
Ann. Inst. Statist. Math. 
Vol. 46, No. 4, 723-736 (1994) 

ESTIMATION OF PARAMETERS IN A TWO-PARAMETER 
EXPONENTIAL DISTRIBUTION USING RANKED SET SAMPLE 

KIN LAM 1, BIMAL K. SINHA 2 AND ZHONG WU 2 

1 Department of Statistics, University of Hong Kong, Pokfulam Road, Hong Kong 
2 Department of Mathematics and Statistics, University of Maryland Baltimore County, 

Baltimore, MD 21228-5398, U.S.A. 

(Received June 30, 1993; revised April 28, 1994) 

A b s t r a c t .  In situations where the experimental or sampling units in a study 
can be easily ranked than quantified, McIntyre (1952, Aust. J. Agric. Res., 
3, 385-390) proposed that  the mean of n units based on a ranked set sample 
(RSS) be used to estimate the population mean, and observed that  it provides 
an unbiased estimator with a smaller variance compared to a simple random 
sample (SRS) of the same size n. McIntyre's concept of RSS is essentially non- 
parametric in nature in that  the underlying population distribution is assumed 
to be completely unknown. In this paper we further explore the concept of 
RSS when the population is partially known and the parameter of interest is 
not necessarily the mean. To be specific, we address the problem of estimation 
of the parameters of a two-parameter exponential distribution. It  turns out 
that  the use of RSS and its suitable modifications results in much improved 
estimators compared to the use of a SRS. 

Key words and phrases: Best linear unbiased estimator, exponential distribu- 
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1. Introduction 

In m a n y  sampl ing  s i tuat ions when the  variable of interest  f rom the experi-  
menta l  units  can be more  easily ranked t h a n  quantified, it tu rns  out t ha t  the  use 
of McIn ty re ' s  (1952) not ion of 'Ranked Set Sampling' (RSS)  is highly beneficial 
and much  superior  to the  s t anda rd  simple r a n d o m  sampl ing  (SRS)  for es t ima-  
t ion of the  popula t ion  mean.  Fortunately,  in m a n y  agricul tural  and  envi ronmenta l  
studies, it is indeed possible to rank  the  exper imenta l  or sampl ing  units  wi thou t  
ac tual ly  measur ing  t h e m  ra ther  cheaply. We refer to Halls and Dell (1966), Mar t in  
et al. (1980), Cobby  et al. (1985) and Sinha et al. (1992) for some applicat ions.  

The  basic concept  behind  RSS  can be briefly described as follows. Suppose 
X1, X 2 , . . . ,  Xn is a r a n d o m  sample  f rom F(x)  with  a mean  # and  a finite var iance 
~r 2. Then  a s t anda rd  nonpa rame t r i c  es t imator  of p is J~ = E 1  X i / n  with  v a r ( X )  = 
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cr2/n. In contrast to SRS, RSS uses only one observation, namely, Xl:n - X(11), 
the lowest observation, from this set, then X2:~ -= X(22), the second lowest from 
another independent set of n observations, and finally X~:n - X(n~), the largest 
observation from a last set of n observations. This process can be described in 
Table 1. 

Table 1. Display of n 2 observations in n sets of n each• 

X(n) X(12) 
X(21) X(22) 

X(~l) X(~2) 

• . X(1(~-1)) 
• . X(2(~-1)) 

• . X(~(~-I)) 

xon) 
x(>~) 

X(n~) 

The important point to emphasize is that although RSS requires identification 
of as many as n 2 sampling units, only n of them, namely, {X(n ) , . . .  ,X(nn)}, are 
actually measured, thus making a comparison of this sampling strategy with SRS 
of the same size n meaningful. Obviously, RSS would be a serious contender to 
SRS in situations where the task of assembly of the sampling units is easy and 
their relative rankings in terms of the characteristic under study can be done 
with negligible cost. It is obvious that the new sample X(n) ,X(22) , . . . ,X(n~) ,  
termed by McIntyre (1952) a Ranked Set Sample (RSS), are independent but not 
identically distributed. Moreover, marginally, X(ii) is distributed as Xi:~, the i-th 
order statistic in a sample of size n from F(x). In certain situations, the whole 
procedure to generate a RSS of size n is repeated m times. Throughout this paper, 
we consider the case m = 1. 

