Estimation of Optimal PDE-based Denoising
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Abstract— This paper is concermned with finding the best PDE- It is thus important to determine what is the optimal point
based denoising process, out of a set of possible ones. We focugf stopping the process. This question is imperative, but,
either on finding the proper weight of the fidelity term in the surprisingly, was seriously addressed in the context of PDE

energy minimization formulation, or on determining the optimal . . .
stopping time of a nonlinear diffusion process. based image processing only by a few studies [11], [18],.[24]

A necessary condition for achieving maximal SNR is stated, Ve derive a necessary condition for optimality in the Signal
based on the covariance of the noise and the residual part. We to-Noise Ratio (SNR) sense. From a practical viewpoint,
provide two practical alternatives for estimating this condition, the condition suggests a numerical method that should be
by observing that the filtering of the image and the noise can fgjlowed for the purpose of maximizing the SNR of the

be approximated by a decoupling technique, with respect to the . : ;
weight or time parameters. Our automatic algorithm obtains filtered image. Two algorithms for the parameter calcutatio

quite accurate results on a variety of synthetic and natural aré pr0p0$ed1 based on the abovg Confjition,_ yieldi.ng fa@r#y
images, including piecewise smooth and textured ones. We assumeeurate estimates. From a theoretical viewpoint, this itatéds

that the statistics of the noise were previously estimated. Na- the computation of upper and lower bounds of the optimal
priori knowledge regarding the characteristics of the clean image strategy.

Is required . Next, we present an analysis of the optimal parameter from

A theoretical analysis is carried out, where several SNR . - . -
performance bounds are established for the optimal strategy an @ SNR viewpoint. We also examine the popular denoising

for a widely used method, wherein the variance of the residual Strategy, based on Morozov’s discrepancy principle [18gdu

part equals the variance of the noise. in the field of regularization theory. This method was most
notably used in variational image processing in the seminal

Rudin-Osher-Fatemi paper [18]. The selection of the weight

|. INTRODUCTION of the fidelity term is such that the variance of the residual

: . . . , part equals that of the noise. A lower bound on the SNR
The use of Pgrtlal Dlﬁgrentlal Equatpns .(PDE s) 1o "®9herformance of this strategy is established, as well as af pro
ularize images is becoming a very active f|e!d of researcElf non existence of an upper bound. Examples which illustrat
The elegance of the formulation, frequently via the Calsu“é/vorst— and best-case scenarios are presented and discussed

of variations, and the good results, attract researchersisers We demonstrate our method and show its advantages with
alike. For some comprehensive studies and background r%lgpect to the methods of [18], [11] and [24].

the subject see [1], [23], [4], [17], [22] and the references o\ \ain focus in this paper is on variational denoising
therein. Invariably, these methods require the deterrainadf &iei

ionificant ter in th Thi tor i ctions II-V). In Section Il we present the variational
a signincant parameter in the process. This parameter Is oising model and derive the optimality condition. Two
time, or number of iterations, in diffusion-like processes

ractical methods are provided for the approximation of thi
the weight of the fidelity term of the energy functional in th P PP

e N ondition in Section lll. In Section IV an analysis of the SNR
calculus of variations approach. In both cases, a simpiifica

fthe i ) hieved Vi q d I:)I:)Epen‘ormance is carried out, where lower and upper bounds
0 t € Image 1S ac |<3ve ,,V"f" a pargmeter- ependent . allé established. In Section V we present numerical resalts o
is desirable that the “true” signal will not be degraded ie th

a set of benchmark images. Similar methods are applied to

process of this simplification while noise is removed. Int’facdiffusion-like processes in Section VI. A detailed compari
both noiseand signal are being altered in the process. The f other stopping criteria is presented. The comparison is

Fhatlthe s||gna:j|§ aﬁﬁ cted is Cleatl,_r.:,mcl::eDaEr] image witholsen dcarried out from both theoretical and empirical viewpaints
IS also altered in the process. € S are constructe d nclusions and future directions are discussed in Section

before the structure of the image has been modified too muelhnd in ['10]
for example textured segments have become smooth. '
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Our aim is to find a decompositiom, v such thatu approxi- A. Condition for Optimal SNR

mates the original signal andv is the residual part of: We proceed by developing a necessary condition for the

optimal SNR. In this convex problem we have a single degree
of freedom of choosind’(v) [1], [3]. We therefore can regard
the SNR as a functionSNR(V (v)), and assume that it is
smooth (see examples of SNR functions of different images
in Fig. 8). A necessary condition for the maximum in the range
) ) V(v) € (0,V(f)) is:

Fao(u) = /Q (®(7ul) + A(w)?) ds2. @) DSV R

oV (v
® is assumed to be convex. For a condexhe solution(u, v) » ) .
exists and is unique [1]. More explanations and examplggwr'tmg V(n—v) asV(n) +V(v) - 2covn,v), and using
regarding this type of regularization can be seen e.g. i [1 /) and (3), yields
[6], [1], [21], [22], [8], [16]. Some of the following resust ocov(n,v) 1 8
are also applicable to the more general case of monotopicall ovViv) 92 )
increasing®. This holds as long aé is regularized so that a
minimizer exists (such as in the discrete case or by cormglvi
the gradient) and is unique. For the sake of simplicity
remain in the convex framework.

The condition [, fd2 = [, udS) is set, (corresponding to
the Neumann boundary condition of the evolutionary equ
tions). This yields[, vdQ = 0. Rescaling\ by the area of the
domain|Q|: A = A|Q|, we get

f=u+w.

