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Abstract: In this paper, we estimate probability P{X < Y} when X and Y are two 
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1. INTRODUCTION 

Estimation of the probability R = P{X < Y} is a very important subject of 
interest, especially in the field of a system reliability. There are a lot of papers in 
statistical literature considering derivation of an explicit expression for R. For some well-
known distributions, the algebraic form of R has been worked out. 

Estimation of R when X and Y are normal has been considered by Downtown 
[4]. Tong [16] analyzed estimation of R when X and Y are exponential variables. 
Constantine and Karson [2], Ismail et al. [7], and Constantine et al. [3] estimated R when 
X and Y are from gamma distributions with known shape parameters. Reliability for 
logistic distribution is analyzed in Nadarajah [10], and for Laplace distribution in 
Nadarajah [11]. Bivariate beta and bivariate gamma distribution are considered in 
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Nadarajah [12, 13]. Nadarajah and Kotz [14] derived forms of R for generalizations of 
the exponential, gamma, beta, extreme value, logistic, and the Pareto distributions. 
Kundu and Gupta [8, 9] estimated P{X < Y} for generalized exponential distribution and 
for Weibull distributions. Rezaei et al. [15] considered generalized Pareto distributions. 

But for many other distributions (including generalization of distributions or 
mixed distributions), expression of R has not been derived. The aim of this paper is to 
estimate R when X follows gamma and Y follows exponential distribution with unknown 
shape and scale parameters. Note that exponential distribution is a special case of gamma 
distribution, but we can say that our results are different from those in Constantine and 
Karson [2], Ismail et al. [7] and Constantine et al. [3] because we have three parameters 
that should be estimated. 

 
2. ESTIMATION OF R 

 
Let us suppose that random variable X has gamma distribution with parameters 

α and β, where α >0 and β>0. We denote it with X: G(α , β). Its probability density 
function is given by: 
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whereα is a shape parameter and β is a scale parameter.  
Let us suppose that random variable Y has exponential distribution with 

parameter λ, where λ>0. We denote it with Y: E(λ). Its probability density function is 
given by: 
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where  λ is a scale parameter. It is known that E(λ) distribution is indeed a G(1, λ) 
distribution. 

 
2.1. Maximum likelihood estimator of R 

Let X: G(α , β) and Y:E(λ), where X and Y are independent random variables. 
Therefore 
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Joint distribution for (X,Y) is given by 
( )
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0x ≥ , 0y ≥ . Let  1 1 2 2( , ), ( , ),..., ( , )n nX Y X Y X Y  be a random sample from that 
distribution. Therefore, the likelihood function and its ln are given by 
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Taking partial derivatives of lnL with respect to ,α β , and λ , we get 
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Given the above identities to be equal to 0 and solving those equations, we 
obtain 
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Therefore, 

λ̂ =
nY . (6) 

From (3) and (4), we obtain 
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Solving this differential equation, we get 
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where C is some arbitrarily constant. Therefore, α̂ can be obtained as a solution of the 
equation of the form 

( )s α α= , 
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Since α̂  is a fixed point of the function s, it can be obtained by using the iterative 
procedure: 

1( )k ks α α += , (8) 

where kα  is the kth iterate of α̂ . The procedure should be stopped when ⎜ 1kα + - kα ⎜is 
sufficiently small. Once α̂  is obtained, from (4) we get 
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Maximum likelihood estimates have invariance property, so we obtain 
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2.2. Asymptotic distribution 

Denote the Fisher information matrix of ( , , )α β λ  as ( , , )I α β λ , where 
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The ln of joint distribution h is given by 
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The second partial derivatives of ln h are: 
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Using EX αβ=  and EY λ= , we obtain 
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Theorem 1. As n →∞  then, 
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Proof: The proof follows from the asymptotic normality of maximum likelihood 
estimates (see [6]). 
                                                                                                                                              

Let ( , , )r α β λ be a transformation such that the matrix of partial derivatives 
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has continuous elements and does not vanish in a neighborhood of ( , , )α β λ . Let 
ˆ ˆˆ ˆ( , , )rη α β λ= . Then η̂  is the maximum likelihood estimate of η , where ( , , )rη α β λ=  

and 
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and using the previous, we get 

the next result. 
 

Theorem 2. As n →∞  then, 

ˆ( ) (0, )
D

n R R N V− → , 

where 

]
2

2 2
11 112

11

2( ) ln ln ( 1)
1 ( )

V i i
i

αλ α λ β λ αβ α
λ β α λ β λ β λ β λ β

⎡= + + + −⎣+ − + + + +
 (14) 

and 

2

11 2
Г ( )Г( ) (Г ( ))

Г ( )
i α α α

α
′′ ′−

= . (15) 

Proof: We obtain 

[( ) ln             
( )

αλ λ α αβ
λ β λ β λ β λ λ β

⎤
= − ⎥+ + + + ⎦

B  

and 

1 2
11

11 2
11

                                  0
1( , , )                               0

1
0                      0       ( 1)

I i
i

i

α β

α β λ β β
α

λ α

−

−⎡ ⎤
⎢ ⎥

= −⎢ ⎥− ⎢ ⎥−⎣ ⎦

. 

