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We obtained the maximum likelihood and Bayes estimators of the parameters of the generalized inverted exponential distribution
in case of the progressive type-II censoring scheme with binomial removals. Bayesian estimation procedure has been discussed
under the consideration of the square error and general entropy loss functions while the model parameters follow the gamma prior
distributions. 	e performances of the maximum likelihood and Bayes estimators are compared in terms of their risks through
the simulation study. Further, we have also derived the expression of the expected experiment time to get a progressively censored
sample with binomial removals, consisting of speci
ed number of observations from generalized inverted exponential distribution.
An illustrative example based on a real data set has also been given.

1. Introduction

	e one parameter exponential distribution is the simplest
and the most widely discussed distribution in the context of
life testing. 	is distribution plays an important role in the
development to the theory, that is, any new theory developed
can be easily illustrated by the exponential distribution due its
mathematical tractability; see Barlow and Proschan [1] and
Leemis [2]. But its applicability is restricted to a constant
hazard rate because hardly any item/system can be seen
which has time independent hazard rate. 	erefore, the
number of generalizations of the exponential distribution
has been proposed in earlier literature where the exponential
distribution is not suitable to the real problem. For example,
the gamma (sum of independent exponential variates) and
Weibull (power transformed distribution) distributions are
the most popular generalizations of the exponential distribu-
tion. Most of the generalizations of the exponential distribu-
tion possess the constant, nonincreasing, nondecreasing and
bathtub hazard rates.

But in practical real problems, there may be a situ-
ation where the data shows the inverted bathtub hazard

rate (initially increases and then decreases, i.e., unimodal).
Let us take an example, in the course of study of breast
cancer data, we observed that the mortality increases ini-
tially, reaches to a peak a�er some time, and then declines
slowly, that is, associated hazard rate is inverted bathtub
or particularly unimodal. For such types of data, another
extension of the exponential distribution has been proposed
in statistical literature. 	at is known as one parameter
inverse exponential or one parameter inverted exponential
distribution (IED) which possess the inverted bathtub haz-
ard rate. Many authors have proposed the use of IED in
survival analysis; see Lin et al. [3], and Singh et al. [4].
Abouammoh and Alshingiti [5] have proposed two param-
eters generalization of IED called as generalized inverted
exponential distribution (GIED) and they have showed that
GIED is better than IED for real data set on the basis
of likelihood ratio test and �-� statistics. 	ey have also
discussed the maximum likelihood and least square methods
for the estimation of the unknown parameters of GIED.
Krishna andKumar [6] have studied the reliability estimation
based on progressive type-II censored sample under classical
setup.
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In life testing experiments, situations do arise that the
units under study are lost or removed from the experiments
while they are still alive; that is, generally we get censored
data from the life testing experiments. 	e loss of units may
occur due to time constraints, giving type-I censored data.
In type-I censoring scheme, the number of observations is
random as the experiment is terminated at a prespeci
ed
time. Sometimes, the experiment has to be terminated a�er a
pre
xed number of observations and the data, thus obtained,
is referred as type-II censored data. Besides these, there are
many uncontrolled causes, resulting to loss of intermediate
observations; see Balakrishnan [7]. One such censoring
procedure named as progressive type-II censoring scheme
can be described notationally as follows. Let the lifetimes of �
identical units/items be studied. At the 
rst failure �1, called

rst stage, �1 units are removed from the remaining (� − 1)
surviving units. At second failure �2, called second stage �2
units from remaining � − 2, −�1 units are removed, and so
on, till �th failure is observed; that is, at �th stage all the
remaining (� − �1 − ⋅ ⋅ ⋅ − ��−1 − � + 1) units are removed.It
may be mentioned here that the number of units �� dropped
out from the test at 
th stage should be less than � − � −∑�−1

�=0 �� in order to insure the availability of� observations. In
many practical situations, ��’s may be random and cannot be
predetermined, for example, in clinical trials. Considering ��
to be random, Yuen and Tse [8] have discussed progressive
censoring scheme with binomial removals. 	ey assumed
that the number of random removals at the stage �� is random
and follows binomial distribution with probability �. It may
be noted here that in clinical trials, the assumption that ��’s
are less than � − � − ∑�−1

�=0 �� looks unrealistic, but, in life
testing experiments, it should not pose any problem as it is
used to decide the value of ��’s only. 	us, �1 (at 1th stage)
is to be considered to follow the binomial distribution with
parameter �−� and �, that is, binomial (�−�, �), and in the
same way, �2 (at 2th stage) follows binomial (� −�−�1, �). In
general, the number of units removed at 
th stage �� follows
the binomial distribution with parameter � −� −∑�−1

�=0 �� and� for 
 = 1, 2, 3, . . . , � − 1.
For further details on progressive censoring and its

further development, readers may be referred to Balakrish-
nan [7]. 	e estimation of parameters of several lifetime
distributions based on progressive censored samples has
been studied by many authors; see Childs and Balakrishnan
[9], Balakrishnan and Kannan [10], Mousa and Jaheen [11],
and Ng et al. [12]. 	e progressive type-II censoring with
binomial removal has been considered by Tse et al. [13] for
Weibull distribution, Wu and Chang [14] for exponential
distribution. Under the progressive type-II censoring with
random removals, Wu and Chang [15], Yuen and Tse [8], and
Singh et al. [16] developed the estimation problem for the
Pareto distribution, Weibull distribution, and exponentiated
Pareto distribution, respectively.

	e objective of this paper is to obtain the MLEs and
Bayes estimators of the unknown parameters of GIED under
symmetric and asymmetric loss functions and compare the
performances of the competing estimators. Further, we have
also investigated the total experiment time of experiment

on the basis of numerical study. 	e rest of the paper has
been organized in the following section. Section 2 provides
a brief discussion about the progressive type-II censoring
scheme with binomial removals. In the next section, we
have obtained MLEs and Bayes estimators of the model
parameters.	e expression for the expected experiment time
for progressive type-II censored data with binomial removals
has been derived in Section 4. 	e algorithm for simulating
the progressive type-II censored data with binomial removal
has been described in Section 5.	e comparison study of the
MLEs and Bayes estimators has been given in Section 6. In
Section 7, the methodology is illustrated through a real data
set. Finally, the conclusions have been provided in the last
section.

