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Abstract

Conventional Mach-independent subsonic drag polar does not replicate the real airplane drag characteristics exactly and especially not in

the drag-divergence region due to shock-induced transonic wave drag. High-bypass turbofan thrust is a complicated function of many

parameters that eludes accurate predictions for the entire operating envelope and must be experimentally verified. Fuel laws are also

complicated functions of many parameters which make optimization and economic analysis difficult and uncertain in the conceptual design

phase. Nevertheless, mathematical models and predictions have its important place in aircraft development, design, and optimization. In this

work, airspeed-dependent turbofan thrust and the new fuel-law model were used in combination with an airplane polynomial drag model to

estimate important performance speeds. Except for the airframe-only dependent control airspeeds, all performance speeds are airframe-

powerplant dependent. In all analytical considerations one ends up with polynomials of the 4th order that have no closed-form solutions.

A real positive-root seeking numerical procedure based on the family of Newton-Raphson methods was used to extract performance

airspeeds for variable in-flight weights and altitudes in the ISA troposphere. Extensive testing of the accuracy and convergence of the

Newton-Raphson nonlinear equation solvers was conducted before performance speed calculations. A fictitious long-range wide-body

transport-category airplane was modeled in combination with a pair of high-bypass and ultra-high bypass ratio flat-rated turbofans. Procedure

employed here can be easily extended to cases when fitted, measured drag and thrust data is given in arbitrary polynomial forms. Sensitivity

analysis is performed on minimum-drag airspeed and maximum aerodynamic efficiency. Transonic wave drag considerations are introduced.

Keywords: Transport-category airplane, High-bypass turbofan, Thrust, Fuel law and TSFC, Drag polar, Performance airspeeds, Newton-Raphson

nonlinear equation solvers, Transonic wave drag.
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Introduction

In order to optimize airplane operation and predict its

performance in the conceptual design phase, early estimates

of control and performance airspeeds are important. Much of

the aircraft field and cruise performance capabilities depend

on the set of control and performance airspeeds, such as,

rotation, takeoff safety, climb, maximum- and long-range

cruising, and reference landing speeds. Pilots essentially fly

airplanes by reference to set of optimum airspeeds. Best

flight practices depend much on the ability of pilots to

maintain set airspeeds optimized for each phase of flight.

Completed aircraft prototypes must undergo experimen-

tal verification before being certified. Aircraft manufac-

turers obtain such specific information by performing

numerous repetitive, tedious, and expensive flight tests

(Daidzic, 2013; FAA 2011). Flight testing campaigns do

not normally contribute much to understanding of flight

physics, but are a required step toward particular airplane

certification (EASA, 2007; FAA, 2013; JAA 2007).

Indeed, all limitations, control, and gross performance

figures entering approved airplane operational/flight man-

uals (Airplane Flight Manual and Flight Crew Operations

Manual) must be based on measured data (Daidzic, 2013;

Eshelby 2000). Airframe and engine characteristics cannot

be presently modeled and simulated with fidelity, relia-

bility, and accuracy required to substitute measured test

data for certification purposes (Eshelby, 2000).

Although validation of analytical and computational

calculations and wind-tunnel scale experiments must be

verified during flight tests, nevertheless, the analytical

methods provide deeper understanding of the fundamental

flight physics and enable local and global optimizations.

This is a crucial step in predicting aircraft performance and

economy of operation, and in designing best piloting

technique practices (Daidzic, 2008).

Characteristics of modern HBPR (high) and UHBPR

(ultra-high) BPR (bypass ratio) turbofans are profoundly

speed dependent (Anderson, 1999; Hale, 1984; Jaw &

Mattingly, 2009; Mair & Birdsall, 1992; Mattingly, 2005;

Phillips, 2004). Some functional relationships do exist, but to

have faithful analytical descriptions of thrust available for the

entire flight envelope of modern engines is almost impossible.

Although there are quite sophisticated and complex turbofan

simulation models (e.g., Jaw & Mattingly, 2009; Walsh &

Fletcher, 1998), they are inappropriate for conceptual-design

aircraft performance calculations as performed here.

Some important performance airspeeds treated, for both

All Engines Operating (AEO) and One Engine Inoperative

(OEI) conditions and as a function of in-flight weight, are

the minimum drag VMD, steepest climb VX, maximum-

endurance VE, minimum-power VMP, maximum rate of

climb VY, the maximum-cruise range airspeed VMRC, and

the minimum and the maximum propulsion-limited level

flight airspeeds VMIN and VMAX.

Literature Review

Many existing introductory and expert books dealing with

the airplane performance in general, and transport-category

(T-category) airplanes certified under FAR/EASA certifica-

tion standard (CS) 25 in particular, use relatively simple

functional relationships between, most often, speed-inde-

pendent trust and conventional Mach-independent subsonic

drag polar to obtain performance speeds (Anderson, 1999;

Asselin, 1997, Eshelby, 2000; Filippone, 2006, 2012; Hale,

1984; Mair & Birdsall, 1992; McCormick, 1995; Nicolai and

Carichner, 2010; Ojha, 1995; Raymer, 1999; Roskam &

Lan, 1997; Saarlas, 2007; Shevell, 1989; Torenbeek &

Wittenberg, 2009; Vinh, 1993). This is also understandable

as the resulting equations are nonlinear and no closed-form

solutions exist in most cases.

Estimation and optimization of performance airspeeds

for various phases of flight is an essential part of aircraft

design, testing, and certification, but also in economy and

safety of flight operations. Shevell (1989) gives a very nice

introduction on compressibility effects and drag on airfoils

and wings. The author also provides a semi-empirical

relationship for the estimation of the drag-divergence Mach

(MDD) number based on the critical Mach (MCR) number

for swept wings. Menon (1989) has studied aircraft cruise

from the aspect of trajectory optimization and comparing

his theory with the point-mass and energy models. The

author has shown that oscillatory cruise trajectories exist if

the Hessian of a characteristic function is positive definite.

Miller (1993) also studied optimal cruise performance and

the determination of optimal cruise speeds. Miller has

concluded that the optimal cruise Mach (M) number occurs

in the drag-rise region, i.e., between the MCR and MDD.

Wave drag becomes noticeable once the MCR is exceeded,

but truly significant once the MDD is surpassed. Mason

(1995) uses the potential flow model for aerodynamic

design at transonic speeds. The author points out the

principal shortcomings of potential flow models in terms

that can be easily understood by aerodynamicists. Malone

and Mason (1995) present an approach to multidisciplinary

aircraft design optimization that combines the global

sensitivity equation method, parametric optimization, and

analytic technology models. An expression for wave drag

and MDD is given for swept-wing aircraft—an extension of

the classical Korn equation. Torenbeek (1997) provides

exhaustive consideration, unified analytical treatment, and

optimization techniques for the cruise performance of sub-

sonic transport aircraft. A simple alternative to the celebrated

Bréguet range equation is presented that applies to several

practical cruise techniques. A practical non-iterative proce-

dure for computing mission fuel and reserve fuel loads in the

preliminary design stage was proposed. Mason (2002)

provides an extended summary of transonic aerodynamics

of airfoils and (finite) wings. Historical development and

facts were included, which show the tortuous path in
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understanding and solving transonic flow problems.

Isikveren (2002) presents a treatment of identification of

optimal flight techniques for transport aircraft with respect to

direct operating cost and profit, or return on investment is

derived for given sector mission criteria. The author

proposes a new cruise technique that could replace the

common industry-standard long-range cruise (LRC) at 99%

specific air range (SAR). All operating considerations are

based on the cost index (CI), which is the most suitable

method in defining the new economical LRC (ELRC).

Fujino and Kawamura (2003) present an experimental and

theoretical study of wave-drag reduction and increase in

MDD in the case of over-the-wing nacelle configuration.

Such nacelle configuration reduces transonic cruise drag

without altering the original geometry of the natural-laminar-

flow wing.

Cavalcanti and Papini (2004) discussed construction of

aerodynamic databases required for design and optimization

of then new Embraer 170 jet. The validation of the dynamic

aerodynamic model designed in Simulink/MATLAB was

confirmed in actual flight tests. Raymer (2004) derived an

approximate method to derive loiter (endurance) time from

the Bréguet range equation. Cavcar and Cavcar (2004)

deliver approximate cruise range solutions for the constant-

altitude and constant-high-subsonic cruise speeds of a trans-

port category aircraft with cambered wing designs. The

authors also used Mach-dependent specific fuel consumption

(SFC), which is different from the one introduced here. The

effect of Mach number on the drag polar was used when

deriving approximate solutions. Wave drag was considered

when estimating optimum M?L=Dð Þ factor. It was found

that compressibility effects necessitate use of higher-order

polynomial drag polar.

Cavcar and Cavcar (2005) discussed the optimum range

and endurance of a piston-propeller aircraft with cambered

wing and derived analytical expressions without having to

resort to substitution of the optimum airspeeds. Ghenaiet

(2007) discusses determination of the minimum thrust

requirements for passenger aircraft utilizing mathematically

complex sequential quadratic programming and other opti-

mal solutions methods to solve constrained optimization

problems. Euston, Coote, Mahony, Kim, and Hamel (2008)

used explicit complementary filter (ECF) for attitude

estimation that can be used for Unmanned Aerial Vehicle

(UAV) attitude control, but also during flight testing of

transport-category airplanes. ECF with Inertial Measurement

Unit (IMU) and dynamic pressure measurements achieved

attitude filtering performance of the same quality as a full

extended Kalman filter (EKF) that exploited full GPS/IRS/

INS data. Thus ECF shows significant potential as a simple

robust attitude filter for small UAV vehicles.

