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Abstract. Panel vector autoregression (VAR) models have been increasingly used in applied research. 

While programs specifically designed to estimate time-series VAR models are often included as standard 

features in most statistical packages, panel VAR model estimation and inference are often implemented 

with general-use routines that require some programming dexterity. In this paper, we briefly discuss 

model selection, estimation and inference of homogeneous panel VAR models in a generalized method 

of moments (GMM) framework, and present a set of Stata programs to conveniently execute them. We 

illustrate the pvar package of programs by using standard Stata datasets. 
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Estimation of panel vector autoregression in Stata: A package of programs 

Michael R.M. Abrigo*1 and Inessa Love2 

(May 2015) 

 

1. Introduction 

Time-series vector autoregression (VAR) models originated in the macroeconometrics literature as an 

alternative to multivariate simultaneous equation models (Sims, 1980).  All variables in a VAR system are 

typically treated as endogenous, although identifying restrictions based on theoretical models or on 

statistical procedures may be imposed to disentangle the impact of exogenous shocks onto the system. 

With the introduction of VAR in panel data settings (Holtz-Eakin, Newey and Rosen, 1988), panel VAR 

models have been used in multiple applications across fields.  

In this paper, we give a brief overview of panel VAR model selection, estimation and inference in a 

generalized method of moments (GMM) framework, and provide a package of Stata programs, which 

we illustrate using two standard Stata datasets. An early paper that used panel VAR in Stata was Love 

and Zicchino (2006), who made the programs available informally to other researchers.3 This paper 

introduces an updated package of programs with additional functionality, including sub-routines to 

implement Granger (1969) causality tests, and optimal moment and model selection following Andrews 

and Lu (2001), among others. 

                                                           
* Corresponding author: Michael R.M. Abrigo, email: abrigomm@hawaii.edu. 
1 Graduate student, Department of Economics, University of Hawai`i at Manoa (USA) and Research specialist, 

Philippine Institute for Development Studies (Philippines).  
2 Associate Professor, Department of Economics, University of Hawai`i at Manoa (USA). 
3 As of May 2015, Love and Zicchino (2006) has been cited in 475 research papers, most of which use the early 

version of the package of programs to estimate panel VAR models. For example, these programs have been used in 

studies recently published in The American Economic Review (e.g. Head, Lloyd-Ellis and Sun, 2014), Applied 

Economics (e.g. Mora and Logan, 2012), Journal of Macroeconomics (e.g. Carpenter and Demiralp, 2012) and The 

Journal of Economic History (e.g. Neumann, Fishback and Kantor, 2010), among others. 

mailto:abrigomm@hawaii.edu
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2. Panel vector autoregression 

We consider a 𝑘-variate homogeneous panel VAR of order 𝑝 with panel-specific fixed effects 

represented by the following system of linear equations: 

𝒀𝒊𝒕 = 𝒀𝒊𝒕−𝟏𝑨𝟏 + 𝒀𝒊𝒕−𝟐𝑨𝟐 + ⋯+ 𝒀𝒊𝒕−𝒑+𝟏𝑨𝒑−𝟏 + 𝒀𝒊𝒕−𝒑𝑨𝒑 + 𝑿𝒊𝒕𝑩 + 𝒖𝒊 + 𝒆𝒊𝒕 
𝑖 ∈ {1,2,… ,𝑁}, 𝑡 ∈ {1,2,… , 𝑇𝑖} 

(1) 

where 𝒀𝒊𝒕 is a (1𝑥𝑘) vector of dependent variables; 𝑿𝒊𝒕 is a (1𝑥𝑙) vector of exogenous covariates; 𝒖𝒊 
and 𝒆𝒊𝒕 are (1𝑥𝑘) vectors of dependent variable-specific panel fixed-effects and idiosyncratic errors, 

respectively. The (𝑘𝑥𝑘) matrices 𝑨𝟏, 𝑨𝟐, … , 𝑨𝒑−𝟏, 𝑨𝒑 and the (𝑙𝑥𝑘) matrix 𝑩 are parameters to be 

estimated. We assume that the innovations have the following characteristics: 𝑬[𝒆𝒊𝒕] = 𝟎, 𝑬[𝒆𝒊𝒕′ 𝒆𝒊𝒕] = 𝚺 

and 𝑬[𝒆𝒊𝒕′ 𝒆𝒊𝒔] = 𝟎 for all 𝑡 > 𝑠. 

The parameters above may be estimated jointly with the fixed effects or, alternatively, independently of 

the fixed effects after some transformation, using equation-by-equation ordinary least squares (OLS). 

With the presence of lagged dependent variables in the right-hand side of the system of equations, 

however, estimates would be biased even with large 𝑁 (Nickell, 1981). Although the bias approaches 

zero as 𝑇 gets larger, simulations by Judson and Owen (1999) find significant bias even when 𝑇 = 30. 