We accomplish this decomposition by minimizing the follow
ing energy functional:

0. @)

The meaning of this condition may not appear at first glance
Wto be very clear. We therefore resort to our intuition: let us
fhink of an evolutionary process with scale paramétép).
We begin withV°(v) = 0 and increment the variance oby a
small amountZV (v), so that in the next steg*(v) = dV (v).
#he residual part of, v, contains now both part of the noise
and part of the signal. As long as in each step the noise is
mostly filtered, that is‘% > % then one should keep on
with the process and the SNR will increase. When we reach the
Eg(u,v) = / O(|Vul)dQ+ AV (v), f=u+wv. (4) -condition of (8), the noise and the signal are equally fillere
Q and one should therefore stop. If filtering is continued, enor
where V' (q) is the variance of a signaj signal than noise is filtered (in terms of variance) and th&SN
decreases.
1 9 There is also a possibility to have the maximum at the
Vig) = 19 /Q(q —q)7ds, boundaries: If the SNR is dropping from the beginning of the
process, we hav@%h/(“):o < % and the optimal SNR
andg is the mean value is SNRy. The other extreme case is when the SNR increases
monotonically and is maximized fdr (v) = V() (the trivial
g= i/ qdSQ. constant solutionu = f). We shall see later (Proposition
€2 Jo 3) that this can only happen whe$iN R, is negative or,
equivalently, wherV/ (s) < o2
In light of these considerations, provided that one can
1 estimate cogn,v), our basic numerical algorithm should be
cov(q, ) = [ /Q(q —q)(r —r)d. as follows:
1) Set co¥(n,v) =0, VO(v) =0,i=1.
Note that these quantities are based on the empirical defini2) V¢(v) «— Vi=1(v) + dV(v). Compute col(n,v).
tions, and therefore could be measured for a given image. We3) ¢ SOV (n,v) —cov T () 1 then stop.

The covariance of two signals is defined as

. . dV (v
recall the identity 4) i —1i+1. G(o)to step 2.
We will now suggest two ways to approximate the covariance
Vig+7) = Vig) + V() +2c0Mg. 7). oy % 5o AR

The SNR of the recovered signalis defined as Hl. ESTIMATING THE OPTIMAL SOLUTION

) V(s) Vi(s) In order to approximate c¢u,v), we need an estimate of
SNE(u) = 10log Vi(u—s) = 10log Vin—wv)’ ) the noise. We may try to L?SQ gnly segments of the image
where we have high confidence that we are able to distinguish
where log = log,o. The initial SNR of the input signal, between the noise and the image. These are typically the
denoted bySN Ry, where no processing is carried out£ f, smooth regions. The problem is that normally we do not know
v = 0), is according to (5) and (1): in advance which regions of the image are smooth and which
are not.
SNRy = SNR(f) = 10log Vis) = 10log V(s). (6) Our observation is that the extent of filtering of additive
V(n) o? noise, with respect ta, is not affected much by the underlying




image s. What mainly affects the denoising performance isause some side affects on the processed image near the patch
the extent of filtering ofs. This property is very natural in and which affect the computations carried within the patch,
the linear caseh x f=h x (s + n)=h x s + h x n, whereh are avoided.

is the filtering kernel, and- denotes convolution. We show The idea is to separate the computation into two phases.
that in some sense a similar decoupling can be applied Aopatch of noisen with similar statistics ton is processed
the nonlinear case. Currently, we investigate the podsitd and coyn,v) is measured with respect ta For the case of
obtain an analytic expression for the approximation error. white Gaussian noise, only? should be estimated in order
to generaten. Then the input image is processed and the
behavior of A with respect toV'(v) is measured. Combining
the information, it is possible to approximate how Gow)
behaves with respect t&'(v). In other words, we use the
chain-rule for differentiation:

acov(n,v)  odcov(n,v) O
oV (v) B ox  OV(v) )
ocov(n, v) oA

Q

o =" vV (v) [=otn-

Fig. 1. lllustration of the direct (patch) method. Left: inpmage f. Right:  The first term on the right-hand-side is a precomputed func-
a patch of pure noise with statistics similars#ois attached to the right side tion, or in the discrete case ofcan be regarded as a look-up
of f. table (see Fig. 2). The second term is computed while the
image is being processed.
In this scheme we rely on a very simplistic assumption

A. Direct Estimation that we can estimate the behavior of Gew) of any image

We assume that we have access to a source of a synthe@iged on the very degenerate case where the image is simply
noise generator. Instead of finding regions in the image gvhdture noise. Quite extraordinarily, our numerical experitse
we can estimate the noise, we S|mp|y extend the image WﬁhOW that the estimations are not so far from the ground truth
a "noise patch”. This patch is an extension of the imadéee Fig. 8, right side). A more comprehensive approach may
in one direction, by a constant function with additive noisaccommodate the computation of the functi&fis-") based
of variance o2 (as previously mentioned, we assume then a representative collection of natural images.
noise variance is knowa-priori or could be well estimated Numerical examples of both estimation methods are shown
beforehand). [See Fig. 1.] Knowing, for this patch, bath in Section V.
andn, we can compute their covariance. Note that although
cov(n,v) is estimated based on the patdf(v) is measured IV. SNR BOUNDS FOR THESCALAR ® PROCESS

in the usual way based on the original image domain.
In this section we address a few theoretical issues and

provide some bounds on the standard and optimal methods.
Let us denoteu® as the solution of (4) forf = z. For
example,u® is the solution wherg = s.
The decorrelation assumption is taken also betweamd
n with respect to theb process:

B. Indirect Estimation

cov(u®,n) =0, cov(u",s)=0, VYA>0. (10)

We further assume that tleprocess applied t¢ = s+n does
not amplify or sharpen either or n. This can be formulated
in terms of covariance as follows:

d(cov(v,n))/dA

cov(ust™, s) < cov(f,s), cov(ut™ n) < cov(f,n),
‘ ‘ YA > 0.
107 107 10° (12)
Both of the above assumptions were verified numerically on
Fig. 2. Precomputed function for indirect estimatiaicov(7,v)/8X is @ collection of natural images.
plotted as a function oh (log scale). Graphs depict p!ots for values af We are investigating the possibility to characterize in an
5,10, 15,20, from upper curve to lower curve, respectively. . .
analytical manner the appropriate spaces ahdn such that
(10) and (11) are followed. In this paper this question i$ lef
Another way of estimating cdw, v) is by an indirect man- open and we resort to the following definition:
ner, which does not rely on physically attaching a synthetic Definition 1 (s,n) pair): An (s,n) pair consists of two
patch to the image. Consequently, some minor inferencé$icorrelated signals andn which obey conditions (10) and
which may occur on the image-patch boundary, and whi¢hl).




