, and we must give a statistical criterion for 

their overlap. 

The key to a determination of S and T is the fact that different observable give 

lines of different slope in the S-T plane. By inspecting the table in appendix B, 

we can see that the various weak interaction observables are be separated by their 

S and T dependence into three general classes. In the first class are observables 

with relatively weak dependence on S compared to T. This class includes param- 

eters R, and gi which measure the charged to neutral current ratio in neutrino 

scattering, the various partial widths of the Z”, and, with only a slightly stronger 

S dependence, the mass of the W. In other words, this class includes all of the 

weak-interaction observables which were known with high precision prior to the 

summer of 1990. The second class includes the 2’ asymmetries, quantities which 

depend on S and T through sl(mi). The relative sensitivity of these quantities to 

S is made clear, for example, by comparing the first two lines of (3.13). 

Finally, there is a third class of measurements which are almost insensitive to 

T and so measure S directly. Marciano and Rosner P41 and Sandars1551 recognized 

that the strength of atomic parity violation has this property. To see why, take the 

matrix element of the low energy effective Lagrangian (2.24) and consider the piece 

which involves the axial-vector current of the electron times the coherent vector 

current matrix element in the atomic nucleus. This gives the following expression 

for the weak charge which determines the magnitude of atomic parity violation: 

Qw = -p*(O)[N- (1 -4s:(O))Z], (9.2) 

where N, 2 are the number of neutrons and protons in the nucleus. The expression 

(9.2) depends on T through both of the starred functions. The two T-dependent 

terms are: 

-(aT)[N - (1 - 4s2)2] + (;;“;:) ZT. (9.3) 

For the particular neutron content of cesium, N/Z = 1.41, the second term of (9.3) 

cancels 95% of the first term. A similar cancellation would hold for most elements 

in the lower half of the periodic table. Krauss [561 has pointed out that the same 
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cancellation occurs in the cross section for coherent neutral-current neutrino scat- 

tering, which will eventually be observed by bolometric detectors. Unfortunately, 

the cancellation does not occur in the isotope effect in atomic parity violation, the 

coefficient of N in (9.2), which has been proposed as an observable with a lower 

theoretical systematic error than [571 Qw. This latter observable belongs to the first 

class and so must compete with Iz and R, in its significance for weak-interaction 

theory. 

In Figs. 13 and 14, we show the present constraints on S and T from the 

measurement of the set of weak-interaction parameters listed in Table 1. The 

experimental values are plotted as bands in the S-T plane whose boundaries cor- 

respond to the 1 u errors. Figure 13 shows the best-measured variables of the first 

class (plus the value of &, which is obtained from the difference of R, and RF). 

Figure 14 shows the quite different constraint which comes from the second and 

third classes of observable. 

Just by inspection we can see that the overlap of the bands is greatest in the 

third quadrant of the S-T plane. To describe this overlap more quantitatively, we 

construct the likelihood function of S and T, given by [5f31 

L( Xezp; 
S, T) = N exp xezp -oh’s’ T, 

2 

)I (9.4) 

where the normalization factor N is such that 

J 

dS dT L(x+ S, T) = 1. 

The point which maximizes L(xe,p; S, T) is found to be 

(9.5) 

(S, T) = (-1.52, -0.69). W-9 

Figures 15 and 16 show this point and the 68% and 90% confidence level contours 

around it. In order to obtain the limits on S independent of T, we integrate 

L(xezp; S, T) over T to obtain a likelihood function of only S: 

00 

L(Xezp; S> = 
J 

dT L(xezp; S, T). 

-CO 

and interpret the quantity 

3 

p(S < 3) = 
J 

6’ L(xezp; S>+ 

--oo 

WI 

(9.8) 
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as the probability that S < 3. The 90% and the 95% one-sided upper confidence 

limits obtained from (9.8) are shown with the larger notches on the lower part of 

Fig. 15. This determination corresponds to S = -1.52 f 0.84. 

Let us emphasize that these limits on S and T refer specifically to their defi- 

nition as deviations from the standard model with the reference values rnt = 150 

GeV, mH = 1 TeV. For different values of ml and mH, the position of the likelihood 

contours on the S-T plane will be different. However, the shapes and sizes of these 

contours would be the same. This gives a convenient way to plot the influence of 

the reference rnt and mH on the S-T analysis: We simply hold the position of the 

likelihood contours fixed and plot the relative position of the origin with respect 

to these contours. As we vary mt, this relative position then sweeps out a contour 

in the S-T plane which roughly follows the displacements (4.4) but gives a more 

accurate accounting for small values of rnt. In Figs. 15 and 16, we have plotted 

the contours corresponding to Higgs boson masses of 1 TeV and 100 GeV. We find 

this plot a useful way to view the precision weak interaction data even in reference 

to the minimal standard model. For example, the subtle preference of the data for 

lower values of mH, noted by. many authors, is apparent in these figures. 