McIntyre (1952) proposed 

(1.1) fL~** = ~ X(ii)/n 

as a rival estimator of # as opposed to J~. It should be mentioned that McIntyre 
(1952) gave no supporting mathematical theory to prefer /2~8, over )(. It was 
provided much later by Takahasi and Wakimoto (1968). It is easy to verify that 
E(/2~,) = #, and a somewhat surprising result which makes RSS preferable to 
SRS is that 

(1.2) var(ftrs,) < var(X) ! 

A direct proof of this variance inequality follows from the well-known positively 
associated property of the order statistics (Tukey (1958), Bickel (1967)). Dell 
(1969) and Dell and Clutter (1972) provided the following explicit expression for 
the variance of/2~s where #(0 is the mean of Xi:n. 

n 
(1.3) var(/2~,) = a2 /n - E (#( 0 - #)2/n2. 
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Many aspects of RSS have been studied in the literature. Takahasi and 
Wakimoto (1968) have shown that the relative precision (RP) of/2~** relative 
to 2 ,  defined as RP = var(2)/var(/2~s,) ,  satisfies: 1 _< R P  <_ (n + 1)/2, with 
RP = (n + 1)/2 in case the population is uniform. Patii et al. (1992a) computed 
the expressions for RP for many discrete and continuous distributions. David 
and Levine (1972) and Ridout and Cobby (1987) discussed the consequences of 
presence of errors in ranking. Muttlak and McDonald (1990a, 1990b) developed 
ranked set sampling theory when the experimental units are selected with size- 
biased probability with respect to a concomitant variable. Stokes (1980) and Sinha 
et all (1992) discussed the estimation of variance based on a ranked set sample. 
Yanagawa and Shirahata (1976) developed RSS theory with selective probability 
matrix, and Yanagawa and Shan-Huo (1980) discussed the MG-procedure in RSS. 
For some other aspects of RSS, we refer to Takahashi (1969, 1970), Stokes (1977, 
1986), Takahashi and Futatsuya (1988), Kvam and Samaniego (1991) and Patil et 
al. (1992b). 

Admittedly, the concept of RSS is nonparametric in nature, and /2~s, is a 
natural candidate for unbiased estimation of # on the basis of RSS as described 
above when F(x)  is completely unknown. The object of this paper is to further 
explore the concept of RSS and its suitable modifications for estimation of the 
parameters in a two-parameter exponential distribution in the same spirit as in 
Sinha et al. (1992) where normal and exponential distributions are considered. 
However, one main point of difference is that unlike in Sinha et aI. (1992) where 
mostly estimation of the mean is discussed, here the parameters of interest are not 
the means. We note that the pdf of a two-parameter exponential distribution can 
be written as 

1 
(1.4) f ( x  [ 0, o-) = - exp[ - (x  - 0)/o-], x > 0, o- > 0. 

a 
Section 2 is devoted to the estimation of 0, Section 3 to or, and Section 4 to 

5p = 0 + %o-, the p-th quantile of (1.4). Here % = log l@p stands for the p-th 
quantile of a standard exponential distribution, i.e., (1.4) with 0 = 0 and o- = 1. It 
may be noted that p = 1 - e -1 corresponds to the mean of (1.4) so that McIntyre's 
(1952) general result is directly applicable in this case. 

