
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 13, NO. 11, NOVEMBER 1991 1115 

Estimation of Planar Curves, Surfaces, 
and Nonplanar Space Curves 

Defined by Implicit Equations with Applications 
to Edge and Range Image Segmentation 

Gabriel Taubin, Member, IEEE 

Abstract- This paper addresses the problem of parametric 
representation and estimation of complex planar curves in 2-D, 
surfaces in 3-D and nonplanar space curves in 3-D. Curves and 
surfaces can be defined either parametrically or implicitly, and 
we use the latter representation. A planar curve is the set of 
zeros of a smooth function of two variables X-Y, a surface is the 
set of zeros of a smooth function of three variables X-~-Z, and 
a space curve is the intersection of two surfaces, which are the 
set of zeros of two linearly independent smooth functions of three 
variables X-!/-Z. For example, the surface of a complex object in 3- 
D can be represented as a subset of a single implicit surface, with 
similar results for planar and space curves. We show how this 
unified representation can be used for object recognition, object 
position estimation, and segmentation of objects into meaningful 
subobjects, that is, the detection of “interest regions” that are 
more complex than high curvature regions and, hence, more 
useful as features for object recognition. Fitting implicit curves 
and surfaces to data would be ideally based on minimizing the 
mean square distance from the data points to the curve or 
surface. Since the distance from a point to a curve or surface 
cannot be computed exactly by direct methods, the approximate 
distance, which is a first-order approximation of the real distance, 
is introduced, generalizing and unifying previous results. We fit 
implicit curves and surfaces to data minimizing the approximate 
mean square distance, which is a nonlinear least squares problem. 
We show that in certain cases, this problem reduces to the 
generalized eigenvector fit, which is the minimization of the sum 
of squares of the values of the functions that define the curves 
or surfaces under a quadratic constraint function of the data. 
This fit is computationally reasonable to compute, is readily 
parallelizable, and, hence, is easily computed in real time. In 
general, the generalized eigenvector lb provides a very good 
initial estimate for the iterative minimization of the approximate 
mean square distance. Although we are primarily interested in the 
2-D and 3-D cases, the methods developed herein are dimension 
independent. We show that in the case of algebraic curves and 
surfaces, i.e., those defined by sets of zeros of polynomials, 
the minimizers of the approximate mean square distance and 
the generalized eigenvector fit are invariant with respect to 
similarity transformations. Thus, the generalized eigenvector lit 
is independent of the choice of coordinate system, which is a very 
desirable property for object recognition, position estimation, 
and the stereo matching problem. Finally, as applications of the 
previous techniques, we illustrate the concept of “interest regions” 
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for object recognition and describe a variable-order segmentation 
algorithm that applies to the three cases of interest. 

Index Terms-Algebraic curves and surfaces, approximate dis- 
tances, generalized eigenvector fit, implicit curve and surface 
fitting, invariance, object recognition, segmentation. 

I. INTRODUCTION 

0 BJECT recognition and position estimation are two 
central issues in computer vision. The selection of an 

internal representation for the objects with which the vision 
system has to deal, and good adaptation for these two objec- 
tives, is among the most important hurdles to a good solution. 
Besl [5] surveys the current methods used in this field. The 
early work on recognition from 3-D data focused on polyhedral 
objects. Lately, quadric patches have been considered as well 
[34], [33], [9], [lo]. Bolle and Vemuri [ll] survey the current 
3-D surface reconstruction methods. Among the first systems 
using planar curves extracted from edge information in range 
data is 3DP0 [ 131, [ 121. Nonplanar curves arise naturally when 
curved surfaces are included in the models and have been 
represented as parameterized curves in the past [65], that is, 
z(t), y(t), z(t) are explicit functions of a common parameter t. 

At least the following three reasons, illustrated in Fig. 1, 
justify our interest in representing and estimating nonplanar 
curves: 

1) The intersection of two 3-D surface patches\newline is 
usually a nonplanar curve. 

2) If the object has patterns on the surfaces, the boundaries 
of a pattern are usually nonplanar curves. 

3) For objects consisting of many small smooth surface 
patches, estimating nonplanar curves of surface inter- 
sections may be more useful than estimating the surface 
patches. 

There is no reason to restrict the surfaces considered to be 
quadric surfaces. In general, we will represent a surface as the 
set of roots of a smooth implicit function of three variables X- 
y-z, a space curve as the intersection of two different surfaces, 
and a planar curve as the set of roots of a smooth function of 
two variables x-y. In this way, a 3-D object will be represented 
either as a set of surface patches, as a set of surface patches 
specifying curve patches, or as a combination of both. A 2-D 
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Fig. 1. Reasons for estimating nonplanar curves. 

object will be represented as a set of planar curve patches. 
The representation of curves and surfaces in implicit form 

has many advantages. In the first place, an implicit curve 
or surface maintains its implicit form after a change of 
coordinates, that is, if a set of points can be represented as 
a subset of an implicit curve or surface in one coordinate 
system so can it be in any other coordinate system. That is not 
the case with data sets represented as graphs of functions of 
two variables. In the second place, the union of two or more 
implicit curves or surfaces can be represented with a single 
implicit curve or surface. This property is very important in 
relation with the segmentation problem and the concept of 
“interest regions,” which are regions more complex than high 
curvature regions that can be used as features for recognition. 