2. The Model

	e GIED (, �) with cumulative density function (cdf) is
expressed as follows

� (�) = 1 − (1 − �−�/�)�; � ≥ 0,  > 0, � > 0, (1)

and the probability density function (pdf) is given by:

� (�) = ��2 �−�/�(1 − �−�/�)�−1; � ≥ 0,  > 0, � > 0.
(2)

	e survival function of � is

� (�) = (1 − �−�/�)�; � ≥ 0, � > 0,  > 0. (3)

Let (�1, �1), (�2, �2), (�3, �3), . . . , (��, ��) be the pro-
gressive type-II censored sample, where ��’s are random
removals. For 
xed values of ��’s, say �1 = �1, �2 = �2, �3 =�3, . . . , �� = ��, the conditional likelihood function can be
written as

� (�, ; � | � = �) = �∗ �∏
�=1
� (��) [� (��)]	� , (4)

where �∗ = �(� − �1 − 1)(� − �1 − �2 − 2)(� − �1 − �2 − �3 −3) ⋅ ⋅ ⋅ (�−�1−�2−�3, . . . , ��−�+1) and 0 ≤ �� ≤ (�−�−�1−�2 − �3, . . . , ��−1) for 
 = 1, 2, 3, . . . , � and �0 = 0. Substituting
(2) and (3) into (4), we get

� (�, ; � | � = �) = �∗ �∏
�=1

��2
�
�−�/��(1 − �−�/��)�−1

× {(1 − �−�/��)�}	� . (5)

As mentioned earlier, individual units removed from the
test at 
th stage, 
 = 1, 2, . . . , � independent of each other
and the probability of removal is same� for all.	erefore, the
number �� of the unit removed at 
th stage 1 = 1, 2, 3, . . . , �
follows binomial distribution with parameters (� − � −∑�−1

�=1 ��, �); that is,
 (�1 = �1; �) = (� − ��1 )�	1(1 − �)
−�−	1 , (6)
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and for 
 = 2, 3, . . . , � − 1, (�� = �� | ��−1 = ��−1, . . . �1 = �1)
= (� − � − �−1∑

�=0
���� )�	�(1 − �)
−�−∑�−1�=0 	� . (7)

Now, we further assume that ��’s are independent of ��’s for
all 
. 	en, the full likelihood function takes the following
form:

� (�, , �; �) = � (�, ; � | � = �)  (� = �; �) , (8)

where (� = �; �)
=  (�1 = �1)  (�2 = �2 | �1 = �1)×  (�3 = �3 | �2 = �2, �1 = �1)⋅ ⋅ ⋅  (��−1 = ��−1 | ��−2 = ��−2, . . . �1 = �1) .

(9)

Substituting (6) and (7) into (9), we get

 (� = �; �) = (� − �)!�∑�−1�=1 	�(1 − �)(�−1)(
−�)−∑�−1�=1 (�−�)	�

(� − � − ∑�−1
�=1 ��)!∏�−1

�=1 ��! .
(10)

Now, using (5), (8), and (10), we can write the full likelihood
function in the following form:

� (�, , �; �) = *�1 (�, ) �2 (�) , (11)

where

* = �∗ (� − �)!(� − � − ∑�−1
�=1 ��)!∏�−1

�=1 ��! ,
�1 (�; ) = �∏

�=1

��2
�
�−�/��(1 − �−�/��)�−1{(1 − �−�/��)�}	� ,

(12)

�2 (�) = �∑�−1�=1 	�(1 − �)(�−1)(
−�)−∑�−1�=1 (�−�)	� . (13)

3. Classical and Bayesian Estimation
of Parameters

3.1. MaximumLikelihood Estimation. In this section, we have
obtained the MLEs of the parameters �, , and � based on
progressive type-II censored data with binomial removals.
We observe from (11), (12), and (13) that likelihood function
is multiplication of three terms, namely,*, �1, and �2. Out of
these, * does not depend on the parameters �, , and �. �1,
does not involve � and it is function of � and  only, whereas�2 involves � only. 	erefore, the MLEs of � and  can be
derived by maximizing �1. Similarly, the MLE of � can be
obtained by maximizing �2.

Taking log of both sides of (12), we have

ln �1 (�; ) = � ln () + � ln (�) −  �∑
�=1

1��

+ (� − 1) �∑
�=1

ln (1 − �−�/��)
+ �∑

�=1
�� ln (1 − �−�/��)�.

(14)

	us, MLEs of � and  can be obtained by simultaneously
solving the following nonlinear normal equations which are
as follows:- ln �1 (�)-� = �� + �∑

�=1
(�� + 1) ln (1 − �−�/��) = 0, (15)

- ln �1 ()- = � − �∑
�=1

1��

+ �∑
�=1
{� (�� + 1) − 1} �−�/���� (1 − �−�/��) = 0.