Rivas and Valenzuela (2009) analyzed maximum range

cruise at constant altitude as a singular optimal control

problem for an aircraft model with a general compressible

drag polar. Compressibility effects must be taken into

account when seeking optimum cruise solutions in terms of

speed and range. The influence of flight altitude on optimal

trajectories was shown to be important as well. The authors

left open the solution of minimizing direct operating cost.

Results presented were for a B767-300ER model, a popular

long-range twin jet.

Lie and Gebre-Egziabher (2013) presented a method for

estimating airspeed, angle-of-attack (AOA), and sideslip

angle without using conventional Pitot-static air data. The

method relies on GPS data, IMU data, and a low-fidelity

aircraft dynamics model, which are then fused together

using two cascade EKFs. This method can also be used

in flight testing of FAR 25 airplanes. It was demonstrated

in the case of a C172 GA light plane with the estimated air

data being in good agreement with the conventionally

measured air data. Torenbeek (2013) offers an advanced

expert book on aircraft conceptual design, analysis, and

optimization of subsonic civil aircraft. Optimum cruise

Mach number is deep in the drag rise region and closer to

MDD than to MCR.

Recently, Daidzic (2014b) discussed the global range

(GR) of subsonic and supersonic aircraft and the required

aerodynamic and propulsion developments needed to meet

it. Nevertheless, to the best of our knowledge no archived

public-domain reference in which a systematic approach

and methods for calculations of performance airspeeds was

found. Most of the discussion and problem treatment in

every expert book on aircraft performance almost exclu-

sively focuses on speed-independent thrust equation. In

such cases only quadratic equations containing airframe

drag data are treated and are easily solved. Only in Phillips

(2004) did we find a method of solution for the nonlinear

speed estimation problem when considering the maximum

airspeed of propeller-driven airplane. In particular, Phillips

used the Newton-Raphson method, the same method that

will be employed here. Saarlas (2007) and Vinh (1993)

entertained several nonlinear problems in performance air-

speed estimation, but never provided solutions or methods.

We do not, however, exclude the possibility that similar

method(s) were and are used by various airplane manu-

facturers in the airplane preliminary design and develop-

ment phases.

Therefore, a consistent and systematic definition, identifi-

cation, and numerical calculation for estimation of perfor-

mance speeds is provided here. This can be easily extended

to cases where drag and thrust data is extracted from

measured and statistically smoothed data and transformed

into arbitrary-order polynomial form by least-square approx-

imations/fitting analysis.

The main goal of this article is to use a realistic integral

turbofan model(s) and together with the airframe subsonic

drag and power required relationships provide definitions

of all critical performance speeds. As it will be seen later,

most of the resulting analytical expressions do not have

explicit analytic closed-form solutions. All functional
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expressions discussed here end up with 4th order poly-

nomials, which in most cases must be solved numerically.

In that respect we used several real (with multiplicity) and

complex-conjugate root-finding methods (nonlinear equa-

tions solvers). Subsequent analysis of turbofan character-

istics also revealed strong influence of BPR on

performance airspeeds. A new semi-empirical fuel law is

proposed, which is valid in the entire operational envelope

of any conventional turbofan or turbojet engine.

Mathematical Model

The mathematical model used here is based on a standard

non-orbiting flat-Earth airplane flight model in vertical plane

(Vinh, 1993). Angles of climb are small, and all trigono-

metric functions are linearly approximated. Acceleration in

constant-Equivalent AirSpeed (EAS)/Calibrated AirSpeed

(CAS) climb is neglected. A new, efficient, and fast algo-

rithm for International Standard Atmosphere (ISA) calcula-

tions (Daidzic, 2015) is used for all performance estimates.

All altitudes are orthometric (reference Geoid) or Mean Sea

Level (MSL). Partial wing unloading due to the vertical

thrust component and the corresponding reduced power-on

stall speeds was neglected. Thrust action line was assumed

to be colinear with the airplane’s longitudinal axis. The

location of the airplane CG and its effect on the stalling

speed was neglected.

Turbofan models used are based on the semi-empirical

considerations of the momentum drag and ram compression

(Daidzic, 2012). The effect of altitude is included in both

models for thrust and TSFC (Thrust Specific Fuel Con-

sumption). Performance airspeeds that are functions of

speed-dependent thrust cannot be solved in an explicit

(closed) form. The advantage of the presented mathema-

tical model is that it results in an implicit functional

relationship between the critical performance airspeeds and

the basic airplane, engine, and environmental conditions.

The larger problem of aircraft design optimization and

engine-airframe integration and optimization is not con-

sidered. Many good books exist that touch on this subject

(e.g., Torenbeek, 2013).

Again, the main goal was to present a unified approach

in determining the critical airplane airspeeds in the design

phase based on the known total drag and thrust data in

speed-dependent polynomial form. However, once the

flight testing is complete and the drag and thrust data poly-

nomials are known to high accuracy, the final critical

airspeeds can be accurately calculated based on the nonlinear

solvers presented here.

Airplane Drag and Power Required

Determination of airplane drag is usually the most difficult

task when estimating airplane performance. For a general

high-subsonic speed T-category airplane, the aerodynamic

drag, for the most part, consists of zero lift drag, drag due to

lift, and, in a much smaller amount, wave drag. The wave

drag originates in transonic flow over the wing and fuselage.

The very definition of the transonic flow (Ashley & Landahl,

1985; Filippone, 2012; Liepmann & Roshko, 2001) means

the coexistence of pockets of subsonic and supersonic flow.

The integral aerodynamic behavior of an entire airplane is

conveniently given through macroscopic coefficients of lift

and drag for specified profile/wing geometry as:

CD~f a,b,Re,Mð Þ CL~g a,b,Re,Mð Þ ð1Þ

Reynolds number (Re) dependence becomes significant

only at extremely high altitudes and is neglected from

further consideration. It is also assumed that an airplane is

in trim flying at zero sideslip b, thus minimizing drag. All

that is left is the dependence on the AOA or a and the Mach

number. Complex functional relationships from Equation

(1), reduces to CD~CD CL,Mð Þ. Small drag changes

around the equilibrium point at relatively high Mach

numbers (significant compressibility effects) and become:

DCD~
LCD

LCL

� �

M

DCLz
LCD

LM

� �

CL

DM ð2Þ

A general drag equation consists of the section (airfoil,

infinite wing, or 2D) drag and the finite-wing (3D) drag.

Essentially, drag comes in the form of skin friction and

form (pressure) drag, which is for 2D airfoil-termed profile

drag. The transonic wave drag associated with the local

supersonic flow terminating in normal (stronger) or oblique

(weaker) shock waves is essentially a pressure drag.

Supersonic wave drag on an infinite Aspect Ratio (AR)

flat plate or thin airfoil has analytical solution,

CDw!C2
l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2
?
{1

q

(Anderson, 1999; Ashley, 1992).

Thus wave drag due to lift is proportional to finite-wing

C2
L and the coefficient is a function of the Mach number.

Total drag for generic cambered transonic airfoil can be

also represented as a sum of zero-lift drag (including

parasitic wave drag component) and drag due to lift

(viscous drag due to lift and inviscid vortex or induced drag

plus the wave drag due to lift):

CD~CD0 Mð ÞzK1 Mð Þ:CLzK2 Mð Þ:C2
L

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{
section drag including parasitic wave�drag

zK3 Mð Þ:C2
L

zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{
vortex drag

z K4 Mð Þ:C2
L

zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{
wave�drag due�to�lift

ð3Þ

Below critical Mach (MCR) there are no local shocks

anywhere on the wing, so there can be no wave drag either,

although increasing Mach number is affecting pressure

distribution and thus slightly viscous drag even below MCR

(Mair and Birdsall, 1992). The modern supercritical airfoils

delay the drag rise (divergence) or MDD. This enables

higher subsonic cruising airspeeds without incurring

significant wave-drag penalty, but also transonic stability
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and control problems. According to Anderson (1999),

Bertin & Cummings (2009), and Thomas (1985), it is

assumed for T-category airplanes flown belowMDD that the

transonic wave drag contributes about 5% of the total

aircraft drag. On the other hand, the supersonic transport,

such as Concorde atM5 2, has more than two-thirds of the

total drag in the form of the pressure wave drag (Anderson,

1999). Compressibility affects the coefficient-of-lift (CL),

which is described simply by the asymptotic Prandtl-

Glauert rule (correction formula), or similar more advanced

correction (Anderson, 1999; Ashley, 1992; Bertin &

Cummings 2009). There is also a small rise in zero-lift

parasitic CD0, not associated with the wave drag, from

about Mach 0.6 or 0.7 upward until MDD the drag

rise becomes significant (Ashley, 1992; Mair & Birdsall,

1992; Vinh, 1993). The onset of significant wave drag rise

due to strong normal shocks inducing localized boundary

layer separation is typically based on the criterion that

LCD=LMð Þ~0:1 at the Mach drag-divergence number

MDD (Cavcar & Cavcar, 2004; Filippone, 2012; Mason,

2002; Raymer, 1999; Torenbeek, 1997). Sometimes

another criterion is used for the MDD definition, and that is

a Mach number at which compressibility wave drag

increased by 0.002 (Cavcar & Cavcar, 2004). While some

wave drag exists between MCR and MDD, it will be for the

most part neglected in this study, and MDD will be taken as

the maximum operating airspeed even when the powerplants

are capable of accelerating an aircraft to higher M-speeds.

