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ABSTRACT
Behavioral Signal Processing aims at automating behavioral coding
schemes such as those prevalent in psychology and mental health re-
search. This paper describes a method to automatically quantify the
approach-and-avoidance (AA) behavior, described by ordinal labels
manually assigned by experts using either video-only or video-with-
audio. We propose a novel ordinal regression (OR) algorithm and its
hidden Markov model (HMM) extension for estimation of AA labels
from visual motion capture based and acoustic features. The pro-
posed algorithm transforms the OR to multiple binary classification
problems, solves them by independent score-outputting classifiers
and fits the cumulative logit logistic regression model with propor-
tional odds (CLLRMP) to vectors of the classifier scores. The time
series extension treats labels as states of the HMM with a likelihood
function derived from the probabilistic CLLRMP output. We com-
pare performances of the proposed algorithm applying the weighted
binary SVMs in the second step (SVM-OLR), its time-series exten-
sion (HMM-SVM-OLR) and the baseline multi-class SVM. On the
used dyadic interaction dataset the HMM-SVM-OLR achieves the
highest estimation accuracies 71.6 % and 65.7 % for AA labels as-
signed respectively using video-only and video-with-audio.

Index Terms— approach-avoidance behavior, dyadic interac-
tion, ordinal regression, cumulative logit model

1. INTRODUCTION
Analysis of behavior patterns in human interpersonal interactions
have been in the research focus of psychologists for a long time.
For example, coding schemes such as the Couple Interaction Rating
System (CIRS) [1] and Rapid Marital Interaction Coding Scheme
(RMICS) [2] have been developed for annotation of couples (dyadic)
interactions in marital therapy. These and similar schemes define
sets of low-level verbal and non-verbal cues of interest (gaze, body
orientation, turn taking patterns etc.), rules for deriving intermediate-
level behavior codes (e.g. approach-avoidance (AA) codes) by inter-
pretation of low-level signal cues, and additional rules for deriving
high-level behavior codes for more complex behaviors (e.g., accep-
tance, blame levels exhibited by the participants etc.) from low-level
cues and intermediate-level behavior codes. The AA behavior code,
as an intermediate-level code, is particularly interesting from the en-
gineering perspective. Rules for this code rely strongly on the low-
level non-verbal cues, the automatic recognition of which represents
a very active research topic [3]. Additionally, the AA behavior is
related to a more complex phenomena: emotion and motivation[4]
and emotional expressions [5]. Computational modeling of complex
human behavior opens up a number challenges, and opportunities,
for signal processing. This paper addresses some of them. In our
previous work [6], we introduced the multimodal dyadic interaction
database and used it for analysis of relations between various non-
verbal features and AA labels as defined by psychologists [1]. These

labels belong to the ordered set of nine categories, ranging from
complete avoidance to complete approach. In this paper we address
the estimation of the ordinal AA labels for the same dyadic interac-
tions using the low-level non-verbal signal features. These features
represent the basic statistics (mean, minimum, maximum, standard
deviation, skewness and kurtosis), of the various video (body ori-
entation, head orientation, hand movement, measure of how opened
the postures are) and audio (pitch, energy) based measurements cal-
culated on feature processing window.

In order to address the ordinal nature of the AA labels we pro-
pose a universally applicable ordinal regression algorithm that con-
sists of three main steps: (1) we transform the ordinal regression
problem to multiple binary classification problems defined by the
label ordering; (2) we solve the binary classification problems in-
dependently using any classification method that outputs (possibly
non-probabilistic) classification score; (3) we fit the cumulative logit
logistic regression model with proportional odds (CLLRMP) [7] on
vectors obtained by concatenation of scores from the binary classi-
fiers. Since we use continuous features without missing values for
estimation of AA categories, we choose to apply weighted binary
SVM classifiers with native non-probabilistic scores. Additionally,
we propose a simple extension of the proposed algorithm applica-
ble to the time series of ordinal labels. In the extended algorithm,
we model the label sequence using a hidden Markov model with a
likelihood function based on the probabilistic CLLRMP output.

The two-step ordinal regression algorithm [8] is similar to the
method we propose. Methods share the binary classifier reformu-
lation in the first step, in the second step [8] employs probabilistic
binary classifiers to directly estimate the cumulative label distribu-
tion. However, binary classifiers are trained independently and there
is no guarantee that the estimate is monotonically non-decreasing.