(16)

From (15), we obtain theMLE of� as a function of , say �̂(),
where �̂ () = −�∑�

�=1 (�� + 1) ln (1 − �−�/��) . (17)

Putting �̂() in (14), we obtain

ln �1 (�̂ () ; ) = � ln () + � ln (�̂ ())
−  �∑

�=1

1��
+ (�̂ () − 1) �∑

�=1
ln (1 − �−�/��)

+ �∑
�=1
�� ln (1 − �−�/��)�̂(�).

(18)

	erefore, the MLE of  can be obtained by maximizing (18)

with respect to . Once ̂ is obtained, �̂ can be obtained

from (17) as �̂(̂). 	erefore, it reduces the two-dimensional
problem to a one-dimensional problem which is relatively
easier to solve with 
xed point iteration method. For details
about the 
xed point iterationmethod, readers may refer Rao
[17].

	e log of �2(�) takes the following form:

ln �2 (�) = ln��−1∑
�=1
�� + ln (1 − �)

× ((� − 1) (� − �) − �−1∑
�=1
�� (� − 
)) . (19)

	e 
rst order derivative of ln �2(�) with respect to � is- ln �2 (�)-� = ∑�−1
�=1 ��� − (� − 1) (� − �) − ∑�−1

�=1 �� (� − 
)1 − � .
(20)
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Setting (- ln �2(�))/-� = 0 and solving, we get the MLE of �
as

�̂mle = ∑�−1
�=1 ��(� − 1) (� − �) − ∑�−1

�=1 �� (� − 
 − 1) . (21)

3.2. Bayes Estimators. In order to obtain the Bayes estimators
of the parameters � and  based on progressively type-II
censored data with binomial removals. We must assume that
the parameters � and  are random variables. Following
Nassar and Eissa [18] andKim et al. [19], we assume that these
are independently distributed.	e random variables � and 
have prior distribution with respective prior pdfs

91 (�) = :11�−�1��1−1Γ (?1) ; 0 < � < ∞, :1 > 0, ?1 > 0,
92 () = :22�−�2�2−1Γ (?2) ; 0 <  < ∞, :2 > 0, ?2 > 0,

(22)

respectively. It may be noted that the gamma prior 91(�)
and 92() are �exible enough to cover wide variety of the
prior believes experimenter. Based on the assumptions stated
above, the joint prior pdf of � and  is

9 (�, ) = 91 (�) 92 () ; � > 0,  > 0. (23)

Combining the priors given by (22) with likelihood given by
(8), we can easily obtain joint posterior pdf of (�, ) as

B (�,  | �, �) = C1C0 , (24)

where

C1 = �(�+1−1)(�+2−1)�−(�1�+�2�)
× ( �∏

�=1

1�2
�
�−�/��(1 − �−�/��)(	�+1)�−1) ,

C0 = ∬∞

0
C1E�E.

(25)

Hence, the respective marginal posterior pdfs of � and  are
given by

B1 (� | �, �) = ∫∞

0

C1C0 E,
B2 ( | �, �) = ∫∞

0

C1C0 E�.
(26)

Usually the Bayes estimators are obtained under square error
loss function (SELF)

G1 (H, Ĥ) = ∈1(H − Ĥ)2; ∈1 > 0, (27)

where Ĥ is the estimate of the parameter H and the Bayes

estimator Ĥ� of H comes out to be J�[H], where J� denotes

the posterior expectation. However, this loss function is
symmetric loss function and can only be justi
ed if over
estimation and under estimation of equal magnitude are of
equal seriousness. But in practical situations, this may not be
true. A number of asymmetric loss functions are available
in statistical literature. Let us consider the general entropy
loss function (GELF) proposed by Calabria and Pulcini [20]
de
ned as follows:

G2 (H, Ĥ) = ∈2((ĤH)
� − N ln(ĤH) − 1) ; ∈2 > 0. (28)

	e constant N, involved in (28), is its shape parameter.
It re�ects departure from symmetry. When N > 0, then
over estimation (i.e., positive error) causes more serious
consequences than under estimation (i.e., negative error) and

converse for N < 0. 	e Bayes estimator Ĥ� of H under GELF
is given by

Ĥ� = [J� (H−�)](−1/�) (29)

provided that the posterior expectation exits. It may be
noted here that, for N = −1, the Bayes estimator under
loss (27) coincides with the Bayes estimator under SELF G1.
Expressions for the Bayes estimators �̂� and ̂� for � and ,
respectively, under GELF can be given as

�̂� = [∫∞

0
�−�B1 (� | �, �) E�](−1/�), (30)

̂� = [∫∞

0
−�B2 ( | �, �) E](−1/�). (31)

Substituting the posterior pdfs from (26) in (30) and (31),
respectively, and then simplifying then, we get the Bayes

estimators �̂� and ̂� of � and  as follows:

�̂� = [[(∫
∞

0
2+�−1�−�2� ∫∞

0
�1+�−�−1�−�1�

× ( �∏
�=1

( 1�2
�
) �−�/��(1 − �−�/��)(	�+1)�−1)E�E)

× (∫∞

0
2+�−1�−�2� ∫∞

0
�1+�−1�−�1�

× ( �∏
�=1

( 1�2
�
) �−�/��

× (1 − �−�/��)(	�+1)�−1)E�E)−1]]
−1/�,
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̂� = [[(∫
∞

0
2+�−�−1�−�2� ∫∞

0
�1+�−1�−�1�

× ( �∏
�=1

( 1�2
�
) �−�/��(1 − �−�/��)(	�+1)�−1)E�E)

× (∫∞

0
2+�−1�−�2� ∫∞

0
�1+�−1�−�1�

× ( �∏
�=1

( 1�2
�
) �−�/��

× (1 − �−�/��)(	�+1)�−1)E�E)−1]]
−1/�.
(32)