The entire issue of transonic flow is extremely compli-

cated (Ashley and Landahl, 1985; Ashley, 1992), and

experimental verification is the only fully reliable method

to estimate its effect on the total drag. Recently some

progress has been achieved by Jakirlić, Eisfeld, Jester-

Zuerker, and Kroll (2007) utilizing CFD of supercritical

airfoils (transonic RAE 2822 profiles) using the near-wall

RANS (Reynolds-averaged Navier-Stokes) transonic flow

turbulence model. Such complex CFD approach is cumber-

some to implement in conceptual designs and the first drag

estimates phase. However, according to Cavcar and Cavcar

(2004), Malone and Mason (1995), Mason (2002), and

Filippone (2012), the MDD as a function of lift coefficient

and for given wing/airfoil geometry can be reasonably well

estimated with:

MDD CLð Þ~MDD0

cosy
{

t=cð Þmax

cos2 y
{

b:CL

cos3 y
ð4Þ

This is the extended semi-empirical ‘‘Korn equation’’

(Malone & Mason, 1995; Mason, 2002). Modern super-

critical wing has zero-lift MDD0 (also referred to as an

‘‘airfoil technology factor’’) in the range of 0.87 to 0.955

(Filippone, 2012; Mason, 2002), the maximum relative

thickness around 0.1–0.15, and the leading-edge (LE)

sweep angle of 35˚ to 38 .̊ For typical cruising airspeeds

and altitudes, the CL is normally between 0.4 and 0.5.

Using a value of 0.4, the maximum relative thickness of

0.12, MDD0 of 0.92, sweep angle of 35 ,̊ and b~0:14 from

accepted range (0.1–0.14) of values for supercritical wing

sections (Filippone, 2012), the estimated drag-divergence

Mach becomes 0.872. For such airplane MMO could be 0.86

(just below MDD). The drag-rise Mach will decrease with

higher CL and also with higher airfoil thicknesses (Mair &

Birdsall, 1992; Nicolai & Carichner, 2010; Shevell, 1989),

and thus result in an earlier drag-divergence and significant

influence of wave drag. That will also reduce maximum

cruising speed, maximum range, and cruising aerodynamic

efficiency (Daidzic, 2014b). For example, an airplane with

cruise CL of about 0.3 may have MDD of about 0.87, but as

CL increases to 0.5 (e.g., in a constant-altitude turn), MDD

decreases to about 0.82.

As originally reported by Hilton (1952), Lock suggested an

empirical functional relationship for the wave drag in the

airspeed range above critical Mach number (M§MCR), i.e.,

CDw~20 M{MCRð Þ4 (Cavcar & Cavcar, 2004; Filippone,

2012; Malone & Mason, 1995; Mason, 2002). Using the

above wave drag relationship and combining it with the

definition ofMDD, it is calculated thatMDD~MCRz0:1077.
Accordingly, for MDD equal to 0.872, the MCR is 0.765,

which is a reasonable value for a thin moderately swept wing

(35 )̊ on a medium-haul transporter. The wave drag co-

efficient is 0.00269 at CL~0:4. Our intent is thus to neglect

wave drag entirely for cruise below MMO or MDD, whichever

is lesser. However, some discussion of wave drag effects on

the maximum cruising airspeed will be included later.

Once the boundary layer separation due to shock-stall

becomes significant, the wave drag due to lift cannot be

reliably estimated with the quadratic dependence on CL

(Mair & Birdsall, 1992). The full effect of the wave drag

and transonic effects warrants an article in itself and will

indeed be incorporated in a future contribution. Deviations

from the conventional drag polar do exist (Nicolai &

Carichner, 2010), but despite known imperfections it is still

a very decent estimate. Thus, high-subsonic airspeed

aerodynamic drag will be modeled using the conventional

drag polar, while neglecting the small camber effect

(Anderson, 1999; Ashley, 1992; Asselin, 1997; Bertin &

Cummings, 2009; Filippone, 2012; Hale, 1984; Nicolai &

Carichner, 2010; Phillips, 2004; Shevell, 1989; Vinh,

1993):

CD~CD0 Mð ÞzK Mð Þ:C2
L ð5Þ

The zero-lift drag coefficient CD0 is taken constant for

airspeeds below MDD, and the C2
L component includes both

the viscous and the vortex drag components (Bertin &

Cummings, 2009; Nicolai & Carichner, 2010) and was

assumed as Mach-number independent for the same Mach

range. A generic drag polar for airplane in clean and takeoff

configuration is illustrated in Figure 1. Total drag is now a

sum of drag not due to lift (mostly parasitic) and drag due
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to lift (mostly induced or vortex drag):

D s,vð Þ~ 1

2
s rSL v

2 S CD~Cpv
2
zCiv

{2 ð6Þ

Where:

Cp~
1

2
s rSL SCD,0 Ci~

2K S n2

srSL

: W

S

� �2

CiwwCp n~
L

W

Basic airframe data for a fictional T-category wide-body

airplane used here is given in Table 1. From the basic

geometric characteristic, the mean chord length is 19.87 ft

and the wing loading (W/S) is about 129 lb/ft2. Power

required becomes:

Preq s,vð Þ~Cpv
3
zCiv

{1 ð7Þ

Turbofan Thrust and Power Available

Thrust of turbofan engines is a complicated function of

many parameters. Turbofan engine models, based on a set of

ordinary differential equations for each spool dynamic, exists

(Jaw & Mattingly, 2009; MacIsaac & Langton, 2011; Walsh

& Fletcher, 1998), but inclusion of such time-dependent

models would not be appropriate in this study. A conventional

way to simulate turbofan thrust at maximum throttle settings

is to consider it a function of environmental air density and

forward (TAS) speed (Anderson, 1999; Daidzic, 2012; Mair

& Birdsall, 1992; McCormick, 1995):

Ta s,vð Þ~neN1T0s
m: 1za1vza2v

2
� �

T0~T static
SL,ISA ð8Þ

Where:

a1~a1 BPRð Þv0 a2~a2 BPRð Þw0

Rated thrust (Daidzic, 2012) and the density-exponent ‘‘m’’

is (Daidzic, 2012; Mair & Birdsall, 1992; McCormick, 1995):

T0~

(
TOGA 5min

MCT unlimited

)

m~

(
0:7 hv36,151 ft

1:0 h§36,151 ft

)

and ne~

(
AEO

OEI

)

Table 1

Basic data for a large transport-category FAR/CS 25 medium to long-haul

commercial subsonic airplane.

MSTOW

[lb]
MSLW [lb] S [ft2] b [ft] AR [-] e [-]

400,000 320,000 3,100 156.0 7.85 0.90 (cruise)

Figure 1. Typical parabolic drag polar for clean and flapped wing. Not to scale.
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The factor ‘‘ne’’ defines the number of engines during

AEO conditions, while the number of engines is ‘‘ne-1’’

during OEI conditions. The actual thrust produced by a

turbofan is a product of (maximum rated) thrust available

and the TSP # 1 (Thrust/Throttle Setting Parameter). The

relationship between the TSP and throttle position is

typically nonlinear even for HBPR turbofan engines, but

modern FADECs can linearize the curves digitally

(Daidzic, 2012; Jaw & Mattingly, 2009; Mattingly,

2005). A TSP is typically related to a low-pressure (fan)

N1% spool speed (for HBPR and UHBPR engines) or to an

Engine Pressure Ratio (EPR) for low-BPR and medium-

BPR engines. Thus, TSP is defined in terms of Takeoff

Go-Around (TOGA) N1 5 N1%/100 as:

N1~

0:1� 1:0 when TOGA

0:1� 0:9 when MCT

( )

The Maximum Continuous Thrust (MCT) was set

somewhat arbitrarily to 90% of TOGA. This parameter is

called ‘‘throttle parameter’’ by Menon (1989). Even at idle

setting a jet engine produces significant residual thrust. The

thrust equation can be also given in terms of Mach number,

v~TAS~aSLM
ffiffiffi

h
p

, and one obtains:

Ta s,h,Mð Þ~neN1T0s
m: 1zb1M

ffiffiffi

h
p

zb2M
2h

� 	

b1~a1 aSLv0 b2~a2 a
2
SLw0 ð9Þ

Although this relationship is semi-empirically obtained

from particular HBPR turbofan thrust measurements and

data fitting, it nevertheless has sound physical foundation.

Coefficients ‘‘a’’ and ‘‘b’’ account for momentum drag,

which reduces net thrust and ram pre-compression effect

which increases net thrust, respectively. Both coefficients

are complicated and still unknown functions of BPR,

TSP, rotor (spool) speeds, blade and combustor designs,

inlet and nozzle design, and many other engine-component

parameters which can only be estimated reliably by

direct measurements and experimental identification. It is

assumed here that aforementioned coefficients remain

constant at both MCT and, typically, 5–10 minute TOGA

thrust. Additionally, these coefficients are engine make and

model specific and do not represent universal constants.

Propulsive power delivered by a thrust-producing power-

plant is now:

Pa s,vð Þ~v:Ta s,vð Þ~neN1T0s
m: vza1v

2
za2v

3
� �

ð10Þ

In terms of Mach number, Equation (10) becomes:

Pa s,h,Mð Þ~neN1T0s
maSL

: M
ffiffiffi

h
p

zb1M
2hzb2M

3h3=2
� 	

ð11Þ

A very common TSFC relationship (Eshelby, 2000; Mair

& Birdsall, 1992; Mattingly, 2005) used in performance

calculations is:

TSFC h,Mð Þ~ _mf

T
~TSFCref

:
ffiffiffi

h
p

:Mn ð12Þ

However, this relationship is not universally valid

throughout the entire flight envelope. Nevertheless, Mair

and Birdsall (1992) recommend the coefficient n~0:48,
while Eshelby (2000) recommends n~0:6.