 

2.1. GMM estimation 

Various estimators based on GMM have been proposed to calculate consistent estimates of the above 

equation, especially in fixed 𝑇 and large 𝑁 settings.4 With our assumption that errors are serially 

uncorrelated, the first-difference transformation may be consistently estimated equation-by-equation 

                                                           
4 Other methods include analytical bias correction for the least squares dummy variable model, e.g. Kiviet (1995), 

and Bun and Carree (2005), bias correction based on bootstrap methods, e.g. Everaert and Pozzi (2007), among 

others. See Canova and Ciccarelli (2013) for a survey of random coefficient panel VAR models.  
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by instrumenting lagged differences with differences and levels of 𝒀𝒊𝒕 from earlier periods as proposed 

by Anderson and Hsiao (1982). This estimator, however, poses some problems. The first-difference 

transformation magnifies the gap in unbalanced panels. For instance, if some 𝒀𝒊𝒕−𝟏 are not available, 

then the first-differences at time 𝑡 and 𝑡 − 1 are likewise missing. Also, the necessary time periods each 

panel is observed gets larger with the lag order of the panel VAR. As an example, for a second-order 

panel VAR, instruments in levels require that 𝑇𝑖 ≥ 5 realizations are observed for each subject. 

Arellano and Bover (1995) proposed forward orthogonal deviation as an alternative transformation, 

which does not share the weaknesses of the first-difference transformation. Instead of using deviations 

from past realizations, it subtracts the average of all available future observations, thereby minimizing 

data loss. Since past realizations are not included in this transformation, they remain valid instruments. 

Potentially, only the most recent observation is not used in estimation. In a second-order panel VAR, for 

instance, only 𝑇𝑖 ≥ 4 realizations are necessary to have instruments in levels.  

We can improve efficiency by including a longer set of lags as instruments. This, however, has the 

unattractive property of reducing observations especially with unbalanced panels or with missing 

observations, in general. As a remedy, Holtz-Eakin, Newey and Rosen (1988) proposed creating  

instruments using observed realizations, with missing observations substituted with zero, based on the 

standard assumption that the instrument list is uncorrelated with the errors. 

While equation-by-equation GMM estimation yields consistent estimates of panel VAR, estimating the 

model as a system of equations may result in efficiency gains (Holtz-Eakin, Newey and Rosen, 1988). 

Suppose the common set of 𝐿 ≥ 𝑘𝑝 + 𝑙 instruments is given by the row vector 𝒁𝒊𝒕, where 𝑿𝒊𝒕 ∈ 𝒁𝒊𝒕, and 

equations are indexed by a number in superscript. Consider the following transformed panel VAR model 

based on equation (1) but represented in a more compact form: 

𝒀𝒊𝒕∗ = 𝒀𝒊𝒕∗̅̅ ̅̅ 𝑨 + 𝒆𝒊𝒕∗  (2) 
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𝒀𝒊𝒕∗ = [𝒚𝒊𝒕𝟏∗ 𝒚𝒊𝒕𝟐∗ … 𝒚𝒊𝒕𝒌−𝟏∗ 𝒚𝒊𝒕𝒌∗ ] 
𝒀𝒊𝒕∗̅̅ ̅̅ = [𝒀𝒊𝒕−𝟏∗ 𝒀𝒊𝒕−𝟐∗ … 𝒀𝒊𝒕−𝒑+𝟏∗ 𝒀𝒊𝒕−𝒑∗  𝑿𝒊𝒕∗ ] 

𝒆𝒊𝒕∗ = [𝒆𝒊𝒕𝟏∗ 𝒆𝒊𝒕𝟐∗ … 𝒆𝒊𝒕𝒌−𝟏∗ 𝒆𝒊𝒕𝒌∗ ] 
𝑨′ = [𝑨𝟏′ 𝑨𝟐′ … 𝑨𝒑−𝟏′ 𝑨𝒑′ 𝑩′] 

where the asterisk denotes some transformation of the original variable. If we denote the original 

variable as 𝑚𝑖𝑡, then the first difference transformation imply that 𝑚𝑖𝑡∗ = 𝑚𝑖𝑡 − 𝑚𝑖𝑡−1, while for the 

forward orthogonal deviation 𝑚𝑖𝑡∗ = (𝑚𝑖𝑡 − 𝑚𝑖𝑡̅̅ ̅̅̅)√𝑇𝑖𝑡/(𝑇𝑖𝑡 + 1)  , where 𝑇𝑖𝑡 is the number of available 

future observations for panel 𝑖 at time 𝑡, and 𝑚𝑖𝑡̅̅ ̅̅̅ is its average. 

Suppose we stack observations over panels then over time. The GMM estimator is given by 

𝑨 = (𝒀∗̅̅ ̅′𝒁 𝑾 ̂𝒁′𝒀∗̅̅ ̅)−𝟏(𝒀∗̅̅ ̅′𝒁 𝑾 ̂𝒁′𝒀∗)  (3) 

where 𝑾 ̂is a (𝐿 𝑥 𝐿) weighting matrix assumed to be non-singular, symmetric and positive semi-

definite. Assuming that 𝑬[𝒁′𝒆] = 𝟎 and rank 𝑬[𝒀∗̅̅ ̅′𝒁] = 𝑘𝑝 + 𝑙, the GMM estimator is consistent. The 

weighting matrix 𝑾 ̂may be selected to maximize efficiency (Hansen, 1982).5  

Joint estimation of the system of equations makes cross-equation hypothesis testing straightforward. 