We note in passing that if X1 , . . .  ,X~ is a SRS of size n from (1.4), then 

2 ~ ( X i - X ( 1 ) )  
(1.5) 0 = 2 ( 1  ) - -  - - ,  ~ = 

n n - 1  
are the uniformly minimum variance unbiased estimators (UMVUEs) of 0 and 
respectively. Also, )(  is the UMVUE of E ( X )  = 0 ÷ ~, and 5p = 0 ÷ ~p& is the 
UMVUE of 6p. Moreover, 

(1.6) 

0-2 

n(n - 1)' 

I - n2 + 

O-2 

var(6-) -- n -  1' 
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2. Estimation of 0 

K I N  L A M  E T  A L .  

In this section we discuss the problem of est imation of the parameter  0 in 
(1.4), and point out  tha t  the use of RSS and its suitable variations results in 
much improved est imators compared to the use of a SRS. 

2.1 Best linear unbiased estimators 
We first address the issue of how best  to use the RSS, namely, X ( 1 1 )  , . . .  , X(nn) , 

for est imation of 0. Recall tha t  E(X(i~)) = Ù+c~:~cr and var(X(~)) = d~:~a 2, where 

i i 
1 

1 , d i . ~ = E ( n  J + l )  2 (2.1) ei:~ = E n - j + 1 " - 
j = l  j = l  

are respectively the expected value and the variance of the i- th order statistic 
in a sample of size n from a s tandard  exponential  distr ibution (David (1981), 
Arnold and Balakrishnan (1989), Balakrishnan and Cohen (1991)). Start ing with 
~-~ ciX(ii) and minimizing v a r ( E 1  c~X(.)) subject  to the unbiasedness conditions: 

n ~-~.1 Ci = I ,  E n = 1 CiCi:n 0, leads to the best  linear unbiased est imator  (BLUE) of 

0 as 

(2.2) Obluc = (~-]l X(ii)/di:n)(Y~-i C2:n/di:n) -- (~-~1 Ci:n/di:n)(E1 Ci:nX(ii)/di:n) 
1/di:n)(E  2 

with 

(2.3) 
Ci:n/di:n) var(0bl c) = ( E l  

n n 2 

The above formulae can be simplified a little bit using the fact that  

n n 

(2.4) E 1/di:n = E 1 / ( n -  i + 1). 
i = 1  i = 1  

Table 2 provides a comparison of var(0) and var(~)bz~e) through RP = var(0) /  
var(0blue) for n = 6, 7, 8, 9, 10 and clearly reveals the superiori ty of RSS over the 
use of SRS. 

Incidentally, we can also derive the BLUE of 0 based on a partial  RSS, 
1 X namely, X O 1 ) , . . . , X ( u ) ,  for l < n. Start ing with Y~4 ci (ii) and minimizing 

var(~l l  c~X(ii)) subject  to the unbiasedness conditions: E t 1 1 Ci = 1~ E 1  CiCi:n ~- O, 

leads to 

(2.5) = 
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Table 2. Compar ison  of var(0) and  var(Oblue) t h rough  R P .  

n 6 7 8 9 10 

R P  1.0439 1.1333 1.2177 1.2870 1.3537 
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with 

(2.6)  - 

Table 3 provides, for n = 8, 9 and 10 minimum values of l for which RP = 
var(~})/var(Oblz¢(1)) > 1, and shows tha t  often a partial  RSS combined with opti- 
mum weights does bet ter  than  a SRS of size n. Thus, for example, 0bl~(7) based 
on a partial  RSS of size l = 7 is as efficient as the UMVUE of 0 based on a SRS 
of size n = 10. As an extreme example, one can verify tha t  0b~,¢ (9) based on 0nly 

9 observations is as efficient as 0 based on n = 100. 