A new fuel law for turbojets and turbofans that covers

the entire flight envelope of the engine from the lowest to

the highest airspeeds continuously is proposed for the first

time:

TSFC h,Mð Þ~TSFC0
:
ffiffiffi

h
p

: 1zMð Þn ð13Þ

where,

n~

0:2 Turbojet

0:8 HBPR

0:9 UHBPR

8

><

>:

9

>=

>;

Here, TSFC0 corresponds to the static SL ISA installed

thrust SFC at MCT. The value of TSFC0 for 90’s

generation turbofans with BPRs around 5:1 is about 0.40

(lbf/hr/lbf or kg/hr/daN) and is independent of thrust rating/

level (Mair & Birdsall, 1992; McCormick, 1995). The

exponent ‘‘n’’ in Equation (12) depends on the engine

internal design and layout, BPR, etc. The new model for

TSFC proposed here (with n~0:8) agrees well with the

measured data for the P&W PW4056 engine (McCormick,

1995). Basic fictitious HBPR and UHBPR generic turbofan

data used in this work are summarized in Table 2.

The HBPR and UHBPR turbofan thrust and TSFC as a

function of Mach number and altitude modeled with

Equations (10) and (13) are shown in Figures 2 and 3,

respectively. As expected, thrust decreases significantly

with the forward speed before it levels off at high M-

numbers due to the increasing ram effect. That decrease

(momentum drag) is steeper for the UHBPR engine and the

ram recovery is smaller. Thrust reduction with Mach speed

Table 2

Basic data for flat-rated turbofan engines used.

Turbofan TSL,static [lb] TOGA/MCT TSFC0 (MCT) [lb/lb-hr] n a1 a2

HBPR 60,000/54,000 0.40 0.8 -8.500 x 10-4 +5.500 x 10-7

UHBPR 72,000/64,800 0.32 0.9 -9.50 x 10-4 +5.000 x 10-7
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decreases at high tropospheric altitudes (lower tempera-

tures). All computations were performed for the ISA

troposphere only using new computational ISA algorithms

(Daidzic, 2015). In reality, an airplane would not be able to

sustain flight at low airspeeds (e.g., M , 0.7) and high

altitudes due to aerodynamic stall (low-speed buffet)

boundary (flight envelope). Thrust and TSFC model may

not be accurate for very high subsonic airspeeds (e.g., M .

0.90). As expected, TSFC increases with Mach number and

decreases with altitude (temperature effect) as shown in

Figure 3.

Derivation of Control and Performance Airspeeds

Selected important performance speeds will be now

derived and defined using a systematic optimization

method with one independent variable alone. Some critical

airspeeds are solely airframe dependent, such as the control

Figure 3. TSFC as a function of Mach number and flight level for HBPR and UHBPR turbofans.

Figure 2. MCT as a function of Mach number and flight level (temperature) for HBPR and UHBPR turbofans. Dashed double arrow shows the approximate

HBPR engine operational flight range (m 5 0.7).
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airspeeds, VS (power off or zero thrust), VMD, and VMP.

Others are airframe-engine combination dependent, such

as the performance airspeeds, VX, VE, VY, VMRC, and

the minimum- and maximum-propulsion level-cruise

airspeed, VMIN and VMAX. Change in stalling speed with

Mach and Reynolds numbers is not modelled and every

reference is to SL ISA stalling speed. To obtain the

minimum-drag airspeed (VMD), one seeks to minimize the

parabolic drag:

LD s,vð Þ
Lv

~0 [ CpvMD{Civ
{3
MD~0 ð14Þ

For the reasons that will become clear later, new constants

are introduced and one obtains the final polynomial form for

determination of minimum-drag airspeed as:

AMD
:v4MDzFMD~0 ð15Þ

where:

AMD~Cp BMD~0 CMD~0

DMD~0 FMD~{Ci

This is a special case of the general 4th-order (quartic)

polynomial:

A:x4zB:x3zC:x2zD:xzF~0 ð16Þ

Such polynomial of 4th-order (Equation 16) does not

have a general closed-form analytic solution other than

in some very special cases. Generally, such polynomial

can have multiple real roots and at least one complex-

conjugate pair of roots. Naturally, one is only seeking

real positive roots for airspeeds. Fortunately, Equation

(15) can be solved analytically. Substituting values

from Equation (5) one obtains for the real positive

solution:

vMD~
Ci

Cp

� �1=4

~
2

rSL

� �1=2
1

s

� �1=2
W

S

� �1=2
K

CD,0

� �1=4

TASMD~
CASMD

ffiffiffi
s

p ð17Þ

The maximum aerodynamic efficiency E (flight load

n 5 1) and K=K CLð Þ is (Asselin, 1997):

LE

LCL

~
L

LCL

CL

CD0zK :C2
L

� �

~0

[ Emax~
CL

CD

� �

max

~
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4CD,0K

p ð18Þ

These are familiar classical solutions (e.g., Anderson,

1999; Mair & Birdsall, 1992; Vinh, 1993). This air speed

also corresponds to the maximum-endurance airspeed

vE~vMD for turbojets (speed-independent thrust).

Minimum-power-required airspeed (VMP) is obtained by

differentiating Equation (7):

LPr s,vð Þ
Lv

~0 [ 3:Cpv
2
MP{Civ

{2
MP~0 ð19Þ

resulting in minimum-power airspeed:

vMP~

ffiffiffiffiffiffiffiffiffi

Ci

3Cp

4

s

~
1

31=4
vMD&0:7598:vMD ð20Þ

This is also a familiar power-off minimum-sink airspeed

that is of particular importance to gliders (sailplanes), but

not so much for FAR/CS 25 T-category airplanes.

Nonetheless, it represents another analytical solution that

will be used to test the nonlinear equation solver. The

polynomial form yields:

AMP
:v4MPzFMP~0 ð21Þ

where:

AMP~3:Cp BMP~0 CMP~0

DMP~0 FMP~{Ci

Essential airframe-powerplant dependent performance

airspeeds will be now derived in a systematic and con-

sistent manner. A crucial operational performance air-

speed is the airspeed for which the cruise range of

turbojet airplane is maximized. This is especially

important in various optimum cruise considerations

(Daidzic, 2014b). The range factor (RF) is defined as

RF~ v=TSFCð Þ| L=Dð Þ (Daidzic, 2014b). In the simple

case when TSFC is airspeed-independent in un-acceler-

ated straight-and-level flight, one needs to minimize the

ratio:

L

Lv

D s,vð Þ:TSFC
v


 �

~
L

Lv

D s,vð Þ
v


 �

~0

[ Cp{3:Civ
{4
MRC~0 ð22Þ

By utilizing Equation (17), the above condition results in:

vMRC~

ffiffiffiffiffiffiffiffi

3Ci

Cp

4

s

~31=4vMD&1:316:vMD ð23Þ

This is also familiar maximum cruise range (MRC)

airspeed for speed-independent TSFC turbojets (Daidzic,

2014b; Eshelby, 2000; Mair & Birdsall, 1992). The general

polynomial form yields:

AMRC
:v4MRCzFMRC~0 ð24Þ

where:

AMRC~Cp BMRC~0 CMRC~0

DMRC~0 FMRC~{3:Ci

The aerodynamic efficiency at MRC corresponds to the

maximum efficiency (Asselin 1997; Hale, 1984; Raymer
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1999, 2004; Saarlas, 2007):

EMRC~

ffiffiffi

3
p

2
Emax~0:866:

L

D

� �

max

ð25Þ

The AEO or OEI airspeeds for the best-angle (steepest-

climb) are found where the difference between the available

(normally TOGA) and the required thrust is largest:

DT s,vð Þ~neN1T0s
m: 1za1vza2v

2
� �

{Cpv
2
{Civ

{2
w0 ð26Þ

and

L DT s,vð Þ½ �
Lv

~0 [ neN1T0s
m: a1z2:a2vXð Þ

{2:CpvXz2:Civ
{3
X ~0 ð27Þ

by designating:

AX~2: neN1T0s
ma2{Cp

� �
BX~neN1T0s

ma1

CX~0 DX~0 FX~2:Ci~
4K S n2

srSL

: W

S

� �2

the following polynomial form is obtained:

f vXð Þ~AX v
4
XzBX v

3
XzFX~0 ð28Þ

This algebraic equation has no known analytical solution

and must be solved numerically. If one normalizes all

airspeeds in reference to the stalling airspeed, the modified

equation yields:

f �vXð Þ~A
0

X�v
4
XzB

0

X�v
3
XzF

0

X~0 �vX~
vX

vS
ð29Þ

By adjusting the number of engines parameter ‘‘ne,’’ the

AEO and OEI performance figures can be predicted. The

steepest-climb airspeed VX is identical to the local

maximum-endurance VE airspeed (at constant altitude).

Accordingly, one has:

LD s,vEð Þ
Lv

~
LT s,vEð Þ

Lv
ð30Þ

This results in an identical nonlinear problem already

given above by Equations (27) and (28). Unlike the

situation in which thrust is assumed speed-independent

and where VX and VE are identical and also coinciding

with VMD, for speed-dependent thrust in HBPR/UHBPR

turbofans VX 5 VE airspeeds will be actually slower than

VMD. To get the global maximum endurance, other

constraints and complete TSFC envelope need to be

considered.

The speed for maximum or best rate of climb speed VY,

is found where the excess power is maximized:

DP s,vð Þ~neN1T0s
m: vza1v

2
za2v

3
� �

{Cpv
3
{Civ

{1
w0 ð31Þ

The extreme of the excess power equation delivers yet

another polynomial that cannot be solved analytically:

L DP s,vð Þ½ �
Lv

~0 [ neN1T0s
m

: 1z2:a1vYz3:a2v
2
Y

� �

{3:Cpv
2
YzCiv

{2
Y ~0 ð32Þ

If one designates:

AY~3: neN1T0s
ma2{Cp

� �
BY~2:neN1T0s

ma1

CY~neN1T0s
m DY~0 FY~Ci~

2K S n2

s rSL

: W

S

� �2

The nonlinear polynomial form results:

f vYð Þ~AY v
4
YzBY v

3
YzCYv

2
YzFY~0 ð33Þ

Introducing the non-dimensional maximum-rate velo-

city, the modified equation yields:

f �vYð Þ~A
0

Y�v
4
YzB

0

Y�v
3
YzC

0

Y�v
2
YzF

0

Y~0 �vY~
vY

vS
ð34Þ

The last performance speed discussed here is the

maximum (propulsion limit) level flight speed achieved at

MCT. In this first consideration, wave drag is neglected.