Wald tests about the parameters may be implemented based on the GMM estimate of 𝑨 and its 

covariance matrix. Granger causality tests, with the hypothesis that all coefficients on the lag of variable 𝑚 are jointly zero in the equation for variable 𝑛, may likewise be carried out using this test.  

 

 

 

                                                           
5 Roodman (2009) provides an excellent discussion of GMM estimation in a dynamic panel setting and its 

applications using Stata. Readers are encouraged to read his paper for a more detailed discussion of this topic. 



5 

 

2.2. Model Selection 

Panel VAR analysis is predicated upon choosing the optimal lag order in both panel VAR specification 

and moment condition. Andrews and Lu (2001) proposed consistent moment and model selection 

criteria (MMSC) for GMM models based on Hansen’s (1982) 𝐽 statistic of over-identifying restrictions. 

Their proposed MMSC are analogous to various commonly used maximum likelihood-based model 

selection criteria, namely the Akaike information criteria (AIC) (Akaike, 1969), the Bayesian information 

criteria (BIC) (Schwarz, 1978; Rissanen, 1978; Akaike, 1977), and the Hannan-Quinn information criteria 

(HQIC) (Hannan and Quinn, 1979).  

Applying Andrews and Lu’s MMSC to the GMM estimator in (3), their proposed criteria select the pair of 

vectors (𝑝, 𝑞) that minimizes 

𝑀𝑀𝑆𝐶𝐵𝐼𝐶,𝑛(𝑘, 𝑝, 𝑞) = 𝐽𝑛(𝑘2𝑝, 𝑘2𝑞) − (|𝑞| − |𝑝|)𝑘2 ln 𝑛 (4) 

𝑀𝑀𝑆𝐶𝐴𝐼𝐶,𝑛(𝑘, 𝑝, 𝑞) = 𝐽𝑛(𝑘2𝑝, 𝑘2𝑞) − 2𝑘2(|𝑞| − |𝑝|) (5) 

𝑀𝑀𝑆𝐶𝐻𝑄𝐼𝐶,𝑛(𝑝, 𝑞) = 𝐽𝑛(𝑘2𝑝, 𝑘2𝑞) − 𝑅𝑘2(|𝑞| − |𝑝|) ln ln 𝑛 , 𝑅 > 2 (6) 

where 𝐽𝑛(𝑘, 𝑝, 𝑞) is the 𝐽 statistic of over-identifying restriction for a 𝑘-variate panel VAR of order 𝑝 and 

moment conditions based on 𝑞 lags of the dependent variables with sample size 𝑛.  

By construction, the above MMSC are available only when 𝑞 > 𝑝. As an alternative criterion, the overall 

coefficient of determination (CD) may be calculated even with just-identified GMM models. Suppose we 

denote the (𝑘 𝑥 𝑘) unconstrained covariance matrix of the dependent variables by 𝚿. CD captures the 

proportion of variation explained by the panel VAR model, and may be calculated as 

𝐶𝐷 = 1 − det(𝚺)det(𝚿) (7) 
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2.3. Impulse Response 

Without loss of generality, we drop the exogenous variables in our notation and focus on the 

autoregressive structure of the panel VAR in equation (1). Lutkepohl (2005) and Hamilton (1994) both 

show that a VAR model is stable if all moduli of the companion matrix �̅� are strictly less than one, where 

the companion matrix is formed by 

�̅� = [  
  𝑨𝟏 𝑨𝟐 ⋯ 𝑨𝒑 𝑨𝒑−𝟏𝑰𝒌 𝟎𝒌 ⋯ 𝟎𝒌 𝟎𝒌𝟎𝒌 𝑰𝒌 ⋯ 𝟎𝒌 𝟎𝒌⋮ ⋮ ⋱ ⋮ ⋮𝟎𝒌 𝟎𝒌 ⋯ 𝑰𝒌 𝟎𝒌 ]  

  
 (8) 

Stability implies that the panel VAR is invertible and has an infinite-order vector moving-average (VMA) 

representation, providing known interpretation to estimated impulse-response functions and forecast-

error variance decompositions. The simple impulse-response function 𝚽𝒊 may be computed by rewriting 

the model as an infinite vector moving-average, where 𝚽𝒊 are the VMA parameters.  

𝚽𝒊 = { 𝑰𝒌         , 𝒊 = 𝟎∑𝚽𝒕−𝒋𝑨𝒋𝒊
𝒋=𝟏 , 𝒊 = 𝟏, 𝟐, . . (9) 

The simple IRFs have no causal interpretation, however. Since the innovations 𝒆𝒊𝒕 are correlated 

contemporaneously, a shock on one variable is likely to be accompanied by shocks in other variables, as 

well. Suppose we have a matrix 𝑷, such that 𝑷′𝑷 =  𝚺. Then 𝑷 may be used to orthogonalize the 

innovations as 𝒆𝒊𝒕𝑷−𝟏 and to transform the VMA parameters into the orthogonalized impulse-responses 𝑷𝚽𝒊. The matrix 𝑷 effectively imposes identification restrictions on the system of dynamic equations. 