Theorem 1:For any (s,n) pair and a convex increasing
o (P'(¢q) > 0,Yq > 0) the covariance matrix o/ =
(f,s,n,u,v)T has only non-negative elements.
For proof see the appendix. Theorem 1 implies that the denois
ing process has smoothing properties and that, conseguent!
there is no negative correlation between any two elements of
U. This basic theorem will be later used to establish several
bounds in our performance analysis.

Let us define the optimal SNR of a certairprocess applied
to an input imagef as:

SN Rope = max SNR(uy), (12)

where © = u) attains the minimal energy of (4) with |

weight parametei (for a given f, v is implied). We denote §

by (wopt, vopt) the decomposition paifu,v) that reaches §

SN R,pi, and defineV,,; = V (vopt)- O e T8
Equivalently, the desired variance could be set’és) =

where P is some constant, and then (4) is reformulated to%%

3. Approaching best-case scenario in piece-wise aahghages. In this
mple, forV (v) = o2, the SNR increases by almoabdB from 19.9dB

constrained convex optimization problem to 39.6dB (the variance of the noise is 135 of the input noise). Topy
(left), u (right). Bottom: v (left), SNR as a function o/ (v)/a? (right). In
. . H _ 2 _
mln/ ®(|Vu|)dQ subject toV (v) = P. (13) this caseVopr = 1.020%, SN Ropt = 40.2dB.
u
Q

In this formulation) is viewed as a Lagrange multiplier. The
value A can be computed using the Euler-Lagrange equations
and the pair(u, v):

P/le( (IVul) Vu |)de. (14)

The problem then transforms to which valde should be
imposed (see [3], [1] for details).

A popular denoising strategy ([13], [18]) is to assume n
and therefore impose

V(v) = o’ (15)

We define
SNRgz = SNR(U)‘V(U)Zgz, (16)

and denote by{u,2,v,2) the (u,v) pair that obeys (15) and .

minimizes (4). We shall now analyze this method for selertin -
u in terms of SNR. Ve 1o
Proposition 1 (SNR lower bound)mposing (15), for any Fig. 4. Approaching worst-case scenario in a checkereddbimaage. For
(s,n)-pair, SNR,= is bounded from below by V(v) = 02, the SNR decreases by aim@stB from 19.9dB to 17.0dB. Top:
f (left), u (right). Bottom: v (left), SNR as a function of/(v)/o? (right).
SNR,> > SNRy — 3dB, a7)

where we use the customary notatighB for 10log;,(2).
Proof: From Theorem 1 we have cov,v) > 0,
therefore,

Proposition 2 (SNR upper bound)mposing (15), there
SNR,: = 10log ) does not exist an upper bouaidk M < oo, whereSNR,> <

> 10log —:j(:)f}/(v) SNRy+ M, that is valid for any giver(s,n) pair.
— 10log Es) Proof: To prove this we need to show only a single case
_ SNR02— 3dB. where the SNR cannot be bounded. Let us assiifie =

ho?, 0 < h < 1. ThenSNRy = 10log h. Since the signal
B and noise are not correlated, we havef) = V(s)+V(n) =
The lower bound of Proposition 1 is reached only in the; + )52, We can writeV (f) also asV (u 4 v) = V(u) +
very rare and extreme case where @ow) = 0. This implies V (v)+2cov(u, v). From (15),V (v) = o2, and from Theorem
that only signal components were filtered out and no derpisin, coyu, v) > 0, thereforeV (1) < ho?. Since coyu, s) > 0
was accomplished. (Theorem 1) we geV (u—s) < 2ho?. This yieldsSNR,> >



10log 3 and
1
SNR0-2 — SNRO 2 1010g %

Thus, for anyM we can choose a sufficiently smallwhere
the bound does not hold. ]

Simulations that illustrate worst- and best-case scegario
are presented in Figs. 3 and 4. A signal that consists of a
single very contrasted step function is shown in Fig. 3. This
example illustrates a best-case scenario for an edge pirgger
®. SNR resulting from the PDE-based denoising is greatly
increased (by~ 20dB). Note that this case approximates an

~
~

ideal decompositiony ~ s, v ~ n, which differs from the

simple case used in the proof of Proposition 2. A worst-cagdunction of Vo /o2.

ey
o

W W
o o

N
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Fig. 5. Visualization of Theorem 2: Upper bound 8NV Ropt — SNRg as
For Vopt — o2 the bound approaches.

scenario is illustrated in Fig. 4 by means of the Checkered-

board example. A very oscillatory signalis being denoised

and, in the process, is heavily degraded. The reduction R,SN-or the lower bound we use the relation shown in Proposition

compared toSN Ry, is ~ 2.9dB, close to the theoreticald B
bound.

A. Regular SNR

Our experience shows that in these well-behaved denoising

3 comn, vopt) > Vopt For the upper bound we use two
upper bounds on cc@u vopt) and take their minimum. The
first one, coyn, vep:) < o+/Vopt, iS @ general upper bound on
covariance. The second relation, €oyv,,:) < o2, is outlined
in Proposition 3.