For the condition of maximum (and minimum propulsion-

limited) cruise speed we have the mathematical condition:

T s,vMð Þ~D s,vMð Þ
[ neN1T0s

m: 1za1vMza2v
2
M

� �

~Cpv
2
MzCiv

{2
M ð35Þ

Designating:

AM~ neN1T0s
ma2{Cp

� �
BM~neN1T0s

ma1

CM~neN1T0s
m DM~0

FM~{Ci~{
2K S n2

s rSL

: W

S

� �2
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results in:

f vMð Þ~AMv4MzBMv3MzCMv2MzFM~0 ð36Þ

By introducing the non-dimensional maximum velocity

the modified equation is obtained:

f �vMð Þ~A
0

M�v4MzB
0

M�v3MzC
0

M�v2MzF
0

M~0 �vM~
vM

vS
ð37Þ

Unlike in previous cases, one is seeking two real positive

solutions of Equations (36) and (37). Thus, vM can be

either of the two level-flight propulsion-limited airspeeds,

i.e., VMAX or VMIN. In reality none of the vM ’s may be

achievable or due to stall speed limit on the lower end or

VMO/MMO limit on the higher end. Subsequent calculations

will show that all VMIN here are indeed slower than

appropriate stalling speeds and thus are irrelevant.

Many useful conclusions can be made about the

nature of the roots of the derived polynomials depending

on the sign and magnitude of its coefficients. However,

such complex mathematical analysis is beyond the scope of

this article.

Essential drag and performance data for a fictitious

T-category airplane is summarized in Table 3. Interestingly,

VMD/VS, VMP/VS, and VMRC/VS ratios are independent of

altitude and weight and are only configuration dependent for

not too high Mach numbers:

vMD

vS
~

K :C2
L, max

CD,0

 !1=4
vMP

vS
~

1

3

� �1=4
vMD

vS

� �

vMRC

vS
~31=4

vMD

vS

� �

ð38Þ

Sensitivity of Airspeed Estimations on Drag Data

An important question arises as to how sensitive airspeed

estimation based on the set of geometric and aerodynamic

data is. Such an analysis would warrant an article in itself.

Thus only the analysis of minimum-drag speed and the

maximum aerodynamic efficiency will be addressed here.

A simple parabolic drag polar is assumed with constant

coefficients. The effect of density and wing loading is not

to be addressed, but could be easily included. Using

vMD~f CD,0,Kð Þ describes drag-data dependence, the

small perturbations can be described as:

D vMDð Þ
vMD

~
L vMDð Þ
L CD,0ð Þ


 �

K

D CD,0ð Þ
vMD

z
L vMDð Þ
LK


 �

CD,0

DK

vMD

ð39Þ

Thus, an analysis of TAS is analog of CAS/EAS analysis as

density ratio is assumed constant. Evaluating and substituting

partial derivatives and utilizing Equation (17) yields:

D vMDð Þ
vMD

~{
1

4

D CD,0ð Þ
CD,0

z
1

4

DK

K
ð40Þ

Similarly, the small perturbation (total differential)

for the maximum aerodynamic efficiency (Equation 18),

now yields:

D Emaxð Þ
Emax

~
L Emaxð Þ
L CD,0ð Þ


 �

K

D CD,0ð Þ
Emax

z
L Emaxð Þ
LK


 �

CD,0

DK

Emax

~{
1

2

D CD,0ð Þ
CD,0

{
1

2

DK

K
ð41Þ

Accordingly, a 10% increase in zero-lift parasitic drag

coefficient will cause 2.5% decrease in minimum-drag

airspeed and 5% decrease in maximum aerodynamic

efficiency. On the other hand a 10% increase in induced-

drag coefficient will cause 2.5% increase in minimum-drag

airspeed and 5% decrease in maximum aerodynamic

efficiency. The above theoretical consideration is a

mathematical proof that increased parasitic drag (CD,0)

moves VMD to lower, while increased induced drag (K)

moves VMD to higher airspeeds. While VMD is quite

insensitive to small drag changes, the aerodynamic

efficiency is moderately so. This is important as cruise

fuel consumption is inversely proportional to the cruise

aerodynamic efficiency. Also obvious from Equation (17)

is the well-known fact that increased wing loading moves

the VMD toward higher speeds.

Similarly, numerical sensitivity and uncertainty analysis

could be performed for estimation of all performance

speeds. However, no simple analytic solutions exist then,

Table 3

Aerodynamic data for the fictitious large T-category FAR/CS 25 commercial subsonic airplane. Landing configuration also includes landing gear extended

drag.

Configuration Clean/Cruise (I) Takeoff (Gear up) (II) Landing (III)

CD,0 0.020 0.035 0.135

CL,max 1.65 2.20 3.00

K 0.045 0.050 0.055

Emax 5 (L/D)max 16.67 11.95 5.80

VMD/VS 1.5732 1.6216 1.3838

VMP/VS 1.1954 1.2321 1.0514

VMRC/VS 2.0705 2.1341 1.8212
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and the full multi-parameter numerical analysis must be

performed to observe effects of each parameter and

drag coefficient. Such numerical analysis is not difficult,

as the software programs have been designed, but it is just too

time consuming and there is no space for it in this article.

Maximum Cruise Airspeed Estimation in the

Presence of Wave Drag

To analyze the effect that transonic wave drag may

have on the propulsion-limited maximum cruising speed,

the general expression of wave-drag coefficient as a

function of Mach number and coefficient-of-lift

(Vallone, 2010) is used:

CDw M,CLð Þ~a: M{MCR CLð Þ½ �zb: CL{CL,0ð Þcf gd

Consulting many references (e.g., Mair & Birdsall, 1992;

Malone & Mason, 1995; Shevell, 1989) and using the

actual measurements on, somewhat older, existing high-

subsonic airplanes (such as B747-100, DC-10, etc.), an

approximate wave-drag relationship for not too large Mach

numbers and not too strong shock waves for a fictitious

airplane used here is proposed:

CDw M,CLð Þ

~20 M{MCR CLð Þ½ �z5|10{3 CL{CL,0ð Þ1=2
n o4

,

CL,0~0, MƒMDD CLð Þ ð42Þ

The dependence of drag-rise Mach number on coeffi-

cient-of-lift is expressed with an approximate semi-

empirical equation:

MDD CLð Þ~MDD CL~0ð Þ{ b

cos3 y

� �

:CL ð43Þ

This is the same relationship as the one given by Equation

(4). Let us assume high-subsonic airplane cruise condition at

CL~0:4, t=�c~0:12, b~0:14, y~350, CD,0~0:0175,
K~0:045, MCR~0:7347, and MDD~0:8424. The wave-

drag coefficient from Equation (42) for the range

MCRv0:84vMDD and given CL becomes 0.002770. The

total drag coefficient (Equation 3) is:

CD&CD0zK :C2
LzCDw~0:0175z0:045|0:42

z0:002770~0:027470

In this particular example, the wave drag is about 10% of

the total drag, which is a reasonably realistic estimate at

high Mach numbers close to MDD. This value and other

calculations performed are in good agreement with the

results presented in Mair and Birdsall (1992) and Shevell

(1989) for wide-body airplanes. The transonic wave drag

physics is extremely complicated and it would be

excessively optimistic to assert that a simple algebraic

equation could capture such complex phenomena in its

entirety. However, for Mach numbers between the critical

and the drag-divergence numbers, the functional relation-

ships (Equations 42 and 43) are reasonably good for

contemporary high-subsonic airplanes. We are predomi-

nantly interested in developing sound and consistent

methodology, which can assist conceptual designs and

first optimizations.

Computation of the maximum propulsion-limited cruise

airspeed can now be conducted including considerations of

the wave drag. However, this requires special effort and

will be presented in a separate publication. It is quite clear

that the maximum speeds in the presence of wave drag will

be noticeably slower than when the wave drag is neglected.

Typically, the maximum cruising straight-and-level air-

speeds will be between the critical and the drag-divergence

Mach numbers and actually closer to MDD than to MCR.

Methodology

To calculate the unknown airspeeds derived earlier, one

needs to resort to numerical methods for finding roots

(zeroes) of general nonlinear equations and polynomials in

particular. Considering that, generally, one may have, at least,

one pair of complex-conjugate roots in quartic equations,

which cannot be accepted on physical grounds; one could

resort to specialized numerical methods that search for all

roots. For example, Mueller’s and Bairstow’s methods

(Chapra & Canale, 2006; Press, Teulkolsky, Vetterling, &

Flannery, 1992) are classical techniques for finding real (with

multiplicity) roots and complex-conjugate roots (always come

in pairs), as used in many computer programing numerical

libraries (Chapra & Canale, 2006). More advanced techniques

implemented in IMSL for Fortran numerical libraries utilize

the Jenkins-Traub algorithm from 1970 (Press et al., 1992) and

very efficient Laguerre’s methods for finding complex

conjugate and real multiple roots (Press et al., 1992). These

methods are very complex and designed for global localization

and root calculation and thus impractical for use here.

We are only interested in localizing and computing

positive real roots in the vicinity of analytically evaluated

stall and/or minimum-drag airspeeds. Therefore, a simple

Newton-Raphson (NR) method with initial guess located at

VS (or at VMP, VMD, or VMRC) is employed. NR methods are

also easily implemented in manual computations. However,

this is not recommended for a large number of computations

as performed here. Nonetheless, it is not difficult to encode

NR method in any high-level programming language.