We evaluate the proposed estimation methods using leave-part-
of-one-session out cross-validation. We present evaluation results
for 4 experiments: (1) analysis of dependency between the estima-
tion accuracy and lengths of windows used to calculate the feature
statistics; (2) comparison of average estimation accuracies for pro-
posed estimators and the baseline multi-class SVM and analysis of
variability in estimation accuracy for different sessions; (3) analysis
of confusion matrix differences between estimators; (4) comparison
of estimation accuracies for the SVM-OLR and estimator obtained
by fitting CLLRMP directly on the original feature vectors.

2. PROPOSED ALGORITHM FOR ESTIMATION OF
ORDINAL LABELS

In Section 2.1, we present the transformation of the ordinal regres-
sion problem to multiple binary classification problems. In Section
2.2 we present the CLLRMP. We discuss differences when fitting
CLLRMP to classifier scores and original feature vectors in Section
2.3. The extension to time series data is presented in Section 2.4.



2.1. Label ordering inspired collection of binary classifiers
Let us introduce the notation used in our paper. We assume that
the feature vectors y take values from space Y , and that the ordinal
labels o belong to the set O. For simplicity, we denote elements of
O as integers O = {1, 2, . . . ,K}.

We map each ordinal categorical label o to a vector of K − 1
binary indicators b(o) = (b1(o), . . . , bK−1(o)) in a way that kth

indicator bk takes value 1 if o ∈ {1, . . . , k} and value 0 if o ∈ {k+
1, . . . ,K}. In other words, the described mapping is a redundant,
label-ordering inspired, error correcting code.
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Fig. 1. Proposed method and HMM extension.

We transform the original training dataset Y = {(yn, on)}Nn=1

to K − 1 datasets Yk = {(yn, bk,n)}Nn=1 (k = 1, . . . ,K − 1) with
binary labels defined by the described mapping, bk,n = bk(on). On
each dataset Yk we train a binary classifier BCk.

The collection of trained classifiers (BC1, . . . , BCK−1) map
every feature vector yn in the training set into the vector of classifier
scores fn = [f1,n, . . . , fK−1,n]

T . Therefore, we say that the col-
lection of trained binary classifiers map Y to F = {(fn, on)}Nn=1.

2.2. Cumulative logit logistic regression with proportional odds
We fit the CLLRMP [7] to the dataset F = {(fn, on)}Nn=1 obtained
in the previous step. Intuitively, the CLLRMP approximates logits
(logit(x) = log x

1−x
) of the cumulative label distributions by linear

functions, with equal slope, of the input vectors (in this case - score
vectors f ). Formally, the CLLRMP is defined by:

ln
p(o ∈ {1, . . . , k}|f)

p(s ∈ {k + 1, . . . ,K}|f) = w0,k + wT f, (1)

for k = 1, . . . ,K − 1 where the model parameters w0 =
[w0,1 . . . w0,K−1]

T and w = [w1 . . . wK−1]
T are respectively in-

tercept and slope coefficients. The optimal values of the model
parameters can be learned from the dataset F in the maximum
likelihood sense [9].

An important property of the CLLRMP is that it imposes the
stochastic ordering of labels corresponding to different input vectors
[7]. This means that it is possible to compare values of the cumu-
lative distribution functions of labels for different score vectors f .
This property is summarized by the following equation that follows
trivially from Equation 1:

p(o = i|f) = p(o = j|f +
w0,i − w0,j

K − 1
w−1), (2)

where w−1 is vector of inverse slope coefficients. In the following
section we discuss importance of the stochastic ordering in the case
when we use weighted binary SVMs in the second step of the pro-
posed estimation method.