It may be noted here that the integrals involved in the expres-

sions for the Bayes estimators �̂� and ̂� cannot be obtained
analytically and one needs numerical techniques for compu-
tations. We, therefore, have proposed to use Markov Chain
Monte Carlo (MCMC) methods. In MCMC techniques, we
considered the Metropolis-Hastings algorithms to generate
samples from posterior distributions and these samples are
used to compute Bayes estimates. 	e Gibbs is an algorithm
for simulating from the full conditional posterior distribu-
tions while themetropolis-hastings algorithm generates sam-
ples from an arbitrary proposal distribution. 	e conditional
posterior distributions of the parameters � and  can be
written asB∗

1 (� | , �, �) ∝ �(�+1−1)�−(�1−∑��=1(	�+1) log(1−�−�/�� ))�,
B∗
2 ( | �, �, �) ∝ (�+2−1)�−�2�

× �∏
�=1
�−�/��(1 − �−�/��)(	�+1)�−1,

(33)

respectively. For the Bayes estimators, the following MCMC
procedure is followed.

(I) Set the initial guess of � and  say �0 and 0.

(II) Set 
 = 1.
(III) Generate �� from B∗

1 (� | �−1, �, �) and � from B∗
2 ( |��, �, �).

(IV) Repeat steps (II)-(III),Y times.

(V) Obtain the Bayes estimates of � and  under GELF as
�̂� = [J(�−� | data)]−1/� = [ 1Y − Y0

�−�0∑
�=1

�−�
� ]−1/�,

̂� = [J(−� | data)]−1/� = [ 1Y − Y0

�−�0∑
�=1

−�
� ]−1/�,

(34)

where Y0 is the burn-in-period of Markov Chain.
Substituting N equal to −1 in step (V), we get Bayes
estimates of � and  under SELF.

(VI) To compute the HPD interval of � and , order the
MCMC sample of � and  (say �1, �2, �3, . . . , ��
as �[1], �[2], �[3], . . . , �[�]) and (1, 2, 3, . . . , �
as [1], [2], [3], . . . , [�]). 	en, construct all
the 100(1 − ^)% credible intervals of � and; say ((�[1], �[�(1−�)+1]), . . . , (�[��], �[�])) and(([1], [�(1−�)+1]), . . . , ([��], [�])), respectively.
Here, [�] denotes the largest integer less than or
equal to �. 	en, the HPD interval of � and  are that
interval which has the shortest length.

4. Expected Experiment Times

In practical situations, an experimenter may be interested to
know whether the test can be completed within a speci
ed
time. 	is information is important for an experimenter
to choose an appropriate sampling plan because the time
required to complete a test is directly related to cost. Under
progressive censoring with a 
xed number of removal, the
time is given by ��. Following Balakrishnan and Aggarwala
[21], the expected value of�� is given by

J [�� | �] = _ (�) 	1∑
�1=0

	2∑
�2=0

⋅ ⋅ ⋅ 	�∑
��=0

(−1)� ( 	1
�1 ) ⋅ ⋅ ⋅ ( 	�

�� )∏�−1
�=1 ℎ (G�)

× ∫∞

0
�� (�) �ℎ(��)−1 (�) E�,

(35)

where a = ∑�
�=1 G�, ℎ(G�) = G1 + G2 + ⋅ ⋅ ⋅ + G� + 
, _(�) =�(� − �1 − 1)(� − �1 − �2 − 2) ⋅ ⋅ ⋅ [� − ∑�−1

�=1 (�� + 1)] and 
 is
the number of live units removed from experiment (number
of failure units). Using the pdf and cdf of GIED, the equation
will be

J [�� | �] = _ (�) 	1∑
�1=0

	2∑
�2=0

⋅ ⋅ ⋅ 	�∑
��=0

(−1)� ( 	1
�1 ) ⋅ ⋅ ⋅ ( 	�

�� )∏�−1
�=1 ℎ (G�) �1,

(36)

where

�1 = ∫∞

0

�� �−�/�(1 − �−�/�)�−1
× [1 − (1 − �−�/�)�]ℎ(��)−1E�. (37)

A�er simpli
cation it reduces to

�1 = �ℎ(��)−1∑
�=0

(−1)�(ℎ (G�) − 1d )
× ∫∞

0

�−�/�� (1 − �−�/�)�(�+1)−1E�.
(38)
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Putting this value in (36), the expected test time is given by

J [�� | �] = _ (�) 	1∑
�1=0

	2∑
�2=0

⋅ ⋅ ⋅ 	�∑
��=0

(−1)� ( 	1
�1 ) ⋅ ⋅ ⋅ ( 	�

�� )∏�−1
�=1 ℎ (G�)

× ℎ(��)−1∑
�=0

(−1)�(ℎ (G�) − 1d )
× ∫∞

0

�−�/�� (1 − �−�/�)�(�+1)−1E�.
(39)

	e expected test time for progressively type-II censored data
with binomial removals is evaluated by taking expectation on
both sides (36) with respect to the �. 	at is,

J [��] = J� [J [�� | � = �]]
= �(	1)∑

	1=0

�(	2)∑
	2=0

⋅ ⋅ ⋅ �(	�−1)∑
	�−1=0

 (� = ��; �) J [�� | � = �] ,
(40)

where 9(��) = � − � − �1 − ⋅ ⋅ ⋅ − ��−1 and  (� = ��; �) is given
in (10). For the expected time of a complete sampling, case
with � test units is obtained by taking� = � and �� = 0 for all
 = 1, 2, . . . , �, in (39). We have