The NR method can be easily derived from the

convergent Taylor-series continuous function expansion

resulting in (Demidovich & Maron, 1987):

vjz1~vj{
f vj
� �

f ’ vj
� � v0~vS j~0, 1, 2, . . . ð44Þ

Differentiation of polynomials is trivial, and NR method is

a good choice when analytical functions are known. The NR
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method converges quadratically, i.e., very rapidly (Carnahan,

Luther, & Wilkes, 1969; Chapra & Canale, 2006; Conte & de

Boor, 1986; Demidovich & Maron, 1987; Press et al., 1992;

Ralston & Rabinowitz 1978). However, global convergence is

not guaranteed and the initial guess must be chosen properly.

As an example of numerical solution, the propulsion-

limited minimum and maximum level cruise airspeeds,

using the regular NR method yields:

vM,jz1~vM,j{
AMv4M:jzBMv3M,jzCMv2M,jzFM

4AMv3M,jz3BMv2M,jz2CMvM,j

vM,0~vS, vMD, or vMRC ð45Þ

Other derived airspeeds are calculated in a similar

manner. One of the problems with the regular NR method

is that it is only linearly convergent in the case of multiple

roots (r . 1). If we know the number of root multiplicity

‘‘r,’’ then according to Ralston and Rabinowitz (1978) and

Chapra and Canale (2006), the modified procedure yields:

vjz1~vj{r:
f vj
� �

f ’ vj
� � v0~vS

j~0, 1, 2, . . . r~1, 2,3, or 4 ð46Þ

However, if one does not know the root multiplicity in

advance (which we often do not), then the modified

Newton-Raphson (MNR) method (Chapra & Canale, 2006)

will insure quadratic convergence at the expense of a

substantially more complicated algorithm (need for the

analytic 2nd derivative):

vjz1~vj{
f vj
� �

:f ’ vj
� �

f ’ vj
� �� 2

{f vj
� �

:f ’’ vj
� �

v0~vS j~0, 1, 2, . . . ð47Þ

Quadratic convergence ensures rapid estimation of real

roots if the initial guess is correctly chosen. In order to

reduce the number of computations a method proposed by

Demidovich and Maron (1987) can be used in which the

first derivative (slope) in regular NR method is fixed at the

initial slope. The convergence is slower, but the number of

derivative function computations is sometimes substantially

reduced:

vjz1~vj{
f vj
� �

f ’ v0ð Þ v0~vS j~0, 1, 2, . . . ð48Þ

Several control and performance airspeeds are numeri-

cally computed using all four variations of the NR

numerical root-finding method. Convergence and accuracy

tests were conducted using analytically-derived airspeeds

(e.g., VMD). Results are obtained as TAS, CAS, EAS, or M

speeds. Theoretical Pitot-tube compressibility correction

can be used to calculate EAS from CAS (Padilla, 1996).

However, it must be emphasized that NR/MNR failed to

converge to appropriate real root, with the initial estimate

being corresponding stalling speed. Even by choosing the

minimum-drag (or minimum-power) airspeed as the

starting point of iterations, the convergence was not

attained in all cases considered. There is no space available

to give detailed account of convergence problems for each

particular case. Curiously, when considering maximum and

minimum propulsion-limit speeds, sometimes the initial

guess at the minimum-drag or at the stalling speed resulted

in locking into negative real roots and neither minimum- or

maximum-propulsion speed was ever located. This is

because the polynomial was rather flat in respective region

and the slope shallow resulting in the first iteration landing

on the negative airspeed side and remaining locked there.

Graphical and tabular representation of functions was very

helpful to monitor the convergence process. Thus, initial

bracketing or locating regions of function sign change for

all real roots was necessary to assure global convergence.

We were not interested in complex-conjugate pairs or in

negative real roots. Making the root-search model global

complicates computations and contradicts one of stated

goals to design a simple numerical procedure.

Testing and Validation of the Numerical Method

Generally, various polynomial forms for performance

airspeeds derived here could result in negative-real, as well

as one pair of complex-conjugate, roots which all must

be discarded due to physical impossibility. Therefore, only

the real positive solutions will be kept, which due to

the physics of the problem lies between the stall and the

maximum propulsion-limited airspeeds. The numerical

root-finding algorithm utilizing NR/MNR methods is first

tested against the analytically derived minimum-drag,

minimum-power, and maximum-range airspeeds.

As the test bed for numerical computations, the airplane

similar in characteristics to popular twin-engine B767-

300ER was used. The HBPR powerplant similar to GE

CF6-80C2, RR RB211-524G/H, or P&W PW4056/4060/

4062 turbofan engines was used. The second powerplant

is a fictional UHBPR used to explore the effects of

increased BPR on performance airspeeds. Due to the

inability to obtain the exact airframe aerodynamic force

and moment coefficients as well as engine thrust/TSFC

data, much of which is manufacturer’s proprietary

information, relevant experience, references, expert

knowledge, and familiarity with various airplane engine

types were used to construct approximate airframe and

engine data. It must be reiterated again that primary

interest here is in developing a methodology rather than

predicting performance of any particular existing airframe

and/or powerplant. Various essential airframe and power-

plant data used for calculations were already given in

Tables 1, 2, and 3.
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Test and validation of the NR/MNR computational

methods were first performed by numerically evaluating

VMD, VMP, and VMRC airspeeds and comparing them to

analytical solutions. Indeed, all the computations performed

flawlessly and numerical computations converged to exact

ones in few iterations only (typically 2 to 6), with 8

significant digits accuracy. The number of iterations was

based on the absolute error (compared to analytical solution)

being less than 10-6. The corresponding power-off stalling

speed was used as a starting point typically resulting in rapid

convergence. A large number of computations on the order

of 150 hours were used for testing and obtaining relevant

results. Development and testing of various software

programs took a similar amount of time.

Microsoft ExcelTM was used to calculate all AEO and

OEI performance airspeeds as a function of weight and

altitude. A spreadsheet program was also used for plotting

all results. Additionally, we compared all spreadsheet

calculations using the in-house developed root-finding

programs written in Fortran 95. We used a standard ISO/

IEC 1539-1:1997 high-performance optimizing compiler

by Lahey Computer SystemsTM. In-house developed Fortran

95 subroutines for real-root seeking employed nonlinear

function solvers based on several bracketing numerical root-

finding open methods (Carnahan et al., 1969; Conte & de

Boor, 1986; Chapra & Canale, 2006), such as Regula-Falsi,

secant, fixed-point iteration, and regular Newton-Raphson

(NR). Of these, the NR method converged most rapidly and

is especially suitable when the analytic polynomial expres-

sions exist, from which derivatives are easily obtained.

Moreover, we utilized, validated, and tested our in-house

written Fortran 95 subprograms with the licensed profes-

sional root-finding (nonlinear equations solvers) subpro-

grams contained in IMSL (International Mathematical and

Statistical Libraries, ver. 4.01 by Visual NumericsTM) and

SSL II (Scientific Subroutine Libraries II by FujitsuTM). We

also utilized Numerical RecipesE for Fortran 77/90 numerical

libraries (Press et al., 1992), which were written in standard

ISO/IEC 1539:1991 Fortran 90 to test our Fortran 95

programs/subroutines. MatlabTM intrinsic numerical library

programs were also used to test results. All various tests and

verifications performed flawlessly and returned exactly the

same values of polynomial roots (real and/or complex)

with accuracy going up to double precision (15 significant

digits).

As a particular example, the polynomial defining VMD

(Equation 15) has four roots of which one is often real

positive, one is real negative (of the same magnitude), and the

remaining roots are a pair of complex-conjugate roots with

the real part zero and non-zero conjugate-imaginary parts.

The test results for various airplane configurations are

presented in Tables 4 and 5 at maximum structural takeoff

weight (MSTOW) and maximum structural landing weight

(MSLW) for SL ISA (TAS 5 CAS 5 EAS). Numerical

Table 4

Analytical and numerical computation of some control/performance airspeeds for various airplane configurations at MSTOW and SL with initial guess at

stalling airspeeds.

Configuration Clean/Cruise (I) Takeoff (II) Landing (III)

Analytical VS [fps/kts] 256.51/151.91 222.15/131.56 190.23/112.66

Analytical VMP [fps/kts] 306.63/181.59 273.71/162.09 200.02/118.45

Numerical VMP (# of iterations)
306.63/181.59

(2–3)

273.71/162.09

(3–4)

200.02/118.45

(2–3)

Analytical VMD [fps/kts] 403.55/238.98 360.23/213.33 263.24/155.89

Numerical VMD (# of iterations)
403.55/238.98

(4–5)

360.23/213.33

(5–6)

263.24/155.89

(5–6)

Analytical VMRC [fps/kts] 531.10/314.52 474.09/280.75 346.45/205.17

Numerical VMRC (# of iterations)
531.10/314.52

(5–7)

474.09/280.75

(6–8)

346.45/205.17

(5–6)

Table 5

Analytical and numerical computation of some control/performance airspeeds for various airplane configurations at MSLW and SL with initial guess at

stalling airspeeds.