Sims (1980) proposed the Cholesky decomposition of 𝚺 to impose a recursive structure on a VAR. The 

decomposition however is not unique, but depends on the ordering of variables in 𝚺. 
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Impulse-response function confidence intervals may be derived analytically based on the asymptotic 

distribution of the panel VAR parameters and the cross-equation error variance-covariance matrix. 

Alternatively, the confidence interval may likewise be estimated using Monte Carlo simulation, and 

bootstrap resampling methods.6  

 

2.4. Forecast-error variance decomposition 

The ℎ-step ahead forecast-error can be expressed as 

𝒀𝒊𝒕+𝒉 − 𝑬[𝒀𝒊𝒕+𝒉] = ∑ 𝒆𝒊(𝒕+𝒉−𝒊)𝚽𝒊𝒉−𝟏
𝒊=𝟎  (10) 

where 𝒀𝒊𝒕+𝒉 is the observed vector at time 𝑡 + ℎ and 𝑬[𝒀𝒊𝒕+𝒉] is the ℎ-step ahead predicted vector 

made at time 𝑡. Similar to impulse-response functions, we orthogonalize the shocks using the matrix 𝑷 

to isolate each variable’s contribution to the forecast-error variance. The orthogonalized shocks 𝒆𝒊𝒕𝑷−𝟏 

have a covariance matrix 𝑰𝒌, which allows straightforward decomposition of the forecast-error variance. 

More specifically, the contribution of a variable 𝑚 to the ℎ-step ahead forecast-error variance of 

variable 𝑛 may be calculated as 

∑ 𝜽𝒎𝒏𝟐𝒉−𝟏
𝒊=𝟎 = ∑(𝒊𝒏′ 𝑷𝚽𝒊𝒊𝒎)𝟐𝒉−𝟏

𝒊=𝟏  (11) 

where 𝒊𝒔 is the 𝑠-th column of 𝑰𝒌. In application, the contributions are often normalized relative to the ℎ-step ahead forecast-error variance of variable 𝑛 

∑ 𝜽.𝒏𝟐𝒉−𝟏
𝒊=𝟎 = ∑ 𝒊𝒏′ 𝚽𝒊′𝚺𝚽𝒊𝒊𝒏𝒉−𝟏

𝒊=𝟏  (12) 

                                                           
6 See for instance Lutkepohl (2005) for details applied in time-series VAR. 
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Similar to impulse-response functions, confidence intervals may be derived analytically or estimated 

using various resampling techniques. 

 

3. Stata syntax 

Model selection, estimation and inference about the homogeneous panel vector autoregression model 

above can be implemented with the new Stata commands pvar, pvarsoc, pvargranger, 

pvarstable, pvarirf and pvarfevd. The syntax and outputs are closely patterned after Stata’s 

built-in var commands for ease of use in switching between panel and time series VAR. We describe 

the commands’ syntax in this section and provide examples in section 4. 

 

3.1. pvar 

pvar estimates panel vector autoregression models by fitting  a multivariate panel regression of each 

dependent variable on lags of itself,  lags of all other dependent variables and exogenous variables, if 

any. The estimation is by generalized method of moments (GMM). The command is implemented using 

the interactive version of Stata’s gmm with analytic derivatives. 

Syntax 

pvar depvarlist [if] [in] [, options] 

Options 

lags(#) specifies the maximum lag order # to be included in the model. The default is to use the first 

lag of each variable in depvarlist. 

exog(varlist) specifies a list of exogenous variables to be included in the panel VAR. 



9 

 

fod and fd specifies how the panel-specific fixed effects will be removed. fod specifies that the panel 

fixed-effects be removed using forward orthogonal deviation or Helmert transformation. By 

default, the first # lags of transformed depvarlist in the model are instrumented by the same 

lags in level (i.e. untranformed). fod is the default option. fd specifies that the panel-specific 

fixed effects be removed using first difference instead of forward orthogonal deviations. By 

default, the first # lags of transformed (i.e. differenced) depvarlist in the model are 

instrumented by the #+1 to 2#+1 lags of depvarlist in levels (i.e. untransformed). 

td subtracts from each variable in the model its cross-sectional mean before estimation. This could be 

used to removed time fixed effects from all the variables prior to any other transformation.  

instlags(numlist) overrides the default lag orders of depvarlist used as instruments in the 

model (see fod and fd options above which describe which lags are used as default). Instead the 

numlist-th lags are used as instruments. 

gmmstyle specifies that "GMM-style" instruments as proposed by Holtz-Eakin, Newey and Rosen 

(1988) be used. For each instrument based on lags of depvarlist, missing values are substituted 

with zero. Observations with no valid instruments are excluded. This option is available only with 

instlags(). 

gmmopts(options) overrides the default gmm options run by pvar. Each equation in the model may 

be accessed individually using the variable names in depvarlist as equation names. 

vce(vcetype[, independent]) specifies the type of standard error reported, which includes types 

that are robust to some types of misspecification, that allow for intragroup correlation, and that 

use bootstrap or jackknife methods. 

overid specifies that Hansen's J statistic of over-identifying restriction be reported. This option is 

available only for over-identified systems. 
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level(#) specifies the confidence level, as a percentage, to be used for reporting confidence intervals. 

The default is level(95) or as set by set level. 

noprint suppresses printing of the coefficient table. 