We have also plotted in the two figures our estimates of S and T for technicolor 

models with one doublet and one generation of technifermions. The estimate for 

S is that given in (7.28) and (7.31), and the estimates for T were obtained from 

(8.2). It seems that the data does not particularly favor either choice and seems 

quite inconsistent with the 1 generation case. 

In fact, it is noteworthy that, whereas the standard model gives small values 

of S and the corrections due to technicolor are positive, the experimental results 

favor a sizeable negative value of S. This makes it difficult to state the precise 

constraint on technicolor models that the data provides. A conservative criterion 

is the following: Let us assume a priori that the value of S is positive. Then the 

a posteriori probability that S < ?? is given by 

Jo3 dS L(xezp; 5’) 

‘(’ < ‘) = Jr dS L(xezp; S) ’ P-9) 

This criterion gives slightly weaker 90% and 95% one-sided upper confidence limits, 

which are shown with the unmarked smaller notches on Fig. 15. In particular, we 

conclude that technicolor models must satisfy the constraint 

s < 0.93 (95% conf .) (9.10) 

We emphasize that this is a new constraint for technicolor models, independent 

of previous constraints from flavor-changing neutral currents or the p parameter, 
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and one which is much less dependent on the details of technicolor and extended 

technicolor model-building. We have argued in Section 7 that this bound excludes 

technicolor models with a full generation of technifermions except in special limiting 

circumstances. 

Given the rate of progress in weak-interaction experimentation, we feel confi- 

dent that the results quoted in Table 1, and thus the bounds we have quoted on S 

and T, will soon be obsolete. We encourage experimenters---especially experiments 

involving the 2’ parameters and deep inelastic neutrino scattering which measure 

several observables-to present limits on S and T from their own experimental 

data as a complement to their more conventional fits to sin2 8,, ml, mH. We 

are pleased that the ALEPH experiment has already published a determination 

of S based only on their own data and taking into account the correlations and 

asymmetric errors of data points in a proper PI way. Converted to our conventions, 

their result is: S = -1.9 f 1.1; this compares favorably with the end result of our 

global analysis. Though the ALEPH paper reaches S through the determination of 

partial widths and asymmetries, it is also straightforward, and may eventually be 

more effective, to fit the measured differential cross sections directly to functions 

of S and T!“” 

To give an idea of the accuracy which should be achievable, we have evaluated 

the constraint on S which would follow, later in this decade, from the following set 

of precision measurements: mw, to 100 MeV; l?z, to 6 MeV (the systematic error 

in the theoretical prediction due to the uncertainty in os); AkB, to 0.005; and 

ALR, to 0.01. This set of measurements would determine S to f0.35. If ALR could 

be measured to 0.003, S will be known to f0.23. This is approximately equal to 

to 4/67r, the shift of S due to one heavy generation. 

There remains the question of whether, if the negative central value of S is 

confirmed, there is a model which can account for this. We do not know a simple 

model which gives such a large negative value of S. Recent works by Bertolini 

and Sirlin,[G1’ and Gates and Terning [621 suggest that one my be able to construct 

a model which predicts negative values for both S and T by including Majorana 

particles. Dugan and Randallr3’ and GeorgiF4’ have given other examples of weak 

quantum number assignments which lead to a negative value of S. Whether such 

an approach leads to a realistic theory which is compatible with the limits on S 

and T remains to be seen. 
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IO. Conclusions 

In this paper, we reviewed the general analysis of the oblique electroweak cor- 

rections to precision measurements. We started by reviewing the formalism of 

Kennedy and Lynn which summarized the effect of oblique corrections into the 

starred functions. A momentum expansion of the vaccum polarization amplitudes 

let us reduce the starred functions to just three parameters S, T, and U. 

The use of dispersion relations let us estimate S for strongly interacting theories 

in which perturbation theory cannot be used. For QCD-like technicolor, we found 

S to be positive and roughly proportional to the number of technifermion doublets. 

Analysis of the precision electroweak measurements puts a limit on S and T. 

The experimentally favored value of S turns out to be negative which rules out 

QCD-like technicolor theories with a large technisector. 