J [�∗

 ] = ��∫∞

0

�−�/�� [1 − (1 − �−�/�)�]
−1
× (1 − �−�/�)�−1E� (41)

and the expected time of a type-II censoring is de
ned by the
expected value of the�th failure time; then,

J [�∗
�] = ��(��)∫∞

0

�−�/�� [1 − (1 − �−�/�)�]�−1

× (1 − �−�/�)�(
−�+1)−1E�. (42)

	e ratio of the expected experiment time (REET) denoted
as NREET is computed between progressive type-II censored
data with binomial removals (PT-II CBR) and the complete
sampling. We de
ne

NREET = J [��] under PT-II CBRJ [�∗

 ] under complete sampling

. (43)

It can be noted that NREET gives an important information in
order to determine the shortest experiment time signi
cantly,
and if a much larger sample of � test units is used, the
test is stopped, when �th failures are observed. But we are
interested here, in order to consider various values of �,� and � numerically calculated, the expected experiment
times under PT-II CBR and complete sample, which are
derived in equations (40) and (41), respectively. 	e results
are presented in Table 1. As mentioned earlier, analytical
comparison of the expected test times under PT-II CBR and
complete sampling test is very di�cult. Hence, it is calculated

for di�erent values of �, �, and �. Here, we have considered� = 6, 10, and 15 and the choices of � are listed in Table 1.
	e various values of removal probability � considered are� = 0.05, 0.1, 0.3, 0.5, 0.7, and 0.9. 	e results thus obtained
are summarized in Table 1. It is noted from the results that
for a 
xed value of e�ective sample size �, the values ofNREET decrease as � increases. For 
xed �, the values ofNREET and expected termination time under PT-II CBR and
complete sampling test increase as � increases. Moreover,
from Table 1, the expected test time is in�uenced by the value
of the removal probability � from e�ected sample size �.
So, � is an important factor on the expected test time and
when � is large, (� −�) units are removed at the earlier stage
of life test out of � units. Hence, this result gives an idea to
the observed lifetimes much closer to tail of the failure time
distribution. 	us, the expected test time of PT-II CBR is
closed to that of complete sample. Figure 1 represents the ratio
of the expected test time under PT-II CBR to the expected test
time under complete sample versus � for� = 8 and di�erent
values of the removal probability �. Finally, we observed that
form Figure 1, for larger values of �, the ratio is approaching
to 1 quickly. Hence, up � ≤ 0.5 is more signi
cant for the
reduction of expected test time. So, the expected termination
time for binomial removal with � = 0.5 is to be taken for
further calculation.

5. Algorithm for Sample Simulation under
PT-II CBR

We need to simulate PT-II CBR from speci
ed GIED and
propose the use of the following algorithm.

(I) Specify the value of �.
(II) Specify the value of�.

(III) Specify the value of parameters �, , and �.
(IV) Generate randomnumber �� froma(�−�−∑�−1

�=0 ��, �),
for 
 = 1, 2, 3, . . . , � − 1.

(V) Set �� according to the following relation:

(VI) �� = { 
−�−∑�−1�=1 	�, if 
−�−∑�−1�=1 	�>0,
0, otherwise.

(VII) Generate � independent i(0, 1) random variablesj1,j2, . . . ,j�.

(VIII) For given values of the progressive type-II censoring
scheme �� (
 = 1, 2, . . . , �)
set k� = j1/(�+	�+⋅+	�−�+1)

� (
 = 1, 2, . . . , �).
(IX) Seti� = 1−k�k�−1, . . . , k�−�+1 (
 = 1, 2, . . . , �), theni1, i2, . . . , i� are PT-II CBR samples of size � fromi(0, 1).
(X) Finally, for given values of parameters� and, set�� =�−1(i) (
 = 1, 2, . . . , �). 	en, (�1, �2, . . . , ��) is the

required PT-II CBR sample of size� from the GIED.

6. Simulation Studies

	e estimators �̂� and ̂� denote the MLEs of the param-

eters � and , respectively, while �̂�, ̂� and �̂�, ̂� are



Journal of Probability and Statistics 7

Table 1: Expected experiment time J(��) and NREET (in the brackets) for (�, ) = (2, 2) under PT-II CBR.
� � � = 0.05 � = 0.1 � = 0.3 � = 0.5 � = 0.7 � = 0.9

6

6 7.751048 7.751048 7.751048 7.751048 7.751048 7.751048
5 3.892673 4.552206 5.648018 6.565731 6.5891 6.783896

(0.50221) (0.58730) (0.72867) (0.84707) (0.85009) (0.87522)
4 2.325743 2.562537 3.794699 4.684974 5.353976 5.466073

(0.30005) (0.33060) (0.48957) (0.60443) (0.69074) (0.70520)
3 1.620274 1.681345 2.187986 3.042274 3.886906 4.45924

(0.20903) (0.21691) (0.28228) (0.39249) (0.50146) (0.57530)

10

10 9.944451 9.944451 9.944451 9.944451 9.944451 9.944451
9 6.127289 7.036948 9.479675 9.561345 9.576649 9.579844

(0.61615) (0.70762) (0.95326) (0.96147) (0.96301) (0.96333)
8 4.060994 4.80158 7.879664 8.599637 9.252454 9.263861

(0.40836) (0.48284) (0.79236) (0.86476) (0.93041) (0.93156)
7 2.823925 3.398965 6.156561 7.549806 7.741783 8.483587

(0.28396) (0.34179) (0.61909) (0.75919) (0.77850) (0.85309)
6 2.148269 2.457862 4.626875 6.63739 7.208771 7.344575

(0.21603) (0.24715) (0.46527) (0.66744) (0.72490) (0.73856)
5 1.687802 1.846467 3.157211 4.95314 5.978016 6.629752