Saved Results 

pvar saves the following in e(): 

Scalars         

 e(N)  number of observations 

 e(n)  number of panels 

 e(tmin) first time period in sample 

 e(tmax) last time period in sample 

 e(tbar) average time periods among panels 

 e(mlag) maximum lag order in panel VAR  

 e(N_clust)  number of clusters 

 e(Q)   criterion function 

 e(J)   Hansen's J chi-squared statistic 

 e(J_df)  J statistic degrees of freedom 

 e(rank)  rank of e(V)  

 e(ic)   number of iterations used by iterative GMM estimator 

 e(converged)1 if converged, 0 otherwise 

Macros          

 e(cmd)  pvar 

 e(cmdline)  command as typed 

 e(depvar)  names of dependent variables 
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 e(exog)  names of exogenous variables, if specified 

 e(clustvar)  name of cluster variable 

 e(instr)  instruments 

 e(eqnames)  equation names 

 e(timevar)  name of time variable 

 e(panelvar)  name of panel VAR iable 

 e(properties) b V 

Matrices        

 e(b)   coefficient vector 

 e(V)  Variance-covariance matrix of the estimator 

 e(Sigma)  Variance-covariance matrix of the model residuals 

 e(W)   weight matrix used for final round of estimation 

 e(init)  initial values of the estimators 

Functions       

 e(sample)  mark estimation sample 

 

3.2. pvarsoc 

pvarsoc provides various summary measures to aid in panel VAR model selection. It reports the model 

overall coefficient of determination, Hansen’s (1982) J statistic and corresponding p-value, and moment 

model selection criteria developed by Andrews and Lu (2001) based on the J statistic. Andrew and Lu’s 

criteria are all based on Hansen’s J statistic, which requires the number of moment conditions to be 

greater than the number of endogenous variables in the model. pvarsoc uses the estimation sample 

of the least restrictive panel VAR model, i.e. with the highest lag order used, for all models that would 

be estimated by the program. 
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Syntax 

pvarsoc depvarlist [if] [in] [, options] 

Options 

maxlag(#) specifies the maximum lag order for which the statistics are obtained. 

pinstlag(numlist) specifies that the numlist-th lag from the highest lag order of depvarlist 

specified in the panel VAR model implemented using pvar be used. This option cannot be 

specified with the option pvaropts(instlag(numlist)). 

pvaropts(options) passes arguments to pvar. All arguments specified in options are passed to 

and used by pvar in estimation. 

Saved Results 

pvarsoc saves the following in r(): 

Scalars         

 r(N)   number of observations 

 r(n)                 number of panels 

 r(tmin) first time period in sample 

 r(tmax) last time period in sample 

 r(tbar)  average time periods among panels 

 r(maxlag)  maximum lag order in panel VAR 

Macros          

 r(endog)  names of endogenous variables 

 r(exog)  names of exogenous variables, if specified 

Matrices        
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 r(stats)  CD, J and p-value, MBIC, MAIC, and MQIC 

 

3.3. pvargranger 

The post-estimation command pvargranger performs Granger causality Wald tests for each equation 

of the underlying panel VAR model. It provides a convenient alternative to Stata’s built-in test 

command. 

Syntax 

pvargranger [, estimates(estname)] 

Options 

estimates(estname) requests that pvargranger use the previously obtained set of panel VAR 

estimates saved as estname. By default, pvargranger uses the active (i.e. the latest) results.  

Saved Results 

pvargranger saves the following in r(): 

Matrix         

 r(pgstats)  chi-squared, degrees of freedom, and p-values 

 

3.4. pvarstable 

The post-estimation command pvarstable checks the stability condition of panel VAR estimates by 

calculating the modulus of each eigenvalue of the estimated model. Lutkepohl (2005) and Hamilton 

(1994) both show that a VAR model is stable if all moduli of the companion matrix are strictly less than 

one. Stability implies that the panel VAR is invertible and has an infinite-order vector moving-average 
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representation, providing known interpretation to estimated impulse-response functions and forecast-

error variance decompositions. 

Syntax 

pvarstable [, options] 

Options 

estimates(estname) requests that pvarstable use the previously obtained set of pvar estimates 

saved in estname. By default, pvarstable uses the active estimation results.   

graph requests pvarstable to draw a graph of the eigenvalue of the companion matrix. 

nogrid suppresses the polar grid circles on the plotted eigenvalues. 

Saved Results 

pvarstable saves the following in r(): 

Matrices        

 r(Re)   real part of the eigenvalues of the companion matrix 

 r(Im)   imaginary part of the eigenvalues of the companion matrix 

 r(Modulus)  modulus of the eigenvalues of the companion matrix 

 

3.5. pvarirf 

The post-estimation command pvarirf calculates and plots impulse-response functions (IRF). 

Confidence bands are estimated using Gaussian approximation based on Monte Carlo draws from the 

estimated panel VAR model. Orthogonalized IRF are based on Cholesky decomposition, and cumulative 

IRF may be also computed using pvarirf. 
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Syntax 

pvarirf [, options] 

Options 

step(#) specifies the step (forecast) horizon; the default is ten periods. 

impulse(impulsevars) and response(endogvars) specify the impulse and response variables.  