Constructing a model which predict negative values for S and T, and finding 

a reliable method for estimating T from theory remain as open problems. 
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APPENDIX A 

The following formulae represent the dependence of various observables on the 

starred functions. For comparison with experiment, vertex and box corrections 

that are not included in the starred functions must be added to these expressions 

though they generally turn out to be small. An exception is rbb which receives an 

important vertex correction involving the t-quark. QCD corrections are included 

in Nguart and kA. 

Z’widths: 

hmz rz = zz*- 
6s2c2 t3( 13f - s3QfWf 

* * f q2=m$ 

= 3rvL + 3rttt- + rhad 

rvF = ~~+cYtmZ 
24~2 c2 * * q2=m2 z 

rdz = rsa = rb6 = z,,s * * [ (-;+ $0” + (+q2] Nquarkl,;m; 

Asymmetries at the Z’pole: 

ALR= 

= 

[ 

(9i*j2 - (s!z*)2 

N* J2 + (9k* J2 I 

[-3 + s2(q2)12 - [4(q2)12 31 - 4s3q2)1 

[-a + s$(q2)12 + [s3(q2)12 = 1 + 11 - 44(q2)12 
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= L-3 + B4(q2)]2 - [g4(q2)]2 

[-3 + $Z(q2)12 + [$s2(q2)12 

1 _ k a, 

A-P > 

A& = $ALR]~ 

pr = - (d*J2 - (s;*)2 = -ALR 
[ (91*)2 + (9;;*)2 I 

Deep Inelastic Neutrino Scattering: 

CJ; = p*(o)2 [(gl*)Z + (&*,‘I = P*(Q2 [; - 40) + ;m] 
$I; = P*(Q2 [(&*I2 + k4*J2] = P*(o12 [em] 
R, = g; + Q& = P*Qq2 [ f - s?(O) + ;c1 + +:(o) 1 

Atomic Parity Violation: 

Cl, = Q*(O)[&* - s~*l[sZ* + 9;*1 = P*(O) 
[ 
-; + ;m 1 

Gd = %3*(O)@,* - &*1[9~* + &*I = P*(O) 
[2 3s* ] 1 - 2 2(o) 

Q&Z, N) = -2 [(22 + N)Cl, + (2 + 2N)C14 = -p*(O) [N - (1 - 4&))zj 
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APPENDIX B 

The following numbers are evaluated with rnt = 150GeV, mH = lOOOGeV, 

e2 = 4ra,,o(mi) = 4n/129, s2 = sin2 8,]Z = 0.23, and cys = 0.12. The constant 

terms on the right hand sides are the Standard Model predictions including oblique 

and direct corrections, and QED and QCD corrections. They are dependent on the 

values of ml and ?nJ$ while the coefficients of S, T, and U are not. For example, 

the standard model predictions for lYd;i and rbi; differ due to the fact that rbg 

receives an rnt dependent correction from the vertex diagrams containing the t- 

quark. However, the coefficients for S and T are the same because the oblique 

corrections are common. To evaluate R, and RF, we have used the CDHS[651 

values of r. Other experiments should use their own measured values of r together 

with the formulae for gi , gi below. 

mw 
- = 0.8787 - [3.15 x 10-3]S + [4.86 x 10-3]T + [3.70 x 10-3]U 
mz 

I’z = 2.484 - [9.58 x 1O-3]S + [2.615 x 10-2]T (GeV) 

l&- = 0.0835 - [1.91 x 1O-4]S + [7.83 x 10e4]T (GeV) 

ITILE = 0.2962 - [1.92 x 10-3]S+ [3.67 x 10W3]T (GeV) 

I’d2 = 0.3823 - [1.72 x 10m3]S + [4.20 x 10m3]T (GeV) 

rbi = 0.3779 - p.72 x 10-3]S+ [4.20 x 10m3]T (GeV) 

rhad = 1.7348 - [9.00 x 10-3]S + [1.993 x 10e2]T (GeV) 

Rz = rhad/rltp- = 20.78 - [5.99 X W2]S + [4.24 X 10m2]T 

sz(mi) = 0.2337 + [3.59 x 10W3]S - [2.54 x 10m3]T 

ALR = -P, = 0.1297 - [2.82 x 10-2]S + [2.00 x 10m2]T 

Ab FB = 0.0848 - [1.97 x 10-2]S + [1.40 x IO-“]T 

A& = 0.0126 - [6.72 x 10-3]S + [4.76 x 10-3]T 

9; = 0.3001 - [2.67 x 10-3]S + [6.53 x 10-3]T 

g; = 0.0302 + [9.17 x lo-*IS - [1.94 x 10-4]T 

R, = 0.3126 - [2.32 x 10-2]S + [6.46 x 10-2]T (r = 0.383) 

R, = 0.3824 - [2.77 x 10-3]S + [6.03 x 10-3]T (r = 0.371) 

Qw(‘;;Cs) = -73.31 - 0.790s - O.OllT 
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APPENDIX C 

In this appendix, we clarify the relation of the parameters of oblique corrections 

defined in Section 3 to those of other authors. 