After multiplication, we get the result.                                                                                 
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Theorem 2 can be used to construct asymptotic confidence intervals. To 
construct them, we only have to estimate variance V. Estimate V̂ , we obtain by changing 

,α β and λ in formula (14) with ˆˆ,α β  and λ̂ . 
 

3. A SIMULATION STUDY 

 
In this section, we present a simulation study to see the performance of an 

estimator R. We take different values for , ,α β λ , actually we use arbitrary parameters 
settings. The whole approach can be applied on any other parameters setting. 

For each parameters setting, we generate samples of size 15, 25, 50 from gamma 
and exponential distribution. From the sample, we compute the estimate of λ using (6). 
For estimate of α , we use an iterative process (8). We use initial value to be 1, and the 
iterative process stops when the difference between two iterative values are less than 

610− . When we estimate α , we compute the estimate of β by using (9). Finally, we 

compute the MLE of R by using (10). The mean square error (MSE) of R̂ over 1000 
replications is presented in Table 1. 

 
Table 1. MSE of R̂  

( , , )α β λ  Sample 
size MSE( R̂ ) 

(1,1,1) 
15 0.00956 
25 0.00563 
50 0.00297 

(1.5,2,1) 
15 0.00796 
25 0.00551 
50 0.00265 

(2,1.5,1.5) 
15 0.00493 
25 0.00283 
50 0.00160 

(0.5,0.5,1) 
15 0.01408 
25 0.00875 
50 0.00475 

(0.5,1.5,3) 
15 0.01735 
25 0.01081 
50 0.00588 

 
From Table 1, we can see that all MSE( R̂ ) decrease as the sample size 

increases. It verifies the consistency property of the MLE estimators of R. 
The MLE of R, R̂ and its variance are reported in Table 2. We compute the 

variance of R̂ by using (14). We use this variance to construct confidence interval for R. 
These results are reported in Table 2. 
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Table 2. Confidence interval for R 

( , , )α β λ  Sample 
size R R̂  Var( R̂ ) 95% Confidence Interval 

(1,1,1) 
15 0.50 0.46 0.00922 (0.263, 0.657) 
25 0.50 0.48 0.00541 (0.332, 0.628) 
50 0.50 0.49 0.00271 (0.388, 0.592) 

(1.5,2,1) 
15 0.19 0.28 0.00764 (0.101, 0.459) 
25 0.19 0.17 0.00303 (0.059, 0.281) 
50 0.19 0.18 0.00158 (0.102, 0.258) 

(2,1.5,1.5) 
15 0.25 0.26 0.00730 (0.085, 0.435) 
25 0.25 0.25 0.00442  (0.116, 0.384) 
50 0.25 0.25 0.00222 (0.158, 0.342) 

(0.5,0.5,1) 
15 0.82 0.76 0.00331 (0.642, 0.878) 
25 0.82 0.78 0.00222 (0.685, 0.875) 
50 0.82 0.79 0.00114 (0.724, 0.856) 

(0.5,1.5,3) 
15 0.82 0.73 0.00488 (0.587, 0.873) 
25 0.82 0.75 0.00229 (0.654, 0.846) 
50 0.82 0.83 0.00046 (0.788, 0.872) 

 
From Table 2, we can see that even for small sample sizes, confidence intervals 

based on the MLE's work quite well in terms of interval lengths. It is observed that when 
the sample size is increased, then the lengths of the confidence intervals and variance of 
R̂ decrease. 
 
3.1. Numerical example 

Here, we present a numerical example. Suppose that we have two data sets that 
represent the failure time of the air conditioning system of two different air planes (see 
[1, 5]). Let X be the failure time for the first plane (namely 7911 in [1]) and Y be the 
failure time for the second plane (namely 7912 in [1]). Let us suppose that we have 11 
realizations of the random variable X: 33, 47, 55, 56, 104, 176, 182, 220, 239, 246, 320 
and 11 realizations of the random variable Y: 1, 5, 7, 11, 12, 14, 42, 47, 52, 225, 261. We 
can model these X values with G (1, 152.5) or E(152.5) distribution (KS statistic is 
approximately 0.23 and p value is greater than 0.05). Also, we can model these Y values 
with E(61.5) distribution (KS statistic is approximately 0.34 and p value is greater than 
0.05). Therefore, R=0.29. 

We obtain the MLE of α by using the iterative procedure (8). We start with the 
initial value 1.00 and the iteration stops whenever two consecutive values are less than 
10-3. This iteration process provides α̂ approximately 0.999 (with arbitrarily constant C 
equals 1.25). Now, using (6) and (9), we obtain λ̂ =61.5454 and β̂ = 152.5455. 

Therefore R̂ = 0.288. Based on the sample values, we can conclude that there is 28.8% 
chances that air conditioning system of the second plane will work longer than air 
conditioning system of the first plane. 
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4. CONCLUSION 

In this paper, we have considered the estimation of the probability P{X < Y} 
when X and Y are two independent random variables from gamma and exponential 
distributions, respectively. We found maximum likelihood estimator and used its 
asymptotic distribution to construct confidence intervals. We performed a simulation 
study to show the consistency property of the MLE estimators of R. 
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