(0.16972) (0.18567) (0.31748) (0.49808) (0.60114) (0.66667)

15

15 12.82014 12.82014 12.82014 12.82014 12.82014 12.82014
14 8.630142 10.131632 12.066029 12.113158 12.19199 12.203057

(0.67317) (0.79029) (0.94117) (0.94485) (0.95100) (0.95186)
13 6.077333 8.276934 11.045101 11.288722 11.463162 11.581711

(0.47404) (0.64561) (0.86154) (0.88054) (0.89415) (0.90339)
12 4.516254 6.253768 10.623084 11.10239 11.475101 11.814146

(0.352278) (0.48780) (0.82862) (0.86601) (0.89508) (0.92153)
11 3.402202 4.837645 9.057676 10.012223 10.313773 10.388214

(0.265379) (0.37734) (0.70651) (0.78097) (0.80449) (0.81030)
10 2.767468 3.713898 7.918575 9.783724 9.916002 9.924043

(0.21586) (0.28969) (0.61766) (0.76315) (0.773470) (0.77409)
9 2.33351 2.91483 6.908012 9.04457 9.138829 9.148829

(0.18201) (0.22736) (0.53884) (0.70549) (0.71285) (0.71362)
8 1.927279 2.392637 5.364918 7.933467 8.324875 8.794574

(0.15033) (0.186631) (0.41847) (0.618828) (0.64935) (0.68599)

p = 0.9

p = 0.7

p = 0.3

p = 0.5

p = 0.1

p = 0.05
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Figure 1: NREET under PT-II CBR to NREET under complete sample.

the corresponding Bayes estimators under SELF and GELF,
respectively. We compare the estimators obtained under
GELF with corresponding Bayes estimators under SELF

and MLEs. 	e comparisons are based on the simulated
risks (average loss over sample space) under GELF. Here,((��� ���), (�� ��)) and ((��ℎ ��ℎ), (�ℎ �ℎ)) represent
con
dence interval (CI) and HPD of � and , respectively.
Also (avg. ��� , avg. ���) and (avg. ��ℎ , avg. ��ℎ) represent the
average length of CI and HPD of � and , respectively. It may
be mentioned here that the exact expressions for the risks
cannot be obtained as estimators are not found in nice closed
form. 	erefore, the risks of the estimators are estimated on
the basis of MonteCarlo simulation study of 5000 samples. It
may be noted that the risks of the estimators will depend on
values of �,�, �, , �, and N. 	e choice of hyperparameters� and  can be taken in such a way that if we consider any two
independent information as priormean and variance of� and, then, (m1 = ?1/:1, n1 = ?1/:21) and (m2 = ?2/:2, n2 = ?2/:22),
respectively whereas m1 and m2 are considered as true values
of the parameters � and  for di�erent con
dence in terms
of smaller, moderate, and larger variances, On the basis of
this information, the hyper parameters of � and  (say (?1, :1)
and (?2, :2)) can be easily evaluated from this relation, (:1 =m1/n1, ?1 = m2

1/n1) and (:2 = m2/n2, ?1 = m2
2/n2), respectively.

In order to consider the variation in the values of �, N,
and V, we have obtained the simulated risks for� = 9, 12, 15,
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Table 2: Risks of estimators of � and  under GELF for 
xed value of � = 15, � = 9, � = 0.5, :1 = 0.00001, ?1 = 0.0001, :2 = 0.00001, and?2 = 0.0001.N ��(�̂�) ��(�̂�) ��(�̂�) ��(̂�) ��(̂�) ��(̂�)−1.5 0.2227 0.2148 0.2147 0.1021 0.1011 0.1000−0.75 0.0559 0.0529 0.0528 0.0252 0.0251 0.0250−0.5 0.0268 0.0253 0.0251 0.0115 0.0114 0.0113−0.25 0.0067 0.0063 0.0062 0.0031 0.0029 0.0027

0.25 0.0080 0.0073 0.0070 0.0031 0.0030 0.0027

0.5 0.0308 0.0282 0.0281 0.0115 0.0113 0.0112

0.75 0.0694 0.0630 0.0626 0.0275 0.0270 0.0261

1.5 0.3168 0.2800 0.2764 0.1178 0.1138 0.1134

Table 3: Risks of estimators of � and  under SELF for 
xed, � = 15, � = 2,  = 2, and � = 0.5.
(N, V) � ��(�̂�) ��(�̂�) ��(�̂�) ��(̂�) ��(̂�) ��(̂�)
(−0.25, 0.4) 9 1.7764 1.2074 1.2005 0.5226 0.4647 0.4641

12 1.4478 1.0763 1.0722 0.50122 0.4620 0.4600

15 1.1742 0.9122 0.9093 0.3990 0.3984 0.3980

(−0.25, 1) 9 1.7764 1.4362 1.4291 0.5226 0.5027 0.5021

12 1.4478 1.2430 1.2385 0.50122 0.4686 0.4681

15 1.1742 0.9839 0.9809 0.3990 0.4334 0.4330

(−0.25, 10) 9 1.7764 1.7631 1.7555 0.5226 0.5119 0.5107

12 1.4478 1.3656 1.3286 0.50122 0.4317 0.4308

15 1.1742 1.2204 1.2200 0.3990 0.3867 0.3860

(0.5, 0.4)

9 1.7764 1.0960 1.0841 0.5226 0.4676 0.4665

12 1.4478 1.0213 1.3286 0.50122 0.4187 0.4178

15 1.1742 0.9169 0.9111 0.3990 0.3809 0.3802

(0.5, 1)