Configuration Clean/Cruise (I) Takeoff (II) Landing (III)

Analytical VS [fps/kts] 229.43/135.87 198.69/117.67 170.15/100.76

Analytical VMP [fps/kts] 274.26/162.42 244.82/144.98 178.91/105.95

Numerical VMP (# of iterations)
274.26/162.42

(2–3)

244.82/144.98

(3–4)

178.91/105.95

(2–3)

Analytical VMD [fps/kts] 360.94/213.75 322.20/190.81 235.45/139.44

Numerical VMD (# of iterations)
360.94/213.75

(4–5)

322.20/190.81

(5–6)

235.45/139.44

(5–6)

Analytical VMRC [fps/kts] 475.03/281.31 424.03/251.11 309.87/183.51

Numerical VMRC (# of iterations)
475.03/281.31

(4–5)

424.03/251.11

(5–7)

309.87/183.51

(5–6)
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computations using all four (regular and modified) NR

methods were utilized. Many additional tests and sensitivity

analyses using various initial guesses with speeds slower

and faster than analytical minimum-drag speed (or stalling

speed) were performed in order to check the robustness and

the convergence range. All computations converged rapidly

to the analytical values of VMD and VMP. However, very

low starting speeds (, 100 ft/s, i.e., below VS) resulted

in more iterations (. 10) as the polynomials are rather

flat in that region. Additionally, the computations did not

converge in some instances for initial guesses less than

40–60 fps (quite below VS and unrealistic). Initial guesses

faster than VMD (up to 1000+ fps essentially exceed-

ing VMO/MMO) often resulted in very rapid convergence

(, 4 iterations) due to rather monotonic and steep function

growth in that region. Polynomials of VMD, VMP, and, VMRC

were plotted in each case for visual inspection.

Pénaud Aircraft Performance Diagrams

Aircraft performance diagrams are often called Pénaud

diagrams after the French engineer who was apparently the

first to construct them in the 19th century. Airplane

configurations and thrust ratings used here are summarized

in Table 6. The AEO and OEI thrust-available curves at

MCT and TOGA (5 min) thrust are plotted against drag

(thrust required) curves at SL ISA for MSTOW and MSLW

and are shown here in Figures 4 and 5. We did not account

for additional drag due to rudder deflection and slight bank

angle into the operating engine(s) required for airplane zero-

sideslip directional control with asymmetric OEI thrust.

Similarly, the AEO and OEI power-available curves are

plotted against the total-drag power (power required) curves,

also at SL ISA for MSTOW and MSLW and shown here in

Figures 6 and 7.

A twin-engine FAR/CS 25 airplane is not designed to

climb at MSLW in landing configuration with OEI TOGA

thrust. Instead, regulations require that twin-engine

FAR/CS 25 airplane demonstrate gross 2.1% discontin-

ued-approach climb gradients when OEI in approach

configuration at landing weight and given environmental

conditions (EASA, 2007; FAA, 2011). The landing

climb of 3.2% is operationally required (EASA, 2007;

FAA, 2011, 2013; JAA, 2007) only with AEO TOGA

thrust for airplane in landing configuration at MSLW (and

below).

As the last test, the performance computations for a

350,000 lb HBPR-equipped airplane cruising at FL360 ISA

with conditions at -56.3 C̊ air was considered, and results

are presented in Figure 8. About 22,068 lbs (9,816 daN or

98.16 kN) of thrust is required at TAS of 480 knots (890

km/hr), M 5 0.836, and 262 knots CAS/EAS respectively.

Computed TSFC (Figure 3) is about 0.56428 lb/hr/lb

(or kg/hr/daN) and fuel flow is 6,226 lb/hr (2,830 kg/hr)

per engine. This fictional subsonic T-category airplane has

Table 6

Airplane configuration and thrust levels used for computation of

performance airspeeds.

Airspeed Airplane configuration Thrust rating

V2, VX Takeoff (II) TOGA 5 min.

VY, VMRC, VMAX Cruise (I) MCT

Figure 4. Pénaud diagram for HBPR turbofan thrust available and thrust required for AEO and OEI cases at MSTOW and SL ISA.
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MCR 5 0.765, MMO 5 0.860, and MDD 5 0.872. Maximum

fuel capacity is 162,000 lbs, and the instantaneous

SAR~RF=W~v= TSFC|Dð Þ at 350,000 lbs is about

38.55 NM/(1,000 lbs of fuel). The maximum still-air range

is then about 6,000 NM while meeting regulatory fuel

reserve requirements (Daidzic, 2014b). The EOW (Empty

Operating Weight) is 190,000 lbs and MZFW (Maximum

Zero-Fuel Weight) is 280,000 lbs. Maximum payload is

90,000 lbs, which would imply carrying 300 average

passengers and 30,000 lbs of cargo. Clearly, the airplane

would not be able to maintain cruise at FL360 during OEI

condition. It would have to drift down to, say, FL240

Figure 6. Pénaud diagram for HBPR turbofan power available and power required in AEO and OEI cases at MSTOW and SL ISA.

Figure 5. Pénaud diagram for HBPR turbofan thrust available and thrust required for AEO and OEI cases at MSLW and SL ISA.
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and slow down to 367 KTAS (250 KCAS/KEAS) or

M 5 0.608, requiring about 21,536 lbs of thrust

(, MCT OEI @ FL240 5 21,605 lb @ -32.5 C̊) from

the remaining working engine. Drag curves for takeoff and

landing configuration are plotted for reference only, but have

no use in cruise flight. Besides, specific VFE’s would limit the

use of flaps at high dynamic pressures. High-speed limitation

(VMO/MMO) for the fictional FAR/CS 25 T-category airplane

used is 350/0.86.

Results and Discussion

Now that the accuracy and the reliability of the

numerical algorithm and performance (thrust and power

Figure 8. Pénaud diagram for high-altitude cruise HBPR turbofan thrust available and required for AEO and OEI cases. Steep rise in compressible drag

coefficient would commence above at about 490 KTAS.

Figure 7. Pénaud diagram for HBPR turbofan power available and power required in AEO and OEI cases at MSLW and SL ISA.
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required and available) calculations have been thoroughly

and satisfactorily tested, we can turn toward the actual

estimate of performance airframe-powerplant airspeeds for

a fictitious T-category airplane. Simplistic, speed-indepen-

dent thrust, assumptions frequently made in the literature,

leads to VX 5 VE 5 VMD in pure turbojet-type airplanes for

both AEO and OEI cases, which is quite unrealistic and

inaccurate for real airplanes and modern turbofan engines.

The problem is of course that numerical methods must be

applied to solve nonlinear equations, which by no means is

simple task.

Estimation of Aircraft Performance Airspeeds

An extremely large number of computations of critical

control and performance airspeeds have been conducted for

in-flight weights ranging from 300,000 to 400,000 lbs in

10,000 lb increments. The computations have been repeated

for various altitudes, pressures, and temperatures and then

always for both OEI and AEO conditions. For each com-

putation a numerical NR/MNR converging iterative solution

of an appropriate nonlinear equation has been performed.

The results of VX/VS ratio for the AEO/OEI condition and

for an airplane in takeoff configuration with TOGA thrust

at SL ISA are shown in Figure 9. Additionally, the weight-

independent VMD/VS and the V3/VS airspeed ratios are

shown. Interestingly, the VMD/VS ratio is quite high (1.622)

in takeoff configuration. We have defined V3 here as

V2MIN + 20 knots. Such airspeed is typically attained during

AEO takeoffs at screen height (SH) and possibly during OEI

overspeed (improved-climb) takeoffs (Daidzic, 2014a).

The AEO and OEI VX/VS ratio along other speed ratios at

FL50 ISA is shown in Figure 10. This condition simulates

departure and climb from a higher elevation airport (e.g.,

Denver, CO) The AEO and OEI VX/VS ratios increase

slightly with altitude (decreasing temperature). Also the Vx

airspeed increases absolutely with altitude, both in TAS

and CAS/EAS sense. Some really bad news is that VX,OEI is

markedly higher than VX,AEO. Just when a crippled airplane,

devastated by a loss of one engine, needs regulatory

required climb gradient, it also needs to accelerate to higher

airspeeds, but with only half thrust available. Indeed,

severe payload penalties must be paid occasionally to make

sure an airplane can overfly obstacles by 35 ft vertically

along a net flight path during OEI condition. The VMD/VS

ratio does not change with altitude or weight and certainly

not with the AEO/OEI condition.

It is important to emphasize again that FAR/CS 25

T-category airplanes normally do not climb initially at Vx,

which is a quite faster airspeed than (OEI) takeoff safety

speeds V2 (typically in the range V2MIN to V2MIN + 20).

Minimum takeoff safety speed is about 20% above stalling

speed in this given configuration. The main reason that VX

is almost never used is that the difference between VX and

V2 can easily exceed 50 knots (Daidzic, 2014a). Gaining

altitude after takeoff is far more important than accelerating

to faster airspeeds (e.g., during 2nd-segment climb).

However, if the declared field lengths (TODA, TORA)

allow, it is possible to perform overspeed- or improved-

climb takeoff (Daidzic, 20014a; Swatton, 2008), increasing

rotation, lift-off, and SH- airspeeds (say V2 + 20) when OEI

noticeably reduces aerodynamic drag, enabling steeper

climb gradients (Daidzic, 2014a) and facilitating obstacle

clearance and increased payload.

The airspeed ratios for airplanes at different weights

with SL ISA MCT in (clean) cruise configuration are

Figure 9. HBPR turbofan speed ratios as function of TOW for takeoff configuration, AEO and OEI TOGA thrust, and SL ISA.
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presented in Figure 11. Clearly, the minimum propulsion-

limit airspeeds are not attainable. Also the maximum

airspeeds (AEO or OEI) would not be prohibited due to

max-Q or dynamic pressure limit (about 20 kPa or 2.9 psi

and expressed through an airframe-dependent VMO of 350

knots in this case). They are also unrealistic because no

wave drag was included. The VY/VS for AEO SL cruise is

very close to the max-Q limit and also decreases with

weight. Unlike the steepest-climb VX airspeeds, the AEO

VY/VS is larger than OEI VY/VS. A modern T-category

airplane will cruise-climb at relatively high CAS/M

airspeeds (e.g., 320/0.78), which closely approximates

maximum-rate VY climb. Climb at constant CAS/EAS will

result in actual acceleration in terms of TAS due to air

density decrease (Padilla, 1996). Important airspeed ratios

for airplanes cruising at MCT and FL50 are shown in

Figure 12. The minimum propulsion-limit airspeeds are

no longer depicted as they are always below stalling

airspeeds. Similarly, the maximum propulsion-limit air-

speeds (AEO or OEI) are higher than the max-Q airspeed

Figure 11. HBPR turbofan speed ratios as a function of TOW for cruise configuration at MCT and SL ISA.