[ ]

processes the SNR does not oscillate and has a single maxx plot of the upper bound of the optimal SNR with respect
imum. We use this significant observation for our estimatio@ v/, /o2 is depicted in Fig. 5.

procedures and would like to assume this property also fr th |n practice, the flow is not performed by directly increasing

theoretical analysis. Let us define first the SNR regularity:

Definition 2 (Regular SNR)We define the function
SNR(V(v)) as regular if (8) is a sufficient condition for
optimality or if the optimum is at the boundaries.

Proposition 3 (Range of optimal SNRIf: the SNR is reg-
ular, then for any(s,n) pair 0 < V,,; < 202

Proof: Let us first show the relation céw,v) < o*:

cov(n, f) = cov(n,n + s) = V(n) 4+ cov(n, s) = 2. On the
other hand cofn, f) = cov(n, u+v) = cov(n, u) +cov(n, v).
The relation is validated by using cov, ) > 0 (Theorem 1).

We reach the upper bound by the following inequalities:

opt Ocov(n, ’U)
oV (v)

a2 > cov(n,v)|v,,, = Jo"
S 8V () = Hop,

av(v) >

The second inequality is based on the fact t ((7;7)”) > 1

for V(v) € (0, Vope), When the SNR is regular.

The lower boundV,,, = 0 is reached whenever
ocov(n,v) 1 n

v [Vw=0 < 3 _

Theorem 2 (Bound on the optimal SNRf): the SNR
is regular, then for any(s,n) pair and V,, €
{[0,0), (0% 20°]},

0<SNRopt —SNRy <
—1010g(1+V0pt/02—2\/Vopt/02), OS‘/opt<O'2
—10log(Vopt/o? — 1), 0% < Vopr < 207
(18)

Proof:
variance expression, we have

o2

).
02 + Vopt — 2C0V(n, Vot )
p P (19)

SNRopt — SNRO =10 log(

V(v), but by decreasing the value of. Therefore, it is
instructive to check the change bf(v), as well as the other
energies,with respect to a changelinin the next proposition
we show that as\ decreases the total enerdys strictly
decreases, the energy tedh (v) = V(v) increases whereas
the energy tem¥, (u) = [, ®(|Vu|)dQ decreases.
Proposition 4 (Energy change as a function)gf The
energy parts of Eq. (4) vary as a function Jofas follows:

9 > 0, OF, <0, 9L, > 0. (20)
. oA
The proof is in the appendix.
Ours Ours
Image SNRo | SNRopt | SNR_ 2 | SNRg;r | SNRipg
Cameraman|| 15.86 19.56 19.32 19.50 19.50
Lena 13.47 18.19 17.65 18.13 18.18
Boats 15.61 20.23 19.83 20.16 20.22
Barbara 14.73 16.86 16.21 16.73 16.64
Toys 10.00 17.69 17.29 17.66 17.65
Sailboat 10.36 15.51 15.16 15.48 15.48
Average
difference
from
SNRopt 4.67 N/A 0.43 0.06 0.06
TABLE |

COMPARISON OF METHODS PRESENTED IN SECTIONI: D ENOISING
RESULTS OF SEVERAL IMAGES WIDELY USED IN IMAGE PROCESSINGIHE
ORIGINAL IMAGES WERE DEGRADED BY ADDITIVE WHITE GAUSSIAN
NOISE (o = 10) PRIOR TO THEIR PROCESSING

By the SNR definition, (5), and expanding the

V. VARIATIONAL DENOISING EXPERIMENTS

We compare our two methods for finding with the
standard method of imposing (15) and with the optimal
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d(cov(v,n))/dV(v)
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Fig. 6. Denoising part of the Boats image. Top rawleft), f (right). Middle

row: u by our direct estimation (lefty by standard method{(v) = o2,

right). Bottom row: SNR (left), andcov(n,v)/0V (v) (right) as a function
of V(v)/o2.

which maximizes the SNR. Six classical benchmark images
are processed: Cameraman, Lena, Boats, Barbara, Toys ar
Sailboat. The summary of the results is shown in Table I.
Both of our methods are quite close to the optimal denoising
(less than0.1dB difference on average) and perform better

than the standard scheme.

In Figures 6 and 7 results are shown for the direct and
indirect estimations, respectively. Qualitatively, theogosed
method (with both estimation techniques) tends to better .

. . Fig. 7. Top row: f. Second row:s (left), n. Third row: u (left), v by our
preserve the textural information than the standard method,§irect estimation. Bottom rov (left), v by standard method/(v) = o2).

We used®(s) = v/1+ s2, which can be viewed as the
Vogel-Oman [21] regularization of TV [18] witk = 1 or
the Charbonnier [5] process. The image grey-level range is

1: 256 so edges are well preserved. Other details about thés[16], [19] to learn more on the close connections between

experiment can be found in the appendix. variational denoising and nonlinear diffusion methodsg an
In Fig. 8 the termsSNR(u) and 2%(-) are plotted as the similar role of the weight and time parameters. In the

functions of the normalized variandé(v)/o. It is apparent evolutionary case one has to select the best stopping Time

that the SNR is smooth and behaves regularly, in accordanggr definitions are changed somewhat, but essentially have

with our assumptions. An interesting phenomenon is that the same sense. The process is
covariance derivative estimation tends to be more accurate

near the critical point wher ‘390“;(’1’;;’) = 1. Naturally, this _

is advantageous to our algorithm. We currently have no up = div(c(|Vul)Vu),  ul=o = f, (21)

explanation for this behavior.

wherec(|Vu|) is the adaptive diffusion coefficient. For convex
VI. EVOLUTIONARY FLOWS processes one has to validate tliat:(q)qdq is convex [1]. We
The process of the estimation of the optimal solution can lbefinev(x;t) = f(z) — u(x;t). In this formulationdV (v) is
similarly formulated in evolutionary flows that do not have aefined asiV (v(t)) = V(v(t)) — V(v(t — dt)). Other similar
fidelity term, e.g. [15], [23], [24], [11], [9]. We refer theader changes in notations are straightforward. For example, the



0o !