9 1.7764 1.5161 1.5010 0.5226 0.5414 0.5401

12 1.4478 1.3290 1.3286 0.50122 0.5371 0.5359

15 1.1742 1.1002 1.0936 0.3990 0.4365 0.4356

(0.5, 10)

9 1.7764 1.7352 1.7399 0.5226 0.5119 0.5107

12 1.4478 1.3287 1.3286 0.50122 0.4317 0.4308

15 1.1742 1.1708 1.1646 0.3990 0.3867 0.3860

 = 2 = m2 (say prior mean of ), � = 2 = m1 (say prior
mean of �), n1 = (0.4, 1, 10) (say prior variance of �), n2 =(0.4, 1, 10) (say prior variance of ) and N = (−0.25, 0.5) (say
GELF loss parameter). Generating the samples of PT-II CBR
as mentioned in Section 5, the simulated risks under SELF
andGELF have been obtained for selected values of �,�,�, ,�, and N.	e results are summarized in Tables 2–4. It is noted
fromTable 2 that for almost all the considered values of N, the
risks of the estimators �̂� and ̂� haveminimumas compared
to the considered competitive estimators, respectively, under
GELF. To know the e�ect of variation in the value of other
parameters on the risks of the estimators of � and , we
arbitrarily 
xed N = 0.5 (for the case when overestimation is
more serious than underestimation) and N = −0.25 in reverse
situation. Tables 3 and 4 represent the risks of estimators
of � and  under both losses in under and overestimation
situations when the prior mean is same as the true value of
the parameters � = 2 and  = 2 for smaller, moderate, and
larger values of the prior variance of the parameters in order
to consider the hyperparameters (:1 = :2 = 5, ?1 = ?2 = 10),

(:1 = :2 = 2, ?1 = ?2 = 4) and (:1 = :2 = 1/5, ?1 =?2 = 2/5), respectively. When the e�ective sample size �
increases, the risks of all the estimators of � and  under
both losses decrease for N = (−0.25, 0.5) and the simulated
risks of �̂� and ̂� are smaller than those of (�̂�, ̂�) and
(�̂�, ̂�) for all the considered cases, including those where
under estimation is considered to be more serious than over
estimation or viceversa. Under di�erent prior variances along
with variation of e�ective sample size �, the 95% HPD and
CI intervals are obtained. In Table 5, it is observed that the
average length of CI and HPD interval decreases when the
e�ective sample size � increases and average length of HPD
interval is always less than that of CI, which are represented
in Figure 2 also.

7. Real Data Analysis

Here, we consider the real data set presented in Lawless
[22] which represent the number of revolutions to failure for
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Table 4: Risks of estimators of � and  under GELF for 
xed, � = 15, � = 2,  = 2, and � = 0.5.
(N, V) � ��(�̂�) ��(�̂�) ��(�̂�) ��(̂�) ��(̂�) ��(̂�)
(−0.25, 0.4) 9 0.031491 0.00581 0.00579 0.01332 0.00278 0.00276

12 0.02707 0.00504 0.00503 0.01257 0.00277 0.00267

15 0.02279 0.00427 0.00426 0.01106 0.00240 0.00239

(−0.25, 1) 9 0.03149 0.00634 0.00633 0.01332 0.00301 0.00204

12 0.02707 0.00547 0.00526 0.01257 0.00273 0.00270

15 0.02279 0.00446 0.00445 0.01106 0.00250 0.00247

(−0.25, 10) 9 0.03149 0.00704 0.00703 0.01332 0.00292 0.00182

12 0.02707 0.00552 0.00551 0.01257 0.00258 0.00247

15 0.02279 0.00487 0.00486 0.01106 0.00237 0.002366

(0.5, 0.4)

9 0.03149 0.02357 0.02344 0.01332 0.01186 0.01096

12 0.02707 0.02083 0.02074 0.01257 0.01057 0.01056

15 0.02279 0.01902 0.01895 0.01106 0.00972 0.009686

(0.5, 1)

9 0.03149 0.02895 0.028800 0.01332 0.01301 0.01300

12 0.02707 0.02513 0.02503 0.01257 0.01226 0.01225

15 0.02279 0.02129 0.02122 0.01106 0.01083 0.01082

(0.5, 10)

9 0.03149 0.03124 0.03107 0.01332 0.01224 0.01223

12 0.02707 0.02448 0.02438 0.01257 0.01053 0.01052

15 0.02279 0.02184 0.02177 0.01106 0.00988 0.00987

Table 5: 95% CI and HPD for di�erent sample� and prior variances V for 
xed � = 15, � = 2, and  = 2.
V � ��� ��� avg. ��� ��ℎ ��ℎ avg. ��ℎ �� �� avg. ��� �ℎ �ℎ avg. ��ℎ

0.4

9 0.09344 5.3344 5.24096 1.9321 2.4080 0.4759 0.8449 3.5977 2.7528 1.8530 2.09834 0.24534

12 0.2799 4.7309 4.451 1.9411 2.4056 0.4645 0.9497 3.5490 2.5993 1.9610 2.2027 0.2417

15 0.4641 4.4314 3.9673 1.9967 2.4505 0.4538 1.0034 3.4398 2.4364 1.9984 2.2311 0.2327

1

9 0.09692 5.2768 5.17988 1.9774 2.5300 0.5526 0.8557 3.6465 2.7908 1.8733 2.1205 0.2472

12 0.2813 4.7557 4.4744 1.9867 2.5220 0.5353 0.9506 3.5485 2.5979 1.9917 2.2360 0.2443

15 0.4691 4.4531 3.984 1.9967 2.5147 0.518 1.0110 3.4467 2.4357 1.9991 2.2341 0.2350