Given a family of implicit functions parameterized by a 
finite number of parameters and a finite set of points in space 
assumed to belong to the same surface or curve, we want 
to estimate the parameters that minimize the mean square 
distance from the data points to the surface or curve defined 
by those parameters. Unfortunately, there is no closed-form 
expression for the mean square distance from a data set to a 
generic curve or surface, and iterative methods are required 
to compute it. 

In this paper, we develop a first-order approximation for the 
distance from a point to a curve or surface generalizing some 
previous results. The mean value of this function on a fixed 
set of data points is a nonlinear function of the coefficients, 
but since it is a smooth function of these coefficients, it can 
be minimized using well-established nonlinear least squares 
techniques. However, since we are interested in the global 
minimum and these numerical techniques find local minima, 
a good initial estimate is required. 

In the past, other researchers have minimized a different 
mean square error: the mean sum of squares of the values 
of the functions that define the curve or surface on the data 
points under different constraints. It is well known that this 
performance function can produce a very biased result. We 
study the geometric conditions under which the curve or 
surface produced by the minimization of the mean square error 
fails to approximate the minimizer of the approximate mean 
square distance. This analysis leads us to a quadratic constraint 
(a function of the data) that turns the minimization of the mean 
square error into a stable and robust generalized eigenvector 
problem in the linear case, that is, when the admissible 
functions form a vector space. For example, algebraic curves 

and surfaces of arbitrary degree can be fitted with this method. 
We then introduce the reweight procedure, which in most of 

the cases helps to improve the solution produced by the gener- 
alized eigenvector fit at a lower cost than the general iterative 
minimization techniques. Finally, the result of the reweight 
procedure is fed into the Levenberg-Marquardt algorithm in 
order to minimize the approximate mean square distance. 

In the case of algebraic curves and surfaces, the results of 
these minimization processes enjoy the very desirable property 
of being invariant with respect to similarity transformations of 
the data set, particularly with respect to rigid body transfor- 
mations. Hence, these fits are independent of the coordinate 
system used. 

In Section II, we define implicit curves and surfaces and 
explain some of their properties. In Section III, we show 
that complex objects can be represented as subsets of a 
single curve or surface and that this representation unifies 
the problems of image segmentation, position estimation, and 
object recognition. In Section IV, we derive the approximate 
distance, which is the first-order approximation to the real 
distance, from a point to a curve or surface. In Section V, 
we introduce the approximate square distance and develop the 
constraints for the linear case. In Section VI, we study the 
relation between the mean square error and the approximate 
square distance, establishing the relation of our contribution 
with the previous work. In Section VII, we introduce the 
generalized eigenvector fit method for the linear case, and 
in Appendix B, we analyze the existence and uniqueness of 
the solution; in Section VIII, we analyze its complexity. In 
Section IX, we show that the curves and surfaces produced 
by the generalized eigenvector fit and the minimization of the 
approximate mean square distance are invariant under change 
of basis in the linear case and under similarity transformations 
in the case of algebraic curves and surfaces. In Section 
X, we introduce the reweight procedure and establish its 
relation with previous work. In Section XI, we describe 
several families of parameterized implicit curves and surfaces, 
including superquadrics, where the methods introduced in this 
paper can be applied. In Section XII, we survey the previous 
work on implicit curve and surface fitting, establishing their 
relation with the methods introduced in this paper. In Section 
XIII, we introduce the concept of “interest region,” and we 
briefly explain how it could be used for object recognition in 
a cluttered environment. Finally, in Section XIV, we describe 
a variable-order algorithm for the segmentation of curves and 
surfaces in terms of algebraic primitives, and in Section XV, 
we describe the experimental results. 

II. IMPLICIT CURVES AND SURFACES 

Let f : IR” -+ lRk be a smooth map, a map with continuous 
first- and second-order derivatives at every point. We say that 
the set Z(f) = {x : f(x) = 0) of zeros of f is defined by 
the implicit equations 

We are interested in three particular cases for their applications 
in computer vision and computer-aided design. They have 
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Fig. 2. Different representations of the same space curve. 

special names: Z(f) is a planar curve if n = 2 and k = 1, 
it is a surface if n = 3 and lo = 1, and it is a space curve 

if n = 3 and k = 2. In order to avoid pathological cases, we 
have to require that the set of points of Z(f) that are regular 

points of f be dense in Z(f), where a point 2 E IR” is a 
regular point of f if the Jacobian matrix 

has rank k or, equivalently, if the matrix Df(x)Df(x)” is 
nonsingular. Otherwise, x is a singular point of f. 