- SNR

Optimal
Standard
Ours

d(cov(v,n)/dV(v)

--- Real
—— Estimated

05

v 1 a?

0o * !

- SNR

Optimal
Standard
Ours

0.5

1
v 1 a?

d(cov(v,n))/dV(v)

Ind
@

=
o

--- Real
—— Estimated

0 05

v/ o?

1

Lo

0,

0o ¥ !

- SNR

Optimal

Standard
Ours

0.5

1
v/ 6?

Ind
@

=
@

d(cov(v,n))/dV(v)

--- Real
—— Estimated

0.5

v/ o?

0.5

v/ 6?

g
2

N}

=
o

--- Real
—— Estimated

The underlying assumption of the method is thatarries

most of the noise at the beginning of the denoising process.

As corr(s,n) = 0 it is argued that a reasonable decomposition

would be at a time where the correlation betweeand v is

minimal (in practice, the first local minimum is sought).
Weickert's method requires that

V(u(T)) 1
V() 1+V(n)/V(s)
or equivalentlyV (u) = V'(s), which can also be written as
V(v) =V(n) — 2cov(u, v). (25)

All three methods of imposing (15), [11] and [24], work
well on piecewise smooth images (without fine-scale feajure
In all three methods the decomposition is ndafv) =
V(n), which approaches the optimal decomposition in these
cases. Using the method of [24] the process is often stopped
considerably before the optimal time.

The other approaches differ from each other and from
our proposed method in the non-ideal cases of most natural
images, where images contain textured regions and findsletai

The main advantage of the method proposed in [11] is
that no knowledge of the noise variance is required. It is
also easy to compute, without any need for estimations. It
is, however, not always practical to use this method for all
classes of images. If the denoising process smoothes also
some significant components of the signal, such that we ¢anno

(24)

d(cov(v,n)/dV(v)

/ --- SNR
) *  Optimal

! Standard
Ours

assumev = n, the stopping criterion of (23) may produce
undesirable results. Actually, its performance in terms of
SNR, cannot be bound from below such as is determined by
Proposition 1. One can construct examples where the stgppin
Fig. 8. SNR as a function of/(v)/o2 (left). dcov(n,v)/dV(v) as a time should be near = 0, whereas cofu,v) decreases for
function of V(v)/o? (right), as computed by indirect estimation (solid) anca very long duration. This can be illustrated, for example, b
the ground truth (dashed). Graphs depict processing ofdi@aing natural  {ha checkered-board image. The curves of the SNR function
images (from top): Cameraman, Lena, Toys, Boats. . . . . L
and the correlation are depicted in Fig. 10. In a more réalist
example of processing the Barbara image (Fig. 11), theteesul
are not as extreme, but image is considerably over-smoothed
The method of [24] is similar in its spirit to imposing (15).
Here, though, the terracov(u, v) is being deducted, resulting
in an early stopping of the process (especially wheand v

. . . . . .., are highly correlated as in the case of textured imagesnyn a
The detailed algorithm for implementing this method is ie thcase, the stopping time is in the 'safe’ regiiiév) < o2 (and

appendix. Note that we usk (time) as the scale parametec[hus its performance has a lower bound)
(and notV'(v)) as, though’(v(t)) almost always increases 1,0 " jifferences between our method and those of [24]

with time, we cannot guarantee it. and [11] are illustrated in In Figs. 11, 12 and 13. The
Barbara image, contaminated by additive white Gaussiagenoi
A. Comparison to Previous Stopping Mechanisms (0 = 10) is processed by the nonlinear diffusion equation
A comprehensive study of the stopping time problem 1), with c¢(s) = 1/v1+ s2. The image contains smooth
discussed in [11]. Here we relate to the most recent methiggions and highly textured ones. This breaks the implicit
proposed by Mrazek and Navara [11] and the more classiéssumption of both [24] and [11], which regardsis mostly
one suggested by Weickert in [24]. containing noise. In partly textured images.contains both
The former aims at finding the point in time of minimalnoise and texture. In the case of [24], the term (eQw) is
correlation betweem andv: large, and the process stops too early. In the case of [11],
the consequences are more severe andw«arf is minimal
only when the texture is smoothed out (see Fig. 12 for a plot
of the correlation function). In terms of SNR, applying the
method of [11] to this image results in a drop of more than
3dB below SNRy. The SNR results areSNR, = 14.73,

oo

ne

o

.
5}
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indirect estimation of Eq. (9), for evolutionary flows is
ocov(n, v) acov(ﬁ,v)‘ ot |
v (v) ot TThov(y) =

(22)

T = argmin {corr(u(t),v(t))}, (23)

where
cov(u, v)

corr(u,v) = W



0.16
25 T T T T T 0.14
’;?0.12
=}
201 =
8 01
o
5, — SNR 0.08
o 15f w * Optimal 1
% O Ours
A Weickert 0.06
o Mrazek-Navara 0 5 10 1{5 2 % %
10t __ SNRy |
SNR Fig. 12.  Processing Barbara image. ¢atrw) as a function oft. The
SO minimum is marked with 'X’. As seen in the SNR plot, the minimum
% 10 20 20 20 50 50 correlation is not attained near the time with the largest SNR

Fig. 9. Processing a step image (as in Fig. 3). SNR plot as didumof ¢.
Stopping time is sufficiently close to the optimal selectionbdmth methods
of Mrazek-Navara and ours.