2.3. Fitting CLLRMP on classifier score vectors
Let us briefly discuss the implications of the stochastic ordering
property imposed by the CLLRMP when it takes the classifier scores
as input. The binary classifiers map the original feature vector y to
the score vector f whose coordinates have a clear interpretation: if
the label of y belongs to {k+1, . . . ,K} ({1, . . . , k}), then fk takes
low(higher) values. Assuming that classifiers can successfully solve
binary classification tasks, there exists a label induced partition of
the space of f whose elements are convex sets. Assuming that we
”move” f along the line connecting arbitrary f1, f2 ∈ F , it is de-
sirable to have a model such that changes in the cumulative distri-
butions of labels s(f) conditioned on f reflect intersections that f
makes with the label induced boundaries. This is exactly the stochas-
tic ordering property. The CLLRMP should fit the classifiers score
vectors f better than the original feature vectors y since elements of
the label induced partition on Y are not necessarily convex.

2.4. Hidden Markov model with OLR based likelihood
To address dependencies between consecutive labels we represent
them as a sequence of variables that form a discrete Markov model
with the transition matrix T = [p(st = li|st−1 = lj ]

K
i,j=1. Having

labels as unobservable variables and feature vectors as observable
variables implies a HMM structure. However, it is difficult to learn a
good generative model for the likelihood due to dimensionality of the
feature vectors and influences of out-of-the-model variables on fea-
ture vectors. Therefore we adopt a hybrid HMM (Fig. 1) which ex-
ploits advantages of the discriminatively trained CLLRMP through
the likelihood function p(yt|st) ∝ p(st|yt)

p(st)
.

3. DYADIC INTERACTION DATASET
The employed dataset is a part of the acted dyadic interaction
database [6] that consists of 3 hours of audio, video and motion
capture data split in multiple 5 − 10min sessions. Each session
contains interaction based on unscripted role-play based on one out
of 9 conflictual topics that include cheating in relationship, arguing
over a drinking problem etc. Topics are selected such that same sex
participants act as friends and opposite sex participants as couples.
In order to improve chances of recording realistic interactions par-
ticipants undergo two preparation stages. A couple of days prior to
the data collection participants are introduced to the pool of topics
and, on the collection day they are asked to discuss topics with their
peers and agree on 4− 6 interaction scenarios.

The hardware architecture allows us to record sessions with 10
HD Flea 2 cameras (30fps), 12 sensor Vicon motion capture (Mo-
Cap) system (120fps), three 4-microphone T-arrays, two lapel mi-
crophones and one shotgun microphone (48kHz) without dropped
frames. All modalities are synchronized with a sub 10ms synchro-
nization precision.

Sessions are manually post-processed (to correct errors in Mo-
Cap automatic trajectory reconstruction) and annotated in two ways.
The first set of annotations include transcription and segmentation
of the audio on the speaker turn-taking level augmented by the
basic sentence level dialogue acts. The second set of annotations
is conducted by trained [1] psychology-domain experts, to provide
subject-interaction level labels including, acceptance, presence of
blame, attitude and approach-avoidance.



Experts provide us with the continuous-in-time and discrete-in-
value approach-avoidance labels for each participant. The approach-
avoidance labels belong to an ordered set of nine categories ranging
from complete avoidance to the complete approach. Labelers pro-
vide two sets of labels, one using only the multi-view video and the
other using both video and audio.

Since the labeling and particularly the post-processing are time
demanding at present we have 7 fully annotated interaction sessions
in total duration of 40 min. This 7-session subset of the full dataset
is used in experiments presented in this paper. The AA labels for
these 7 sessions belong to a subset {−1, 0, 1, 2, 3} of the full label
set {−4, . . . , 4}.

4. RESULTS AND DISCUSSION
In Section 4.1 we describe details on feature extraction, estimator
training and evaluation methodology and in Section 4.2 we present
results on different evaluation experiments.

4.1. Features, estimator training and evaluation methodology
For each session and each participant we extract 5 MoCap features:
the relative inter-participant head (angle) and body orientation (an-
gle), two measures of the body posture (leaning angle - the angle
between spine axis and horizontal plane; body open-closed measure
- sum of the triangular square areas defined by elbow, wrist and chest
markers for both hands) and the hand velocity measure (maximum of
left and right hand velocities). Additionally, we extract two acoustic
features, pitch and energy. We get the MoCap features directly from
the MoCap marker coordinates every 10 ms and the acoustic features
by processing 25 ms speech frames with 10 ms shift. Acoustic fea-
tures, energy and pitch, are extracted using Praat software. For each
feature we get 6 functionals (feature statistics), mean, minimum,
maximum, standard deviation, skewness and kurtosis, on 6 s (also
3 s and 4.5 s) functional windows with 1 s shift. Note that the statis-
tics of the audio features can be calculated only in regions where the
speaker is active. If a participant does not speak in a particular frame
we set all coordinates of the functional vector that correspond to the
audio feature statistics to zero. By doing this we avoid occurrences
of missing features. For estimation of the video-only and audio-
and-video based categories we use, respectively, the 30-dimensional
vector of MoCap functionals and the full 42-dimensional functional
vector.