Table 3. Values of l and  n for which R P  > 1. 

n l R P  

8 7 1.1049 

9 7 1.0692 

10 7 1.0374 

2.2 Which order statistic? 
We next address the issue of the right selection of order statistics in the context 

of RSS, given tha t  we must select one from each set of n observations, there 
are n such sets, and tha t  the resultant  est imator of 0 is unbiased. Recall tha t  
McIntyre 's  scheme is based upon selecting the diagonal elements (X(11), • . . ,  X(nn)) 
in Table 1, where X(ij) refers to the j - t h  order statistic in the i- th row of this table. 
Unfortunately, unlike in the case of normal and exponential  distributions, there is 
no obvious clear-cut choice of any 'opt imum'  order statistic in the present problem. 

We first discuss the case of the minimum order statistic and examine the 
performance of the use of (X(11), . . . ,  X(n)) for est imation of 0 for various choices 
of I = 1 , . . . , n  in an a t t empt  to determine the minimum value of l for which 
dominance over 0 holds. Noting tha t  the pdf  of X(i!) is of the same form as (1.4) 
with a replaced by or* = a/n,  and tha t  X(11), . . . ,  X(ll) are rid, we can readily use 
(1.5) to conclude tha t  

(2.7) 
l 

Olnin(/) = Y(1) - l(l - 1) 
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is the UMVUE of 0 based on (X(11),... ,X(ll)), where Y(1) = min{X(m), . . . ,  
X(zl)}, with the resultant variance given by 

(y 2 

(2.8) var(0mi~(l)) - n21( l _ 1)" 

A direct comparison of vat(0) and var(0min(l)) immediately shows that l = 2 
does the job. In other words, appropriate use of only two smallest order statistics 
from Table 1 results in an unbiased estimator of 0 better than the use of a S R S  of 
size n, whatever be n! This is an extremely powerful and highly interesting result, 
and similar to what Sinha et al. (1992) observed in connection with estimation of 
normal and exponential means. It should be noted that the optimality of the mini- 
mum order statistic for estimation of 0 is essentially due to its (partial) sufficiency 
under the model (1.4), and cannot be expected to hold for other distributions. 
Thus, for example, as noted in Sinha et al. (1992), a similar result holds for esti- 
marion of the normal mean only for the sample median, and for the exponential 
mean for a very special order statistic different from the sample median and the 
smallest order statistic. 

We next address the problem of using a subset of the r-th order statistics, 
namely, X( l r ) , . . . ,X( t r )  from the r-th column of Table 1 for some fixed r > 1 
and for some 1 ~ l < n to efficiently estimate 0, and in the sequel determine 
the minimum l for every value of r for which the desired dominance holds. Note 
that for an arbitrary r > 1, X( l r ) , . . .  ,X(t~) are iid with a common pdf of the 
form 1_ ~x-O~ ~g~ ,~[ - -~) ,  x > 0, for some g~,~(.). It may be noted that, unless r = 1, an 
exact optimum inference in the form of a UMVUE of 0 is extremely difficult in the 
general situation. Following the idea given in (1.5), we therefore propose to use 

(2.9) 
and 

(2.10) 

Z(z:r) = min{X(l r ) , . . . ,  X(tr)  } 

1 Z l ( X ( ~ r )  - z(z:r)) 
Z(l:~) = l - 1 

Noting that 

(2.11) 

where 5(l,r,n ) and 5~z.r,~ ) are two absolute constants, we may use 

, (l,~,~) Z(l:~) 
(2.12) ~(t,~) = Z(z:r) 5" 

(Z x,n) 

as an estimator of 0 based o n  X ( l r ) , . . .  , X(Ir) .  We have numerically computed 
the values of 6(t,r,n), 6" and performed extensive simulation to evaluate the (l,r,n)' 
variance of ~}(t,r) for various values of l, r and n = 5, 10. It turns out that for 
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Table  4.1a. Values of  5(z,2,n ) and  6(*t,2,~) for n = 5. 