SNR [dB]
corr(u,v)

--- Real
—— Estimated

e I
0 N 2

d(cov(v,n))/dV(v)

-

o

Fig. 10. A checkered-board image (medium contrast) with ndiep: Left

- SNR as a function of, right - cor(u,v) as a function oft, bottom -

dcov(n,v)/dV (v) as a function of. Whereas the criterion of Eq. (23) cannotrijg. 13.  Effects of stopping criterion on processing resuf different
be used in this example (no local minimum near 0), our estimatfom®  stopping times, processing Barbara image (head part is shotep) left:
general criterion stated in Eq. (8) works well also on higteytured signals nojsy imagef; Right - Weickert's method (24). Bottom left: Mrazek-Navara
(stopping time isI" = 0.12 versus the optimal’,,; = 0.09). (23), right - our method of direct estimation.

SNRy, = 16.65, SNRy = 16.19, SNRyn = 11.51,
SNRgsz = 16.59, which stand for the SNR of the input

® image, the optimal denoising, the method of [24] , the method
 fw —sw —Eotimated of [11] and our direct estimation method (attaching a “noise
s o gus = patch”), respectively. For the image results see Fig. 13.
k=2 o o Mrazek-Navara | =

VIl. CONCLUSION

Most image denoising processes are quite sensitive to the

N E e s wm % B w B % choice and fine tuning of various parameters. In order totreac
fully automatic denoising procedures, systematic methlwdo

Fig. 11. Processing Barbara image. Left: SNR plot as a funaifa. Right:  gies for determining the appropriate parameters of a given

deov(n, v)/dV (v) as a function of. image are a prerequisite. This problem motivated us to dpvel

a new method for the optimal choice of the scale of interest, a

significant parameter in PDE-based denoising, represdated




the weight of the fidelity term\ in the variational formulation, and Learning, a European Network of Excellence funded by the

or by the stopping timd’ in evolutionary processes. EC 6th Framework IST Programme, the Israeli Ministry of Science,
Our criterion is to maximize the SNR, resulting from thehe Israel Science Foundation, the Tel-Aviv University fund and

application of a PDE-based denoising process. We provithe Adams Center. Yehoshua Zeevi acknowledges support by the

two practical alternatives for estimating this conditidoy Ollendorf Minerva Center, the Fund for the Promotion of Research

observing that the filtering of the noise with respect to tha the Technion and the HASSIP Research Network program HPRN-

weight or the time parameters is in some sense decoup&n2002-00285, funded by the European Commission.

of the filtering of the clean image. Thus, we can study the

behavior of a noise with similar statistics with respecthe t

nonlinear filtering process and utilize it for the approxiioa. APPENDIX

This is done without assuming any knowledge of the clean

image. Our method yields with sufficient accuracy the first PROOF OFTHEOREM 1

local maximum of the SNR with respect to the variance

of the residual party (or time in nonlinear diffusion). In  The covariance matrix o/ = (f,s,n,u,v)" has 25

principle, there can be additional local maxima at largeles: €lements. Since cdy, ) = cov(r, ¢), the matrix is symmetric.
with higher values of SNR. In practice, however, we havéhe diagonal is the variance of each element, which is non
not encountered a natural image nor managed to generat@egative. Therefore we have to check the covariance of the 10
synthetic one, wherein the SNR depicts more than a singliements of the upper right triangle.
maximum. Our experience leads us to the empirical conatusio We recall the identity
that such cases with peculiar SNR are quite rare in convex
PDE-based processing. cov(q + 7,5+ t) = cov(gs) 4 coV(qt) 4 cov(rs) + cov(rt).

We compare the performance of our algorithm with the per-
formance of those obtained by means of previously proposedthe sequel we consider all 10 possible signal pairs ana/ sho
algorithms [18], [11], [24] and demonstrate that our methaghat their covariance is non-negative.
achieves better results on a series of benchmark images.

Bounds on the SNR of the optimal strategy (which we
estimate) and the one us_ed by ROF' [18] are present%gv(s’ n), cov(f, s), cov(f,
These are proved for all signal and noise pairs which obey
a strong decorrelation property (10) and a non-enhancemengince s andn are not correlated, we have deyn) = 0,
property (11), with respect to the process. Further stuti@g cov(f,s) = cov(s +n,s) = V(s) > 0, cov(f,n) = cov(s +
extend this framework by finding new bounds and relations or,n) = V(n) > 0.
perhaps, by using more relaxed assumptions. At this stage, w
have not found a numerical example where these assumptions
are violated. cov(u,v), cov(f,u), cov(f,v)

We should also comment that the SNR criterion is not
always in accord with human-based subjective criteria of Once we prove cdw,v) > 0, then we readily have
quality evaluations. For the purpose of achieving thisegth COvV(f,u) = cov(u + v,u) = V(u) + cov(u,v) > 0 and
more sophisticated criteria, may also be applied for patameCoV(f,v) = coV(u + v,v) = V(v) + cov(u,v) > 0.
selection using the spirit of the methods presented hereaFo We follow the spirit of the proof of Meyer [12]. As the
recent report applying this method to a generalized Hitbeifu, v) decomposition minimizes the energy of Eq. (4), we can
space SNR we refer the reader to [2]. Thus, whereas thete for any functionh € BV and scalae > 0 the following
criterion developed and applied in this study yields sudfitly  inequality:
promising results, it may be further elaborated and, peshap
comkbined with additional criteria under the variationarfre- / O(|V (u—eh)|)dQ+NV (v-+eh) > / O(|Vu|)dQ+ AV (v).
work. Q Q

We have restricted the analysis, for practical reasons, to . ) (26)
examination of the widely-studied classical case of adaliti ReplacingV (v +¢eh) by V(v) 4+ €2V (h) + 2ecov(v, h) we get
white Gaussian noise. Filtering other types of additive and
uncorrelated noise may be analyzed in a similar mann@hecov(v, h) > / (®(|Vul) — ©(|V(u — €h)])) dQ=A*V (h).
Generalizations to other regularization processes, amibie Q
stationary spatially varying parameters [8], are underemir
investigation.