Figure 10. HBPR turbofan speed ratios as function of takeoff weight (TOW) for takeoff configuration, AEO and OEI TOGA thrust, and FL50 ISA.
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and thus prohibited. The AEO VY/VS is again faster than

OEI VY/VS, and both ratios decrease with weight, although

both CAS/EAS VS and VY must increase with weight. In

terms of CAS or EAS, the VY/VS is again very close to the

max-Q limit and decreases with altitude. Although, in the

real world, SL or FL50 cruise is far too low to fly at high

airspeed (maximum 250 KCAS below FL100), it is used

solely to be consistent in data presentation while showing

altitude dependence.

The Effect of BPR on Aircraft Performance Airspeeds

The trend in modern turbofan designs is to move toward

ever higher BPR. One of the main reasons for that is the

further reduction of TSFC and noise levels. Although, to

the best of our knowledge no successful general theory

exists that relates BPR to speed-dependent thrust, increas-

ing BPR will usually increase a1 (and b1) and reduce a2
(and b2) coefficients in a general thrust-available equation

Figure 13. AEO and OEI VX/VS ratios as a function of TOW in takeoff configuration and TOGA thrust at FL 240 ISA for HBPR and UHBPR turbofans.

Figure 12. HBPR turbofan speed ratios as a function of TOW for cruise configuration at MCT and FL50 ISA.

46 N. E. Daidzic / Journal of Aviation Technology and Engineering



(Equations 8 and 9). Two turbofan engines are considered

here. The first is a contemporary HBPR turbofan (BPR 5:1)

and was used in all previous computations, and the second

is the UHBPR turbofan (say, BPR is 10:1). All the critical

HBPR and UHBPR powerplant data is summarized in

Table 2. Higher BPR means less air directed through the

engine core (gas generator), which now has to extract even

more energy to power an ever larger fan (Mattingly, 2005;

Treager, 1996). It is thus logical to assume that overall ram

effect will simultaneously decrease. It is also assumed that

UHBPR and HBPR engines used here are of similar weight

and installed drag.

The resulting performance airspeed ratios for an airplane

cruising at FL240 in ISA troposphere are shown in

Figure 13. It is impossible to find a condition for which

all different airspeeds would realistically coexist in the

same airplane configuration and thrust rating. The VX speed

is possibly (but rarely) only used in initial takeoff climb and

obstacle clearance with TOGA thrust and lower altitudes.

On the other hand maximum-rate climbs are used in the

later climb phases (above 10,000 ft) at MCT and in clean

airplane configuration. Maximum propulsion-limited cruis-

ing airspeed at high flight levels is mostly unattainable due

to MMO limitation. Squeezing all these airspeeds (and

ratios) with different thrust ratings and airframe configura-

tions in one diagram does not do any justice to realistic

airplane operations, but is presented here regardless for

comparison and space constraints. Cruising altitude of

FL240 was chosen, as both AEO and OEI level flights are

still possible.

Clearly, the minimum-drag and the power-off stalling

airspeed do not change with the choice of powerplant,

provided installed drag and weight of new powerplant is

not much different from the original one. As expected, a

UHBPR turbofan will result in noticeably slower AEO and

OEI VX speeds. Combined with the higher static thrust, the

climbing speed is slower while the climb gradient (not

shown here) is higher. Both of these facts significantly

improve safety of operations. Takeoff configuration assumes

proper high-lift devices deployed and gears retracted.

The last results shown here are for VY/VS and VMAX/VS

ratios at FL240 for HBPR and UHBPR powerplants in

clean configuration and for AEO and OEI cases. Results

are shown in Figures 14 and 15. As expected, VY airspeeds

are faster than VMD airspeeds. Maximum rate of climb

airspeeds almost reaches VMO at higher weights. A UHBPR

turbofan will achieve fastest climbs at airspeeds signifi-

cantly slower than in common existing HBPR turbofans.

This is not all that great of news as it will slow down

forward motion.

Maximum propulsion-limited airspeeds are faster than

VMO/MMO and thus never achieved in flight. The result is

also unrealistic since the wave drag was not incorporated.

The curves for OEI VMAX/VS ratios for HBPR and UHBPR

stop at weights of 360,000 and 390,000 lbs respectively

(Figure 15), simply because higher airspeeds cannot be

attained at ISA FL240 at higher weights. In fact, the

numerical algorithm only returned complex-conjugate

roots. The maximum propulsion-limited airspeeds are

unrealistically high, as seen in Figures 15.

By including the coefficient of wave drag, the max-

imum-propulsion airspeeds will come down significantly as

is the case in real airplanes. However, this effort will be

conducted and demonstrated in a separate publication.

Figure 14. AEO and OEI VY/VS as a function of TOW in cruise at FL 240 ISA for HBPR and UHBPR turbofans.
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The final airplane drag figures are extracted from the

wind-tunnel scale models and prototype(s) flight measure-

ments. The procedure described here still remains very

useful. Piecewise continuous polynomials obtained by data

fitting (e.g., least-square-root approximation) for the entire or

several non-overlapping airspeed ranges can be used instead

of the conventional theoretical drag polar. The same can be

done with the experimentally estimated, installed, and/or

uninstalled thrust data. Having all experimental data in the

form of least-square approximating polynomials, the perfor-

mance speeds can be easily evaluated using the numerical

procedure described earlier. Moreover, the polynomials

could be of different (and higher) order and also be non-

integer, which will only affect NR expressions, but other-

wise nothing significant changes. Although there was no

intention to simulate any particular aircraft performance, the

figures obtained are not very different from those for Boeing

767-300 ER and common turbofan engines used to power it.

Since the basic weight and aerodynamic data are similar, the

airspeeds estimated here are not very different from certified

data for B767 (Boeing, 2005).

Future work will incorporate transonic wave drag and its

effect on the maximum-propulsion and drag-divergence

airspeeds and Mach numbers. Maximum ranges will be

estimated for several distinct cases: flight at constant AOA

(CL), constant altitude, and constant airspeed. Particularly,

we are interested in the evaluation of the maximum

propulsion-limited constant-altitude cruising airspeed in the

presence of wave drag. Although, engines may still provide

enough thrust to exceed MMO at cruising altitudes,

the margin by which that is being accomplished will be

significantly reduced past MDD due to steep drag rise. The

order of drag polynomials may be higher than 4th as already

seen from Hilton’s (1952) expression for wave drag. Such

cases will be easily dealt with using the presented numerical

method. Any non-integer exponents and approximated

experimental drag data can be incorporated. Wind-tunnel

scale models and flight test drag data can be approximated

using polynomial representation for the entire flight

envelope (and beyond), and the methods described here

can be easily implemented.

Conclusions

A numerical method to calculate turbofan-powered air-

plane performance airspeeds is presented. The resulting

equations describing steady-state flight regime including drag

and trust in general polynomial form cannot be solved

analytically. A general speed- and altitude-dependent poly-

nomial thrust generation is assumed. ISA atmosphere was

used for performance computations. Drag is modeled using

the familiar parabolic polar. Wave drag was not modeled,

although considerations of its influence on maximum-

propulsion and cruising airspeeds were discussed. A new

speed- and altitude-dependent fuel law that covers the

entire turbofan engine operating envelope was proposed.

A consistent and systematic derivation of control and per-

formance airspeeds was described. The numerical method of

finding real positive zeroes of polynomials, which represent

optimal airspeeds, is based on the regular or modified

Newton-Raphson methods. Negative real and complex-

conjugate roots were naturally discarded on physical grounds.

All implemented numerical methods for seeking real roots,

with possible multiplicity, of nonlinear functions were also

verified against the explicit analytical solutions when

available. Methods utilizing global and complex root-finding

Figure 15. AEO and OEI VMAX/VS as a function of TOW in cruise at FL 240 ISA for HBPR and UHBPR turbofans.
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subroutines written in-house and, additionally, by using

professional commercial software and numerical libraries

were utilized. Analysis of the performance speeds for AEO

and OEI cases at different weights and altitudes revealed that

generally Vx, VE, Vy, VMRC, and VMAX decrease with

increasing BPR. On the other hand, minimum-drag and

power-off stall airspeeds are only airframe dependent and

thus totally insensitive to powerplant characteristics. Theo-

retical minimum-power and maximum cruise range airspeeds

with constant speed-independent fuel consumption are solely

airframe dependent as well. The ratios of performance speeds

to stalling speeds demonstrated important changes with

altitude and weight for both AEO and OEI cases with both

HBPR and UHBPR engines. The analytical-numerical

method presented here can be used to optimize many special

takeoff operations, such as overspeed takeoffs, with and

without derated/reduced thrust and for arbitrary close- and

distant-obstacle geometry. Calculation of maximum-range

airspeeds for various flight conditions and based on the

similar speed-dependent thrust relationships will be reported

in a subsequent article. Last but not least, the proposed

numerical method can be used for any arbitrary drag polar

polynomial, including actual measured drag characteristic in

wind tunnels and/or flight tests. Turbofan characteristics

could also be represented in a suitable polynomial form

and solved using described nonlinear equation solvers.

This method provides a powerful tool in estimation of

critical control and performance airspeeds in conceptual and

early airplane design phases and helps in early development

of best practices and flight techniques. Design optimizations

can also be performed using various cost functions.
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