1 2 3 4 5 

5(/,2,n ) .3389 .3511 .3595 .3659 

5(/,2,n ) .2806 .2159 .1804 .1573 
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Table  4 . lb .  Values of  6(l,2,~ ) and  5~l,2,n ) for n = 10. 

l 2 3 4 5 6 7 8 9 10 

5(*1,2,n) .1584 .1643 .1683 .1713 .1737 .1756 .1773 .1787 .1799 

5(t,2,n ) .1318 .1015 .0848 .0740 .0663 .0605 .0559 .0522 .0491 

Table  4.2. S imula t ed  values of  var(0(/,2 ) ) for n = 5. 

l 2 3 4 5 

var(0(/,2)) 0.1078(72 0.0368a 2. 0.0191or 2. 0.0128a 2. 

~ 

Table  4.3: S imula ted  values of var(O(t,2)) for n = 10. 

l 2 3 4 5 

var(O(t,2)) 0.i096a 2 0.0372~ 2 0.0192a 2 0.0129cr 2 

6 7 8 9 10 

0.0092~ 2. 0 .0064a 2. 0.0049~ 2. 0.0042(72* 0.0037c ~2. 

~ 

Table  4.4. S imula ted  s t a n d a r d  errors  of s imu la t ed  var(0(l,2)) for n = 5. 

l 2 3 4 5 

s.e. 6.1074 × 10 -06 3.3474 × 10 -07  5.1550 × 10 -08 1.9139 × 10 - ° s  

these values of n, only r = 2 works. Values of 5(z,2,,), and 5~1,2,~ ) for n = 5 and 10 
respectively are given in Tables 4.1a and 4.lb. 

In Tables 4.2 and 4.3 we present the simulated values of var(0(t,r)) for all the 
combinations of l when r = 2 for n = 5 and 10 respectively. The combinations for 

~2 
which dominance over 0 holds, namely, var(0(z,2)) < ~(n-1), are denoted by * (see 

(1.6) for vat(0)). Thus, for n = 5, the unbiased est imator 0(3,2) based on three sec- 

ond order statistics {X(12), X(2,2), X(a,2) } performs bet ter  than  0, while for n = 10, 
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the unbiased estimator 4(6,2) based on {X 02),  X(2,2), X(a,2), X(<2), X(5,2), X(6,2)} 

is better than 0. The simulated values of the variances of 0(l,~) are based on 

10,000 replications of the values of 0(l,~), each 0(1,~) in turn being generated from 
n 2 simulated standard exponential variables. 

To examine the stability of the above simulated values, we generated 20 sets 
of values of simulated var(0(l,2)) for n = 5 and l = 2, 3, 4, 5, each set in turn being 
based on 10,000 replications of standard exponential variables. The standard 
errors of these 20 values are given above in Table 4.4. It is clear that  the amount 
of variation is very small, and dominance of 0(t,2) over 0 for n = 5 and 1 > 3 always 
holds. 

3. Estimation of 

In this section we discuss the problem of estimation of the parameter cr in 
(1.4), and point out that the use of RSS and its suitable variations results in 
much improved estimators compared to the use of a SRS. 

3.1 BLUE 
To derive the BLUE of a based on the entire McIntyre sample X(11), . . . ,  

X X(,~,), we minimize the variance of ~--~-i ci (ii) subject to the unbiasedness condi- 
n tions: ~-~.~ ci = 0, ~ 1  cici:n = 1. This results in 

d n n (E~ X(ioci:,~l i:-)(Y~-i l/d~:~) - ( E l  c~:nldi:,~)(Y~.l X(ioId~:n) 
(3.1) ~blue = ( ~ 1  1 / d i : n ) ( ~ l  C2:n/di:n) - ( E l n c z n ' : / d ,  n ) 

with 

(3.2) var(ab,,  ) = a 2 ( E l  
Ci:n/ i:n) (El  2 2 d - 

As before, the above expressions can be simplified a bit using (2.4). In Table 5 we 
have presented the values of RP = var(&)/var(~bt~¢) for n = 4, 5, 6, 7, 8, 9, 10. The 
overwhelming dominance of 5bt,~ over & in all the cases is obvious. For example, 
~bZ~ based on a RSS of size 7 is twice as efficient as a based on n = 7. 