Fig. 2. MoCap markers and body/head orientation features.

We split samples for each of 7 sessions in 20 consecutive non-
overlapping parts with approximately equal number of samples. We
crete 7 train-test set pairs in a leave leave-part-of-session-out man-
ner. Namely, we use 10 odd-indexed parts’ of a single session as a
test set. Samples from the remaining 10 even-indexed parts are aug-
mented with randomly chosen samples from other sessions to form
a balanced training set with 500 samples per AA label. For each
train-test set pair we find optimal values for the cost and the width
of the radial basis kernel function of SVM classifiers by grid-search
using 5-fold cross validation on the training set. We obtain model
parameters of the weighted SVM classifiers using weights obtained
from the training samples that belong to the same session as the test-
ing samples. Parameter values for the CLLRMP are chosen to be

optimal in the maximum likelihood sense. For the SVM training and
prediction we used functions from the LibSVM toolkit [10].

4.2. Experiments
First, we present results that demonstrate the influence of the feature
processing window length on the average estimation accuracy for
different estimation methods (Fig. 3).

Fig. 3. Dependency of AA category estimation accuracies on feature
processing window length for different estimation techniques.

All estimation methods achieve slightly higher accuracies for
longer functional windows (Fig. 3). We did not experiment with the
windows above 6s for 1s window shift, due to the high correlation
between many consecutive feature vectors. The size of the dataset
was a limiting factor when considering larger window shifts i.e. less
window overlap. The multi-class SVM benefits the most by the in-
creasing window size and HMM-SVM-OLR the least, although the
HMM-SVM-OLR accuracy is the highest. This does not come as a
surprise, as HMM-SVM-OLR conditions current state on the previ-
ous state and therefore exploits context longer than window.

The experts’ perception of AA labels differs depending on
whether they use video-only or both audio and video in their an-
notation process. The SVM-OLR suffers 6.1 % lower average ac-
curacy in the estimation of video-and-audio based AA labels when
trained on the vision based (MoCap) features than when trained on
audio-visual data (MoCap and audio features). This proves that the
proposed small set of audio derived non-verbal features captures
some of the same information that influences the experts’ percep-
tion. However, all estimators achieve higher accuracies for the
video-only AA labels which may imply that the audio feature set
should be extended by additional audio, turn-taking and transcript
derived features, but may also imply that there is more variability in
interpretations of the audio-based information.

Table 1. Estimation accuracies for AA labels.
(window: 6 s, V and AV :video-only and audio-and-video)

SVM SVM-OLR HMM-SVM-OLR
AV[%] V[%] AV[%] V[%] AV[%] V[%]

S1 60.7 62.3 62.6 69.9 67.2 74.4
S2 54.1 60.0 60.7 65.3 58.8 65.3
S3 60.5 63.5 62.6 69.8 65.2 73.1
S4 57.9 64.8 63.4 70.7 65.5 71.0
S5 57.4 63.9 60.1 65.1 64.5 69.2
S6 60.0 65.9 68.2 69.1 69.0 74.1
S7 57.8 63.9 65.7 69.6 66.0 71.6

AVG 58.5 63.7 63.9 68.8 65.7 71.6

All discussed trends related to difference in the average esti-
mation accuracy for the video-only and the video-and-audio based
AA labels remain valid on the session level. Accuracies on all ses-
sions, but S2 and S5, are comparable. Although the label prior,
obtained from the the part of the testing session that is associated
to the training session the training set, represents a good match to
the testing label distribution this distribution is much more skewed



than the artificially balanced training set. Namely, its symmetric
Kullback-Leibler distance between the AA label distribution Pi for
ith testing set and the uniform training AA label distribution P−i,
1
2
(KL(Pi∥P−i) + KL(P−i∥Pi)), takes the smallest values 0.62

and 0.65 when testing on sessions S2 and S5, 0.62, 0.65, while its
mean and variance for all remaining sessions are respectively 1.36
and 0.22. The indicated mismatch has negative implications on the
weighted training for the multi-class SVM and SVM-OLR, and scal-
ing of the HMM-SVM-OLR likelihood.