First of all, we would like to clarify precisely how our formalism is a specializa- 

tion of the formalism of Kennedy and 
WI Lynn. As a part of their analysis, Kennedy 

and Lynn defined a running Fermi constant GF*(~~) and a running pparameter 

p*(q2) as: 

1 2 

4d-%*(q2) 

= 4 + [h1(q2) - l-13Qk12)] ’ 

$ * = 1 - 4d%+,(q2) [h(q2) - h(q2)] a 

F.1 > 

These functions enable us to write 

zz* 1 

q2 - M;, = e; 1 ’ 
q2 - - 

S:C: @GF& 

zw* 1 

q2 - M&* = e2 1 * 
q2 - f 

SE 4&p, 

Therefore, in the original version of the Kennedy and Lynn formalism, the effects 

of oblique corrections were summarized into just four starred functions: ez(q2), 

Kennedy and Lynn further define: 

A,(q2) - Wq2) - k(q2), 
Adq2) = - [h(q2) - h(o) - R&q2)] , (C-2) 
A3(q2) - - [Wq2) - n,,(o) - IhQ(q2)] . 

These A’s determine the running of p*( q2), GF* ( q2), and GF*( q2)p*( q2) in the 

following way: 

-+j = 1 - 4hGF,(q2)A,(q2), 
* 

1 1 

hbGF*(q2) = 4dG~ 
- Adq2), VW 

1 1 

hhh(q2)p+(q2) = ~&GFP@) 
- &(q2). 
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Note that only two of the A’s are independent; the three functions are related by 

A1(q2) - &(q2) = A,(O) - Ap(q2). (C.4) 

In our approximation (3.11)) the II’s do not contribute to the running of ef(q2) 

and sz(q2) so we only need to consider the running of GF* (q2) and p*(q2). The 

A’s in this approximation are given by 

kdq2) = D-hlP> - n33(0>] + q2 [G(o) - G,(O)] , 

Al h2) = -q2 [G,(O) - GQ(O)] 7 

A3(q2) = -I2 [G,(O) - l-G,(O)] * 

(C.5) 

Comparing with our definitions of S, T, U in (3.12), we find 

OS = -4e2 -$A3(q2) 
q&O ’ 

aT= ,2c,‘,, AP(O>~ 
z 

cdl = 4e2 -&AJq”) = -de2 
q2=0 

-$ [w12) - A3(q2)] 1 
q2=0 ’ 

F.6) 

minus, in all cases, the contributions from the reference standard model. 

In our original P31 paper, we introduced a two-parameter representation of elec- 

troweak corrections using S and T. In this paper, we have presented the three- 

parameter generalization with the additional parameter 17. Other three-parameter 

representations have appeared in the literature. Marciano and Rosner P41 have used 

the parameters Sz, SW, T; Kennedy and Langacker Fl have used the parameters 

- l161 hv, hAZ, FLAW; while Altarelli and Barbierl have used the parameters 61, 62, ~3. 

The various parameter choices are related to one another by 

CL9 = crsz = CthAZ = 4s2c3, 

crT=ahv=cl, 

Cd= cr(sw - sz) = a(hAw - hAZ) = -4s2E2. 

(C.7) 

Almost every analysis has used a different choice of the parameters of the 

reference standard model. We expect that, in the future, still more choices will be 

used as the preferred value of the top quark mass wanders. We hope that those 

who use this formalism will at least take care to state their reference point clearly. 
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APPENDIX D 

In this appendix, we present the parameters of the fit described in Section 7. 

Numbers without errors have not been fit but chosen. We remind the reader that 

the dominant source of error in our evaluation of S comes not from the choice of 

these parameters but rather from the fact that our parametrization is to simple to 

provide a complete description of the e+e- data. 

27r channel ( cf (7.14), (7.17)) 

mp = 776.0 f 0.5 (MeV) 

4~ channel ( cf. (7.18), (7.19)) 

m = 1710 f 17 (MeV) 

I’(m2) = 1440 f 120 (MeV) 

r ete- = 0.0084 f 0.0004 (MeV) 

[6n + 87r + - - -1 channel ( cf (7.20)) 

m = 2040 f 7 (MeV) 

y=; 

R asymp = 1.875 

37r channel: ( cf (7.18)) (7.24)) 

m = 1175 f 7 (MeV) 

I’(m2) = 387 f 19 (MeV) 

r ete- = 0.00420 f 0.00014 (MeV) 

[5n + 7n + - - -1 channel ( cf. (7.20)) 

m = 1740 (MeV) 

1 
Y=s 

R a.qymp = 1.875 
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FIGURE CAPTIONS 

1) Definition of the basic electroweak vacuum polarization amplitudes. 