Usually one of each is specified, and one graph is drawn. If multiple variables are specified, a 

separate subgraph is drawn for each impulse-response combination. If impulse() and 

response() are not specified, subgraphs are drawn for all combinations of impulse and 

response variables.  

porder(varlist) specifies the Cholesky ordering of the endogenous variables to be used when 

estimating orthogonalized IRFs, as well as the order of the IRF plots. By default, the order in 

which the variables were originally specified on the pvar command is used. This allows a new 

set of IRFs with a different order to be produced without re-estimating the system.  

oirf requests that orthogonalized IRFs be estimated. The default is simple IRFs. 

cumulative computes cumulative impulse response functions. This option may be combined with 

oirf. 

mc(#) requests that # Monte Carlo draws be used to estimate the confidence intervals of the IRFs using 

Gaussian approximation. The default is not to plot confidence intervals, i.e. # = 0. 

table displays the calculated impulse-response functions as a table. The default is not to tabulate IRFs. 

level(#)specifies the confidence level, as a percentage, to be used for computing confidence bands. 

The default is level(95) or as set by set level.  level is available only when mc(#)> 1 is 

specified. 
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dots requests the display of iteration dots. By default, one dot character is displayed for each iteration. 

A red 'x' is displayed if the iteration returns an error. 

save(filename) specifies that the calculated IRFs be saved under the name filename. 

byoption(by_option) affects how the subgraphs are combined, labeled, etc. This option is 

documented in [G] by_option.  

nodraw suppresses the display of the estimated IRFs. 

Saved Results 

pvarirf saves the following in r(): 

Scalars        

 r(iter)  Monte Carlo iterations 

 r(step)  forecast horizon 

Macros          

 r(porder)  Cholesky order of orthogonalized IRF 

 

3.6. pvarfevd 

The post-estimation command pvarfevd computes forecast-error variance decomposition (FEVD) 

based on a Cholesky decomposition of the residual covariance matrix of the underlying panel VAR 

model. Standard errors and confidence intervals based on Monte Carlo simulation may be optionally 

computed.  

Caution in interpreting computed FEVD should be exercised when exogenous variables are included in 

the underlying panel VAR model.  Contributions of exogenous variables, when included in the panel VAR 

model, to forecast-error variance are disregarded in calculating FEVD. 
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Syntax 

pvarfevd [, options] 

Options 

step(#) specifies the step (forecast) horizon; the default is ten periods. 

impulse(impulsevars) and response(responsevars) specify the impulse and response 

variables for which forecast-error variance decomposition are to be reported. If impulse() or 

response() is not specified, each endogenous variable, in turn, is used. 

porder(varlist) specifies the Cholesky ordering of the endogenous variables to be used when 

estimating FEVDs. By default, the order in which the variables were originally specified on the 

underlying pvar command is used. 

mc(#) requests that # Monte Carlo draws be used to estimate the standard errors and the percentile-

based 90%  confidence intervals of the FEVDs. Computed standard errors and confidence 

intervals are not displayed, but may be saved as a separate file. 

dots requests the display of iteration dots. By default, one dot character is displayed for each iteration. 

A red 'x' is displayed if the iteration returns an error. 

save(filename) specifies that the FEVDs be saved under the name filename. In addition, standard 

errors and percentile-based 90% confidence intervals are saved when #>1 in option mc(#) is 

specified. 

notable requests the table to be constructed but not displayed. 

Saved Results 

pvarfevd saves the following in r(): 

 



18 

 

Scalars        

 r(iter)  Monte Carlo iterations 

 r(step)  forecast horizon 

Macros          

 r(porder)  Cholesky order  

 

4. Examples 

We illustrate the use of the pvar suite of commands by analyzing the relationship between annual 

hours worked and hourly earnings, which has been previously analyzed by Holtz-Eakin, Newey and 

Rosen (1988) in their seminal paper on panel vector autoregression. To compare our new programs with 

Stata’s built-in var suite of commands, we also applied the new pvar suite of commands to 

Lutkephol’s (1993) West Germany time series data. 

 

4.1. National Longitudinal Survey data 

We use the subsample of women aged 14-26 years in 1968 from the National Longitudinal Surveys of 

1968 to 1978 available from Stata. Our subsample consists of 2,039 women who had reported wages 

(wage) and annual hours worked (hours) in at least three rounds of the survey, of which two are in 

consecutive years. Holtz-Eakin, et. al. used the same survey but with a different time period and 

different subsample of workers, thus results may not be directly comparable.  

Model selection measures calculated using pvarsoc for first- to third-order panel VAR s using the first 

four lags of hours and wage as instruments is shown below.  
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Based on the three model selection criteria by Andrews and Lu (2001) and the over-all coefficient of 

determination, first-order panel VAR is the preferred model, since this has the smallest MBIC, MAIC and 

MQIC. While we also want to minimize Hansen’s J statistic, it does not correct for the degrees of 

freedom in the model like the model and moment selection criteria by Andrews and Lu. Based on the 

selection criteria, we fit a first-order panel VAR model with the same specification of instruments as 

above using GMM estimation implemented by pvar. 