n)

Replacingh by u and dividing both sides by we get

1
Acknowledgements 2Xxcov(v, u) > — / (@(|Vul) — 2(|V(u — eu)|)) d2=AeV (u).
Q
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contracts ITR ACI-0321917, DMS-0312222, and the NIH unddn the limit ase — 0, the right term on the right-hand-side
contract P20 MH65166. Nir Sochen acknowledges support by MUganishes. Sinceb is increasing, the term in the integral is
CLE, Multimedia Understanding through Semantics, Computatioton-negative.
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cov(s,u), cov(n,u) Part Il: E,, E,

Let us first examine an equivalent minimization problem to We examine both energies together and show that the only
minimizing (4). Sincev = s + n — u, thenw that minimizes possible option is thaf’, decreases and, increases as

Es is decreases. Let us state the four possible optionsdesreases:
u = argmin,{ [, ®(|Vu|)dQ + AV (s +n —u)} () E, is increasing and?, is nondecreasing.
= argmin,{ [, ®(|Vu|)dQ + A(V(s) + V(n) + V(u) (b) E, is nonincreasing am_EU is decr(_easmg.
+2c0V(s, n) — 2c0V(s, u) — 2cov(n, u))}. (c) E, isincreasing andv, is decreasing.

(d) E, is nonincreasing and’, is nondecreasing.

We can dlsregard_ expressions. that (.jo not mvoiuegnd,_ Option (a) is contradicted by setting the péify,,vy,) in the
_th.erefore, the equivalent energy functional to be mm'm'zeenergy WithA = Ao — ¢, reaching the contradictios, (us, )+
IS: (Ao — €)Ey(vy,) < Eal|r,—e. Option (b) is contradicted
E@(u) _ / @(\VuDdQ—i—/\(V(u)—QCOV(s,u)—QCOV(n,u))7 by setting the pair(uxo,e-, U')\O,G) in the energy withA =

Q Mo, reaching the contradictioft,, (ux,—c) + Ao Ey(va,—c) <

L . (27) Es|x,-

wherew = argmin, { Ep(u)}. Since co¥s,u) +cov(n,u) = option () is somewhat more subtle. We assume that
cov(f,u) > 0 at least one of the terms covu) or coMn, u) E,(vy,_.) decreases by some measute > 0. Then E,

must be non-negative. We will now show, by contradiction, st pe bounded b (vr_c) < Eu(vy,) + ek, (else we
u 0—€ u 0 €

that it is not possible that the other term be negative. Let ys, . an immediate contradiction similar to option (a))this
assume, without loss of generality, that cow°*") > 0 and  .oqe we get the following inequalities

cov(n, u*T™) < 0. We denote the optimal (minimal) energy of

(27) with f = s+ 71 as E%| j—.+n. The energy can be written Ey(ung—e) + AoEy(vrs—e)

as < Eu(uko) +eK. + )\0E1)(U>\0—€)
% n s+n :EU(UA )<i>€‘l:{€+(>‘076)(E‘U(vA )7K€)
Eglr=stn = Ealp=sin(u™") ¢ °

+e(Ey(vr,) — Ke)
= Eu(U)\O) + )\OEv('U/\o) — ()\() — G)Ke.

Since the ternj\o—¢) K is positive we reach the contradiction
Eu(u)\ofe) + AOEU(U)\Ufe) < E<I>|)\g-

= [, ®(Vust)dQ + AV (us)  (28)
—2coVv(s, u*T™) — 2cov(n, ust™)).

On the other hand, according to condition (10), @dvn) = 0
and we have

R Option (d) is, therefore, the only valid one. ]
Eplp=sin(u®) = [o ®(|Vu?])dQ + A(V (u®) — 2c0V(s, u%))

= Ej|f=s < Eo|p=s(u®™) DETAILED ALGORITHMS

= [ @(Vut)dQ + A(V () — 2cov(s, u*t")). We give below the general algorithm that covers both denoising

. . . methods (energy-based / time-flow) and both estimations (direct /
Inthe above final . expre§3|on, ad?"”g the t(?”‘fﬁdirect). When there is a difference in the algorithm we write

—X2cov(n, u*t") we obtain the right hand side of expressiofhe energy-based first and the time-flow second in curly brackets:
(28). Since we assume dov,u®t™) < 0, we get the {Energy}{Flow}. Explanations about parameters and a few remarks

following contradiction appear hereafter.
Eo|f=sin(u®) < Eg|r=sin- Main
Similarly, the opposite case cpv,u*™™) > 0 and 1) Parametersszp, N, {\°, \,}{DT}.

0 0 .
cov(s,u*t™) < 0 is not possible. 2) SetEcov” =0,v"=0,i=0.
(5, u*"") P 3) Initialize according to method.

4) Loop
cov(s,v), cov(n,v) a) i —i+1, _{)‘i - )‘iil)‘"}{_} C i—1 I
This follows directly from condition (11) as c@y,s) = b) g;g?&:ﬁgﬂo% {{E%q'(g)),vécgli‘in&?f}luby DaTS}.'mt'al
cov(u, s) + cov(v, s) and co\ f,n) = cov(u,n) + cov(v,n). ) v — f—ul.
d) DEcov' — Estimated covariance derivative according to
method.
PROOF OFPROPOSITION4 &) until (DEcov’ < 1 (o (i = N,))
Proof: 5) (If direct method, remove patch from)

6) Returnu'~!
Part I: Egp

Let us defingu,,, vy,) as the solution foEg with A = Ay.
Then for any\ = Ay — ¢, where(0 < ¢ < )y, we have

Direct method
Initialization: adding a patch to the right of the image.
1) mec < mean value of right column of image.