Table 5. Compar ison  of var(&) and  var(&bt~,~) t h rough  RP. 

n RP 
4 1.1865 

5 1.4535 

6 1.7241 

7 1.9988 

8 2.2755 

9 2.5615 

10 2.8414 
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As in the case of est imation of 0, here also we can use a part ial  RSS, namely, 
X 0 1 ) , . . . , X ( I  0 for some 1 < n. Start ing with }-~,ZlciX(ii) and minimizing 

var(}-~ll ciX(ii)) subject to the usual unbiasedness conditions: }-~l 1 ci = 0, 

~ l  1 cici:~ = 1, we readily obtain the BLUE of a based on the partial  RSS as 

l l l d l 
( 3 3 )  a l=e(1) = ( E ~  X(<c~:~/d~:~)(E~ 1 / d i : n )  - ( E l  Ci:n/  i : n ) ( E 1  X ( i i ) / d i : n )  

with 

(3.4) 

(~-]z 1 1/di:=)(Etl  c~:~/di.n) 1 2 • . --  ( E l  g i : n / d i : n )  

var((rbt~e(1)) = cr 2 (Ell  1/di:n) 
(El~ 1/d~:~)(El~ c2~:n/d~:n) - (Ell  Ci:n/di:n) 2" 

Table 6 provides the minimum values of 1 for n = 6, 7, 8, 9, 10 for which dom- 
inance of (~bl~e (l) over # holds, and clearly shows the superiority of this method.  
For example, (~bl~e(6) based on a RSS of size 6 is as efficient as 5 based on n = 9. 

Table 6. Values of I and  n for which R P  > 1. 

n l R P  

6 5 1.1422 

7 6 1.4420 

8 6 1.2059 

9 6 1.0280 

10 7 1.3086 

3.2 Which order statistic? 
In this subsection we explore the possibility of finding 'opt imum'  order statis- 

tics X(lr), • • . ,  X(nr) corresponding to the r - th  column in Table 1 so tha t  a suitable 
combination of a subset of these order statistics, namely, X 0 r ) , . . . ,  X(ir) for some 
1 < n would produce an unbiased est imator of a bet ter  than  ~. A close inspection 
of the formula given in (1.7) coupled with the observations made in Subsection 2.2 
reveals tha t  r = 1 will not do the job because 

 EI( - Y(1)) 
(3.5) ~min(/) = l -  1 ' 

the UMVUE of a based on X(I~) , . . .  ,X(zl), satisfies: var(e~min(/)) = (~2/(1- 1) 
which is always bigger than  a2/(n - 1). 

We have done extensive simulation for all r > 1 when n = 5 and found tha t  
there is no value of 1 for which the dominance of 

Z* (l,,) 
(3.6) 5(z,~)-  (5* 

(l,r,n) 

over 5 holds. We also noted tha t  the performance of ~(l,~), which is always worse 
than  ~, quickly deteriorates as r increases. 
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4. Estimation of quantiles 

In this section we discuss the problem of estimation of quantiles 5p of (1.4) for 
various values of 0 < p < 1, and point out that the use of RSS  and its suitable 
variations results in much improved estimators compared to the use of a SRS.  
The representation of 5p as a linear combination of 0 and cr makes our task quite 
easy. It should be noted that Stokes and Sager (1988) discussed the nonparametric 
estimation of a distribution function based on a RSS.  However, no such result for 
estimation of a quantile is available. 