 

                                                                              
        3    .9862297   3.624628   .4591831  -23.29944  -4.375372  -11.62918  
        2     .988392   5.395145   .7146273    -48.453  -10.60486  -25.11248  
        1    .9906918   11.74496   .4663737  -69.02726  -12.25504  -34.01648  
                                                                              
      lag      CD          J      J pvalue     MBIC       MAIC       MQIC     
                                                                              

                                                   Ave. no. of T   =     1.656
                                                   No. of panels   =       506
 Sample:  72 - 73                                  No. of obs      =       838
 Selection order criteria

...
Running panel VAR lag order selection on estimation sample
. pvarsoc wage hours, maxlag(3) pvaropts(instl(1/4))

. gen wage = exp(ln_wage)

(National Longitudinal Survey.  Young Women 14-26 years of age in 1968)
. webuse nlswork2

Instruments : l(1/4).(wage hours) 
                                                                              
         L1.     .5834965   .1436703     4.06   0.000     .3019079     .865085
       hours  
              
         L1.    -.0575627   .5706831    -0.10   0.920    -1.176081    1.060956
        wage  
hours         
                                                                              
         L1.     .0170489   .0176144     0.97   0.333    -.0174747    .0515725
       hours  
              
         L1.     .6428702   .0978213     6.57   0.000     .4511439    .8345965
        wage  
wage          
                                                                              
                    Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
                                                                              

                                                   Ave. no. of T   =     1.656
                                                   No. of panels   =       506
                                                   No. of obs      =       838
GMM weight matrix:     Robust
Initial weight matrix: Identity
Final GMM Criterion Q(b) =      .014

GMM Estimation

Panel vector autoregresssion

. pvar wage hours, instl(1/4)
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Note that the 506 women included in the estimation is significantly less than the full subsample of 

women available in the data. By default, pvar drops from estimation any observation with missing data. 

Since hours worked and wages are not observed in all years for all women in the subsample the number 

of observations dropped grows with the lag order of variables included as instruments. We can improve 

estimation by using “GMM-style” instruments as proposed by Holtz-Eakin, et. al. Instrument lags with 

missing values are replaced with zeroes. This increases the estimation sample, which results to more 

efficient estimates. 

 

Although Granger causality for a first-order panel VAR may be inferred from the pvar output above, we 

still perform the test using pvargranger as an illustration. Results of the Granger causality tests below 

show that wage Granger-causes hours, and hours Granger-causes wage at the usual confidence levels, 

similar to the findings by Holtz-Eakin, et.al. 

Instruments : l(1/4).(wage hours) 
                                                                              
         L1.    -.1068443   .0947648    -1.13   0.260    -.2925799    .0788912
       hours  
              
         L1.    -2.280437   .3250711    -7.02   0.000    -2.917565   -1.643309
        wage  
hours         
                                                                              
         L1.     .0721378   .0248413     2.90   0.004     .0234498    .1208257
       hours  
              
         L1.     .8062972    .079843    10.10   0.000     .6498078    .9627867
        wage  
wage          
                                                                              
                    Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
                                                                              

                                                   Ave. no. of T   =     2.578
                                                   No. of panels   =      2039
                                                   No. of obs      =      5257
GMM weight matrix:     Robust
Initial weight matrix: Identity
Final GMM Criterion Q(b) =    .00792

GMM Estimation

Panel vector autoregresssion

. pvar wage hours, instl(1/4) gmmstyle 
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Panel vector autoregression model estimates are seldom interpreted by its self. In practice, researchers 

are often interested in the impact of exogenous changes in each endogenous variable to other variables 

in the panel VAR system. Prior to estimating impulse-response functions (IRF) and forecast-error 

variance decompositions (FEVD), however, we first check the stability condition of the estimated panel 

VAR. The resulting table and graph of eigenvalues confirms that the estimate is stable. 

 

 

                                                          
                     ALL       49.213    1        0.000   
                    wage       49.213    1        0.000   
   hours                                                  
                                                          
                     ALL        8.433    1        0.004   
                   hours        8.433    1        0.004   
   wage                                                   
                                                          
     Equation \ Excluded      chi2     df   Prob > chi2   
                                                          

    Ha: Excluded variable Granger-causes Equation variable
    Ho: Excluded variable does not Granger-cause Equation variable
  panel VAR-Granger causality Wald test

. pvargranger

   pVAR satisfies stability condition.
   All the eigenvalues lie inside the unit circle.

                                      
     .1400809          0    .1400809  
      .559372          0     .559372  
                                      
      Real     Imaginary    Modulus   
         Eigenvalue                   
                                      

   Eigenvalue stability condition

. pvarstable, graph
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Following the theoretical exposition by Holtz-Eakin, et. al., we argue that shocks in wage levels have 

direct impact on contemporaneous hours worked, while current work effort affects wages only in the 

future. Using this causal ordering, we calculated the implied IRF using pvarirf and the implied FEVD 

using pvarfevd. The IRF confidence intervals are computed using 200 Monte Carlo draws based on the 

estimated model. Standard errors and confidence intervals for the FEVD estimates are likewise available 

but not shown here to save on space. 