2) Diagrams contributing to one loop electroweak radiative corrections (a) due 

to a heavy fermion, (b) due to the standard model Higgs boson. 

3) The one-loop diagrams involving Higgs particles, which contribute to S in 

Landau gauge. 

4) Diagrammatic expansion of the effective action PH. The shaded blobs are 

connected multi-W amplitudes computed from the Lagrangian LH. 

5) Ingredients of the X-expansion: (a) the 3-W and 4-W vertices, constructed 

from the gauge Lagrangian and the effective action PH; (b) the W propaga- 

tor. 

6) Diagrams contributing to fermion-fermion scattering in the X-expansion (a) 

> 

at tree level; (b) at one-loop order. 

Comparison of components of our parametrization of Rv and RA to total 

cross section data from-the OLYA, CMD, DM2, and ARGUS experiments: 

(a) e+e- + rr+r-; (b) e+e- + 27r+27r-; (c) e+e- + 67r, compared to eq. 

(7.20); (d) r -+ ur7r+27r-. 

Our parametrization of Rv(s) (solid line) and RA(s) (broken line) for QCD. 

These functions are compared to the measured values of the e+e- total cross 

section R(s) from OLYA, CMD, and ADONE. 

9) Rv(s) (solid line) and RA(s) (b ro en me k 1’ ) f or minimal technicolor, NTF = 2, 

for the cases NTC = 2, 3, 4. 

10) Rv(.s) (solid line) and RA(s) (b ro en me k 1’ ) f or one generation of technifermions, 

NTF = 8, for the cases NTC = 2, 3, 4. 

11) The shape of the techni-p resonance as a function of the PGB mass for the 

case NTF = 8, NTF = 3. The 15 pairs of PGB’s, into which the techni-p 

decays, are given a common mass mp which is varied from 50GeV to 450GeV 

at 50GeV intervals. 

12) Comparison of leading diagrams contributing to 2’ in the standard loop ex- 

pansion and the X-expansion. 

13) Bands in the S-T plane allowed, within la errors, by the first four measure- 

ments listed in Table 1. These observables belong to the first class discussed 

in the text. 

14) Bands in the S-T plane allowed, within la errors, by the last five measure- 

ments listed in Table 1. These observables belong to the second and third 

classes discussed in the text. 
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15) Contours of the likelihood function of S and T corresponding to 68% and 

90% probability, computed from the measurements listed in Table 1. The 

long notches at the bottom of the figure correspond to the 90% and 95% 

confidence upper limits on S in an unbiased analysis. The shorter notches 

show the locations of these limits it one imposes a priori that S > 0. 

16) Enlarged version of Fig. 15, showing the comparison of the region preferred 

by the fit with the predictions of the minimal standard model and two tech- 

nicolor models. The values of S and T for the minimal standard model are 

computed as described in the text, for Higgs boson masses of 100 GeV and 

1 TeV, as a function of the top quark mass. The stars denote values of ml 

from 75 GeV to 250 GeV in 25 GeV steps. The values of S in technicolor 

models are the values for NTC = 4 from Section 7. The values of T due to 

technicolor are computed from (8.2), as an indication of the possible size of 

this effect. Again, the stars denote values of rnt increasing from 75 GeV in 

steps of 25 GeV. 

TABLE CAPTIONS 

1: Measurements entering our determination of S and T. The value of sl(ms) 

listed is that determined from AeFB. The standard model predictions are 

given for the reference conditions mt = 150GeV, ?nH = 1TeV. 
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0 bservable 

mwlmz 
rz [GeVl 
9: 
9; 
Rz 
s%+ 
4H 
p, 
Qwt’;;W 

Measured Value Reference Standard Model 

0.8791 f 0.0034 51 0.8787 

2.487 f 0.009 23 2.484 

0.2977 f 0.0042 52 0.3001 

0.0317 f 0.0034 52 OiO302 

20.94 f 0.12 23 20.78 

0.2317 f 0.0030 23 0.2337 

0.135 f 0.031 23 0.0848 

-0.152 f 0.045 53 -0.1297 

-71.04 f 1.81 54 -73.31 

Table 1 
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