10

9 0.0995 5.2702 5.1707 1.8770 2.5519 0.6749 0.8364 3.6046 2.7682 1.8671 2.113782 0.246682

12 0.2738 4.7471 4.4733 1.9431 2.5269 0.5838 0.9391 3.5221 2.583 1.9331 2.1699 0.2368

15 0.4702 4.5050 4.0348 1.9954 2.5594 0.564 1.0185 3.4668 2.4483 1.9993 2.2334 0.2341

each of 23 ball bearing in a life test. But for the purpose of
illustrating themethod discussed in this paper, a PT-II CBR is
generated from real data set, and we consider three schemes
under PT-II CBR which are given in Table 6. Table 7 shows
the MLEs and Bayes estimators of � and  under SELF and
GELF, CI/HPD interval based on complete real data set. For
this real data set, Abouammoh and Alshingiti [5] indicated
that the GIED provides satisfactory 
t. 	is real data set was
originally discussed by Lieblein and Zelen [23]. In Section 3,
MCMC algorithm and mathematical treatments are given,
for long run, we take noninformative prior for this purpose,
and the value of the hyper parameters � and  are taken
as (?1 = 0.00001, :1 = 0.0001) and (?2 = 0.00001, :2 =0.0001), respectively. Hence, on the basis of Table 6, we use
noninformative prior under di�erent degrees of censoring;
the MLEs and the Bayes estimators and CI/HPD interval of� and  under SELF and GELF for N = ±0.5 are presented in
Tables 8 and 9, respectively. Hence, 
nally, the study of Tables
8 and 9 observed that the MLEs and Bayes estimators and

length of CI/HPD interval of � and  decrease as degree of
censoring decreases, respectively.

8. Conclusion

(1) On the basis of simulation study, we observed that
the maximum likelihood and Bayes methods are used for
estimating the parameters under GELF and SELF of GIED
based on PT-II CBR. Bayes estimators have been obtained on
the basis of MCMC method. 	ese methods are applied to
real data set based on the number of revolutions to failure for
each of 23 ball bearing in a life test.

(2) It has been noticed, under consideration of di�erent
prior believes, from tables, that the estimated risks of esti-
mators decrease as e�ective sample size increases and Bayes
estimates have the smallest estimated risks as compared with
their corresponding MLEs. Hence, the proposed estimators(�̂�, ̂�) perform better than (�̂�, ̂�) and (�̂�, ̂�) for dif-
ferent degree of censoring, when under estimation is serious
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Figure 2: Average HPD and CI for di�erent prior variances for 
xed con
dence coe�cient.

Table 6: PT-II CBR under di�erent censoring scheme (�
 :�) for 
xed � = 23, � = 0.5.(�
 :�) Samples

�23 : 12
17.88 48.4 68.64 68.88 84.12 93.12 98.64 105.12 105.84 127.92 128.04 173.4

5 5 1 0 0 0 0 0 0 0 0 0

�23 : 15

17.88 45.6 51.96 54.12 68.64 68.64 68.88 84.12 93.12 98.64 105.12 105.84

4 2 0 2 0 0 0 0 0 0 0 0

127.92 128.04 173.4

0 0 0

�23 : 18

17.88 45.6 48.4 51.84 51.96 54.12 55.56 68.64 68.64 68.88 84.12 93.12

4 0 0 0 0 0 1 0 0 0 0 0

98.64 105.12 105.84 127.92 128.04 173.4

0 0 0 0 0 0
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Table 7: Bayes and ML estimates based on real data set for � = 23, � = 0.05.
MLE

Bayes estimates (MCMC) Interval

SELF
GELF 95% CI 95% HPDN = −0.5 N = 0.5 � i �ℎ iℎ� 5.307588 5.270884 5.259487 5.276109 1.121988 9.493188 4.474905 6.08333 129.9959 129.5706 129.3823 128.8193 77.7282 182.2635 110.5995 148.8837

Table 8: Bayes and ML estimates, CI and HPD intervals for � with 
xed � = 23 and � = 0.5 under PT-II CBR.
�
 :� MLE

Bayes estimates (MCMC) Interval

SELF
GELF 95% CI 95% HPDN = −0.05 N = 0.05 ��� ��� ��ℎ ��ℎ�23 : 12 5.1029 5.0366 4.9872 4.9822 0.9933 11.9991 3.8315 6.2232�23 : 15 5.7702 5.6911 5.6898 5.6427 0.3036 11.8042 4.5576 6.8168�23 : 18 6.0633 5.9981 5.9582 5.9203 0.3357 11.7908 4.9370 7.1142

Table 9: Bayes and ML estimates, CI and HPD intervals for  with 
xed � = 23 and � = 0.5 under PT-II CBR.
�
 :� MLE

Bayes estimates (MCMC) Interval

SELF
GELF 95% CI 95% HPDN = −0.05 N = 0.05 �� �� �ℎ �ℎ�23 : 12 175.22 173.99 173.04 172.69 79.66 270.78 139.37 207.36�23 : 15 168.44 167.35 167.33 166.34 86.95 249.92 137.53 196.14�23 : 18 157.84 156.70 160.16 155.86 87.12 228.55 132.27 182.98

than over estimation and vice-versa. 	e CI/HPD interval is
also obtained.We found the Bayes estimates are superior than
those of the corresponding MLEs.

(3) We have obtained the expected test times under PT-
II CBR and complete sampling to compare it. In Table 1, the
numerical results indicate that the expected test time depends
very much times on the values of removal probability. When
the probability of removal is large, a slight reduction in the
expected test time can be achieved only by increasing the total
number of test units �.
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