Eolxe = [Jo®([Vux|)dQ+ XV (vy,) 2) n,(k,1) «— patch of random noise with varianee.
> Jo ©(IVux, [)dQ + (Ao — €)V (vx,) 33 }"P(k’l[}}_ﬁc“‘”f{(kvlt) tch to right of image). We def
. - — concatenate patch to right of image). We define
E ming, ) Jo (IVul)dQ + (Ao — o)V (v) Q= QOPU Q,, where (), contains the input image and,

Eg|xo—e- contains the patch.
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Estimation of covariance: [71 HW. Engl, H. Gfrerer, “A posteriori parameter choice for
general regularization methods for solving linear ill-posed prob-
lems”, Appl. Numer. Math, 4(5), 395 - 417, 1988.

[8] G. Gilboa, N. Sochen, Y.Y. Zeevi, “Texture preserving varia-
tional denoising using an adaptive fidelity term”, Proc. VLSM
2003, Nice, France, pp. 137-144, 2003.

[9] G. Gilboa, N. Sochen, Y.Y. Zeevi, “Image enhancement and
denoising by complex diffusion processes”, PAMI 26(8), pp.

1) v}[‘,\ﬂpH fla, —u'la,.
2) Ecov' << vy, n, > (discrete covariance, see (29)).
3) DEcov’ « (Ecov’ — Ecov'™ ") /(V(v") = V(v'™h) .

Indirect method

Precomputing a discrete estimation X(}"{‘t”f. 1020-1036. 2004.

1) Parameterss?, N, szp, {\o, \r }{DT}. [10] G. Gilboa, N. Sochen, Y.Y. Zeevi, “Estimation of the optimal
2) f < noise patch. variational parameter via SNR analysis”, Scale-Space 2005,
3) Loop @« 1;i"F;i < Np) LNCS 3459, R. Kimmel, N. Sochen, J. Weickert (Eds.), pp.

230-241, 2005.
[11] P. Mrazek, M. Navara, “Selection of optimal stopping time for
nonlinear diffusion filtering”, 1IJCV, v. 52, no. 2/3, pp. 189-203,

a) {X" = NN H
b) Computeu’,v" as in Main.
C) Ecov' —< ', f > (see (29)).

i i i—1 i yi—1 2003.
d) DEcovyre — (Ecov’ = Eeov™ ) {(N' =A"JHDT} [12] Y. Meyer, Oscillating Patterns in Image Processing and Non-
4) Return vectotD Ecovpre linear Evolution EquationsVol. 22 University Lecture Series,
Estimation of covariance: AMS, 2001.
1) DEcov’ « DEcov;m AN = X THYDTY/(V (') — [13] V. A. Morozov, “On the S.olution of Functional Equations by
V(™). the Method of Regularization”, Soviet Math. Dokl., Vol. 7, pp.

414-417, 1966.

Remarks ) ) [14] S. Pereverzev, E. Schock, “Morozov’s discrepancy priecipr
« Parameters (in brackets are values used for processing natural Tikhonov regularization of severely ill-posed problems in finite-
images): dimensional subspaces”, Numer. Funct. Anal. Optim, 21, pp.
1) szp - size of patch (direct 10x(image length) pixels, 901-916, 2000.
indirect 80 x 80 pixels). [15] P. Perona, J. Malik, “Scale-space and edge detection using
2) N, - number of precomputed points, that is different anisotropic diffusion”, PAMI 12(7), pp. 629-639, 1990.
values or time-points for indirect method (30). The maifil6] E. Radmoser, O. Scherzer and J. Weickert, “Scale-spage pro
loop should do at mos¥W, iterations. erties of nonstationary iterative regularization methods”, Journal
3) A% - initial A (1), A\, - ratio of successive (0.9). of Visual Communication and Image Representation, Vol. 8, pp.

4) DT - time between consecutive timepoints. (We used 96-114, 2000.
DT = 0.6, 3 iterations ofdt = 0.2 (wheredt < CFL)). [17] B M ter Haar Romeny Ed.Geometry Driven Diffusion in

It is important to note that this parameters mainly control the Computer VisionKluwer Academic Publishers, 1994.
Step resolution and no tuning is needed for different |magd§.8] L. Rudln, S. OSher, E. Fatemi, Nonlinear Total Variation based

We used the same values, in brackets, for our experiments on_noise removal algorithms”, Physica D 60 259-268, 1992.
natural images. [19] G. Steidl, J. Weickert, T. Brox, P. Mrazek, M. Welk, "On the
. Discrete covariance: equivalence of soft wavelet shrinkage, total variation diffusion,
1 total variation regularization, and SIDEs”, SIAM J. Numer.
rS= kD —a)(r(k.l) — 7 29 Anal. 42(2), pp. 686-658, 2004.
Sar N ;(q( RAUCD ) (29) [20] L.A. Vese, S.J. Osher, “Modeling textures with total variation
' minimization and oscillatory patterns in image processing”, J.
where N is the number of pixels i (or 7). Scientific Computing, 19 , pp. 553-572, 2003.

« With regard to the indirect method, in the specific implementd21] R.V. Vogel and M.E. Oman, “Iterative methods for total varia-
tion presented here, where thevalues / time points of the Main tion denoising”, SIAM J. Scientific Computing, 17(1):227-238,
phase are exactly as in the Precomputing phase, one can actually 1996.
omit the multiplication and division by(A* — A\*"")}{DT} in  [22] J. Weickert, “A review of nonlinear diffusion filtering”, B. ter
the computation ofDEcov and D Ecovyr. (We kept it to be Haar Romeny, L. Florack, J. Koenderink, M. Viergever (Eds.),
consistent with our formulation). Scale-Space Theory in Computer Vision, LNCS 1252, Springer,

Berlin, pp. 3-28, 1997.
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