Further, we analyze importance of the proper treatment of the
category ordering and dynamics and its influence on the category
confusion patterns. For this purpose we subtract confusion distri-
bution matrices of the SVM baseline for the video-only and the
audio-and-video based AA labels from the corresponding matrices
for SVM-OLR and HMM-SVM-OLR. Positive diagonal entries of
the difference matrices provide insight into class conditioned accu-
racy improvements and negative off-diagonal elements describe dif-
ferences in category confusion patterns between proposed methods
and the multi-class SVM. We present the difference matrices in form
of color maps (see Fig. 4), where dark (light) shades represent neg-
ative (positive) values. Similar shades of main diagonal entries

Fig. 4. Differences between confusion matrices (left column: (SVM-
OLR) - (SVM); right column: (HMM-SVM-OLR) - (SVM).

in each colormap show that both SVM-OLR and HMM-SVM-OLR
improve estimation accuracies for all classes uniformly. Lighter el-
ements on the main diagonal in the right colormap column indicate
performance advantage of HMM-SVM-OLR. Dark shade of cells
corresponding to the neighboring category pairs, (c1, c2) ∈ {(i, j) :
|i− j| = ±1}, show that the CLLRMP is able to distinguish similar
categories from the binary SVM outputs.

As explained in Section 2.3 SVM outputs fit the CLLRMP better
than the original feature vectors. This is experimentally confirmed
by comparison of accuracies for the SVM-OLR and the CLLRMP
fitted on the original feature vectors (see Table 4.2).

Table 2. CPL-LR inputs: original features vs. SVM outputs.
SVM-OLR CLLRMP

AV[%] V[%] AV[%] V[%]
AVG 63.9 68.8 54.1 57.7

Since the SVM-OLR and the HMM-SVM-OLR exploit label or-
dering and transitions they improve estimates in situations in which
SVM predicts frequent label changes and/or distant label changes in
consecutive frames. Therefore, the cells farther from the main diag-
onal, (c1, c2) ∈ {(−1, 1), (0, 2), (2, 0), (3, 1)}, get a dark shade.

5. CONCLUSIONS AND FUTURE WORK
We addressed estimation of specific behavioral categories– approach
avoidance (AA)– in dyadic human interactions using audio and Mo-
Cap derived features. From algorithmic perspective, we proposed
two estimation schemes that exploit ordering and dynamics of AA
labels, the SVM-OLR and the HMM-SVM-OLR. The SVM-OLR
transforms the original feature space by multiple binary SVM clas-
sifiers and fits the CLLRMP on classifier outputs. The HMM-SVM-
OLR is a hybrid Markov model that uses likelihood function pro-
portional to the ratio of the label posterior probability from SVM-
OLR and the label prior. Experimental results on the dyadic in-
teraction dataset show advantages of the ordinal regression meth-
ods over the multi-class SVM baseline. Average and single-session
estimation accuracies increase for longer feature processing win-
dows. The HMM-SVM-OLR outperforms the SVM-OR and the
multi-class SVM and achieves leave-part-of-one-session-out average
accuracy of 71.6 % for 6 s window. We discussed: (1) variability
in single-session estimation performances; (2) differences between
confusion matrices for the proposed estimators and the multi-class
SVM; and (3) performance differences when CLLRMP is fitted on
SVMs and original feature vectors.

Our ongoing work includes collection and preprocessing of
larger datasets of acted couples-therapy and real psychologist-
student interactions. Our work in progress focuses on: (a) aug-
mentation of the audio (speech rate, pitch slope and turn taking
dynamics) and MoCap (vertical head and body orientation angles)
feature sets; (b) inclusion of transcript features and replacement of
the analysis oriented MoCap features with features derived from
video; (c) analysis of experts’ labeling consistency and expert to ex-
pert (or non-expert) agreement; and (d) design of time series models
that exploit multiple labeler inputs.
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