4.1 BLUE 
The BLUE of 5p on the basis of the complete RSS  X(11) , . . . ,  X(n~) can be 

derived by minimizing var(~lC~X(~) ) subject to the unbiasedness conditions: 
}-~.~ ci = 1, ~-~.~ cici:~ = %. This immediately results in 

X ( i i )  + A2 

1 " 1 " 

(4.1) 

where 

(4.2) 

and 

- (El ( 4 . 3 )  = - 

Moreover, straightforward computations yield 

(4.4) var(Sp,bl~) = o 2 E~(c~:~ -- ~P)2/di:~ 
(E~ 1/d{:~)(E~ c[:,~/d{:~) - ( E ~  c{:~/d{:~) 2" 

As before, the above expressions can be simplified a bit using (2.4). Table 7 

represents the values of RP = var(Sp)/var(Sp,bZ~) for p = 0.1,0.3,0.5,0.7,0.9 
and n = 4, 5, 6, 7, 8, 9, 10. The usefulness of this appropriate variation of RSS  is 
obvious. For example, for n : 10, 5p,bt~ is twice as efficient as (~p for p = 0.1 and 

6 times as efficient as 5p for p = 0.5. 

Table 7. Values of var(Sp) and var(Sp,blue) through R P .  

4 1.1554 2.9097 4.3638 2.8859 1.8595 

5 1.3266 3.3802 4.5603 3.1290 2.1526 

6 1.4895 3.8182 4.8284 3.4201 2.4572 

7 1.6369 4.2453 5.1182 3.7380 2.7701 

8 1.7636 4.6154 5.4403 4.0669 3.0876 

9 1.8889 5.0508 5.7812 4.4140 3.4103 

10 2.0164 5.3830 6.1429 4.7569 3.7349 

n \ p  0.1 0.3 0.5 0.7 0.9 
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Analogously, based on a partial RSS of size l, the BLUE of 5p turns out to be 

l l C i : n Z ( i i  ) 

1 di:n 1 

where 

(4.6) 

and 

1 2 l ( 2 1  ci:Jdi:n) - ~lp(E1 ci:n/di:n) 
Al(1) = (E~l 1/d~:n)(Ez 1C2:n/di:n) _ (~-~/1 Ci:n/di:n) 2 

(4.7) 
~p(~-~.l 1 1/di:~) -(}-~l 1Ci:n/di:n) 

A2(I) = (}_~ll 1/d~:n)(}_~ll C2:n/di:n) _ (Ell C i : n / d i : n )  2 • 

Also, direct computations lead to 

(4.8) var(Cp,bl,e(/)) = cr 2 }-~Zl ( c i : n  - -  ? ] p ) 2 / d i :  n 

(E I - (E I C i : n / d i : n )  2" 

In Table 8 we have given the values of minimum 1 for p = 0.1, 0.3, 0.5, 0.7, 0.9 
and n = 4,5,6, 7,8,9,10 for which R P =  var(Cp)/var(Cp,bZ~e(l)) > 1. The savings 
in the number of observations is quite impressive. As an example, compared to 
a SRS of size 10, a partial RSS based on as few as 2 and a maximum of 6 will 
provide a better estimator of 5p as p ranges from 0.1 to 0.9. 

Table 8. Values of l for which R P  > 1. 

p \ n  4 5 6 7 8 9 10 

0.1 l 4 4 4 3 3 2 2 

R P  1.1554 1.1379 1.1672 1.0363 1.1412 1.1250 1.3510 

0.3 l 2 2 3 3 3 4 4 

R P  2.6916 1.7860 2.7222 1.9824 1.3846 2.1912 1.7211 

0.5 l 3 3 4 4 4 5 5 

R P  2.7176 1.5283 2.1821 1.5257 1.1205 1.6336 1.3083 

0.7 I 3 4 4 5 5 5 6 

R P  1.3434 1.8353 1.2440 1.7013 1.3160 1.0575 1.4410 

0.9 1 4 4 5 5 6 6 6 

R P  1.8595 1.2311 1.6115 1.2394 1.6058 1.3303 1.1273 

4.2 Which order statistic? 
As discussed previously, we can address the problem of determining which 

subset of order statistics X( l r ) , . . . ,  X(zr) provides the best scenario for unbiased 
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est imation of 6p for a given value of p. Obviously, for r = 1, the arguments  
presented in Subsections 2.2 and 3.2 show that  the U M V U E  of 5p is given by 