  . pvarirf, mc(200) oirf byopt(yrescale)

fevd.dta
on 200 Monte Carlo simulations are saved in file
FEVD standard errors and confidence intervals based
                              
       10   .4039508  .5960492
        9   .4039355  .5960644
        8   .4038868  .5961132
        7    .403731   .596269
        6   .4032323  .5967677
        5   .4016319   .598368
        4   .3964525  .6035476
        3   .3792638  .6207362
        2   .3183373  .6816627
        1   .0933682  .9066318
        0          0         0
hours      
                              
       10   .9402192  .0597809
        9   .9402227  .0597773
        8   .9402341   .059766
        7   .9402702  .0597298
        6   .9403861  .0596139
        5   .9407574  .0592426
        4   .9419529  .0580471
        3    .945842   .054158
        2   .9587072  .0412928
        1          1         0
        0          0         0
wage       
                              
horizon         wage     hours
Forecast     Impulse variable 
and        
variable   
Response   
                              

Forecast-error variance decomposition

note: label truncated to 80 characters
. pvarfevd, mc(200) save("fevd.dta")
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Based on the FEVD estimates, we see that as much as 40 percent of variation in hours worked by 

women in our example can be explained by their wages. On the other hand, hours worked explain only 

five percent of variation in future wages of women. In terms of levels, the IRF plot shows that a positive 

shock on real wages leads to decreased work effort, which implies a backward bending labor supply 

among women in the sample. It is also noteworthy that current shock in work effort have positive yet 

short-lived impacts on both hours worked and wages. The effect of current shock on wages, on the 

other hand, has a persistent positive impact on future wages. 

 

4.2. Lutkepohl (1993) West Germany data 

We compare our pvar command with the built-in Stata var command using Lutkepohl’s West Germany 

time series data available from Stata. The data contains first difference of the natural log of investment 

(dln_inv), of income (dln_inc), and of consumption (dln_consump) from the second quarter of 1962 up 

to the fourth quarter of 1982. Lutkepohl uses only observations up to the fourth quarter of 1978 in his 
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examples, but we use the full sample in our exposition here. We set the time-series data as a one-panel 

data for pvar to function. 

 

For simplicity, we compare VAR(1) estimates using the built-in Stata var (denoted var1 in the output 

below), and two specifications of the new Stata command pvar: 1) using the default options with a one-

lag instruments (pvar1_1) and 2) using a five-lags “GMM style” instrument set (pvar1_5). The 

VAR/panel VAR point estimates are summarized as a table below. Based on the point estimates and 

standard errors calculated, notice that each coefficient’s 95 percent confidence interval, i.e. roughly two 

standard errors on either side of the point estimate, overlap across estimators. Also, pvar uses one less 

observation than var because of the forward orthogonal transformation.  

                delta:  1 quarter
        time variable:  qtr, 1960q1 to 1982q4
       panel variable:  id (strongly balanced)
. xtset id qtr

. gen id = 1

(Quarterly SA West German macro data, Bil DM, from Lutkepohl 1993 Table E.1)
. webuse lutkepohl2
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Cholesky impulse-response functions and forecast-error variance decompositions can likewise be 

estimated using the new Stata commands pvarirf and pvarfevd, but are not shown in the interest of 

space.7 Similar to the VAR/panel VAR point estimates, the 95 percent confidence intervals of the 

                                                           
7 This paper is accompanied with a *.do file which details all commands used in this paper. 

                                         legend: b/se
                                                     
        tmax           91           90           90  
        tmin            2            2            2  
           N           90           89           89  
Statistics                                           
                                                     
                .12186649     .1430883    .13304683  
         L1.   -.20676573   -.03995971   -.21808259  
 dln_consump  
              
                .10729047    .14926382    .13852001  
         L1.    .30784668    .41644295     .7993262  
     dln_inc  
              
                .02590542    .02349897    .01656548  
         L1.   -.00139181   -.00633585   -.00875257  
     dln_inv  
dln_consump   
                                                     
                .13274394    .14565136    .12359724  
         L1.    .23605129    .41862255    .15905599  
 dln_consump  
              
                .11686691    .16229116    .12738437  
         L1.   -.00827691    .12441837    .47762624  
     dln_inc  
              
                .02821766    .02586756    .01613904  
         L1.     .0340018    .02621551     .0209324  
     dln_inv  
dln_inc       
                                                     
                 .5011716    .52570264    .36813698  
         L1.    .57644709    .72224157    1.6836959  
 dln_consump  
              
                .44122824    .45532768    .24411809  
         L1.    .41510931    .56587455    .08242313  
     dln_inc  
              
                .10653512    .17654561    .11342286  
         L1.   -.22185123   -.21273369   -.26849009  
     dln_inv  
dln_inv       
                                                     
    Variable      var1       pvar1_1      pvar1_5    
                                                     

. est table var1 pvar1_1 pvar1_5, se stat(N tmin tmax) drop(_cons)

.   est store pvar1_5

. qui pvar dln_inv dln_inc dln_consump, lags(1) instl(1/5) gmms

.   est store pvar1_1

. qui pvar dln_inv dln_inc dln_consump, lags(1)

.   est store var1

. qui var dln_inv dln_inc dln_consump, lags(1)
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Cholesky IRFs and FEVDs overlap for the three estimators. Below, we show the response of dln_inv to 

a one standard deviation shock on dln_inv using the three models. 
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