(4.9) ~p,min(/) = 0rain(1) + T]pO-min(/) 

where 0rain(l) and #rain(l) are given by (2.5) and (3.5) respectively, and conse- 
quently 

(4.10) var(6p,min(/)) = n2/--- ~ + n~p- n 2 ( l -  1)" 

Table 9 provides a comparison of the variances of 6p and 6p,min(/) through R P  
and provides the smallest values of 1 for which R P  > 1 for p = 0.1, 0.3, n = 5, 10. 
It should be noted that  the desired dominance does not hold for higher values of p. 

Table 9. Values of l for which RP > 1. 

n p l RP p 1 RP 

5 0.1 2 5.2802 0.3 4 2.4201 
10 0.1 2 2.1961 0.3 8 1.4804 

As noted before, for r > 1, it is extremely difficult to get an 'opt imum'  esti- 
mator  of 6p, and we propose to use 

(4.11) 

where 0(l,r) and 5(l,r) are given by (2.12) and (3.6) respectively. Simulation studies 
reported in Table 10 for p = 0.1, 0.3, 0.5, 0.7, 0.9 and n = 5 reveal the interesting 
fact tha t  6p,(t,r) dominates  (~p (denoted as *) and even the B L U E  6p,bl~ (denoted 
as **) for many combinations of 1 and r. The simulated values of the variances of 
6p,(l,~) are based on 10,000 replications of the values of 6p,(t,~), each 6p,(t,~) in turn  
being generated from n 2 simulated s tandard  exponential  variables. 

R e m a r k  1. The pat terns  of the values of R P  in Table 8, Table 9, and 
var(6p,(l,r)) in Table 10 can probably  be explained by the a symmet ry  of the un- 

derlying distr ibution and also the dependence between 0 and ~. 

R e m a r k  2. Throughout  this paper, we have reported our results for n up 
to 10, the minimum value of n in each of the tables being the one for which the 
desired dominance holds. 

R e m a r k  3. Since the s tandard errors of all our proposed est imators of 0, 
and 5p based on a R S S  depend on a, these can be easily es t imated by plugging in 
the proposed R S S  estimators of or. 
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Simulated values of var(~p,(l,r)) for n = 5 and a = 1. Table 10. 

P 
0.1 

0.3 

0.5 

0.7 

0.9 

l r = 2  r----3 r = 4  r = 5  

2 0.0623 0.5705 2.4781 11.4645 

3 0.0245** 0.1342 0.6546 3.8194 

4 0.0145"* 0.0538 0.2990 2.1312 

5 0.0111"* 0.0459* 0.2373 5.3539 

2 0.0484* 0.0983 1.1775 8.0159 

3 0.0397* 0.0076** 0.2497 2.4617 

4 0.0326* 0.0033** 0.0933 1.2873 

5 0.0299* 0.0409* 0.1729 4.7862 

2 0.2382 0.0774* 0.1855 4.3622 

3 0.1584" 0.0825* 0.0079** 1.1089 

4 0.1207" 0.0721" 0.0014"* 0.4889 

5 0.1061" 0.0853* 0.1567" 4.0913 

2 0.2382* 0.0774** 0.1855" 4.3622 

3 0.1584" 0.0825** 0.0079** 1.1089 

4 0.1207"* 0.0721"* 0.0014"* 0.4889 

5 0.1061"* 0.0853** 0.1567" 4.0913 

2 4.4485 9.6596 7.3036 2.1428 

3 2.2808 4.3121 3.6085 2.0026 

4 1.5542 2.6843 2.4704 1.9167 

5 1.2769" 1.1064" 1.1866" 1.7985 
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