The intersection of two surfaces is a space curve. How- 
ever, this representation is not unique; a space curve can be 
represented as the intersection of many pairs of surfaces. For 
example, if Z(f) is the intersection of two cylinders 

f(x) = ( x:+(x3-1)2-4 

x; + (x3 + q2 - 4 ) 

i 

- 3 - 2x3 + xi + XT 
1 

- 3 - 2x3 + xg + xi ) 

and 

9(x) = ( -3 - 2x3 + xi + x3 

423+x; - XT ) = (II y),, 

the second component of g represents a hyperbolic paraboloid, 
and the sets of zeros of f and g are exactly the same: 
Z(f) = Z(g). Fig. 2 shows these two different representations 
of the same space curve. In general, for any nonsingular k x k 

matrix A, the function g = Af has the same zeros as f does: 
Z(Af) = Z(f). If g = Af for certain nonsingular k x k 

matrix A, we say that f and g are two representations of the 
same set Z(f). Particularly, for k = 1, the planar curve or 
surface Z(f) is identical to Z(XS) for every nonzero X. 

Unions of implicit surfaces are implicit surfaces. For exam- 
ple, the union of the two cylinders of the previous example 

{x : xf + (x3 - q2 - 4 = O} u {x : x; + (x3 + 1)s - 4 = 0) 

is the surface defined by the set of zeros of the product 

{x : (xf + (x3 - 1)s - 4)(x; + (23 + 1)s - 4) = 01. 

Hence, a single fourth-degree polynomial can represent a pair 
of cylinders, and this is true for arbitrary cylinders, e.g., a 
pair that do not intersect. Note that although the two cylinders 
are regular surfaces, the points that belong to the intersection 
curve become singular points of the union, the normal vector 
to the surface is not uniquely defined on the curve. In general, 

if Z(fl), . . . , Z(fk) are surfaces, their union is the set of zeros 
of the product of the functions 

Z(fl) u . . . u Z(h) = Z(.fl . . . fk) 

with the points that belong to the intersection curve 

u Z(fi) r-l -KfJ 
i#j 

being singular points of the union. The same results hold for 
planar curves. The case of space curves is more complicated, 
but, for example, the union of two implicit space curves 
Z(f) U Z(g) is included in the space curve 

{x : fl(X)$Jl(X) = 0, f2(5)g2(2) = 0). 

III. OBJECT REPRESENTATION, 

SEGMENTATION AND RECOGNITION 

The boundaries of most manufactured objects can be repre- 
sented exactly as piecewise smooth surfaces, which in turn can 
be defined by implicit equations, usually algebraic surfaces. 

Given a parameterized family of implicit surfaces, image 

segmentation is the problem of finding a partition of a data 
set into homogeneous regions, where each of them are well 
approximated by a member of the family under certain ap- 
proximation criteria. 

An object 0 is a collection of surface patches 

o= (JQ, 
i=l 

where each surface patch is a regular subset of an implicit 
surface 

0, G Z(fi) = {x : fi(X) = 0) i= l,...,q. 

A subcollection of patches, or even the whole object, can be 
represented as a subset of a single implicit surface 

0 c Z(fl . . f,) = ij Z(fi). 
i=l 

The boundaries of many more objects can be approximated 

with piecewise algebraic surfaces. An object c3 is represented 
approximately as a subset of a single implicit surface Z(f) 
under certain approximation criterion. The 2-D parallel of this 
representation allows us to represent sets of picture edges 
as subsets of a single implicit planar curve, and the set of 
space curves corresponding to surface normal discontinuities, 
or other geometric invariant curves such as the the lines of 
curvature of surfaces [74], [73] can be approximated by a 
subset of a single implicit space curve. This single implicit 
curve or surface will be called a model of 0 in standard 

position. Fig. 3 shows an attempt to recover the boundary 
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Fig. 3. Degree 5 planar curve fit: (a) Generalized eigenvector fit; (b) after 
reweight procedure. 

of an object with some of the methods to be introduced 
in subsequent sections. The set of zeros of a single fifth- 
degree polynomial is fitted to the data using the generalized 
eigenvector fit algorithm of Section VII, and then the fit is 
improved with the reweight procedure of Section X. Although 
the curve does not fit the data well because the degree is 
not high enough, we can appreciate how the fit is refined by 
the iterative reweight procedure. Since from a practical point 
of view, it is not convenient to work with very-high-degree 
polynomials, we see this unified representation as a way to 
represent small groups of smooth patches. Based on this idea, 
in Section XIII, we introduce the concept of interest region, 

and we sketch a tentative approach to object recognition in a 
cluttered environment. For example, in Fig. 4, we show how 
the tip of the pliers shown in Fig. 3 can be well approximated 
by a fourth-degree algebraic curve, and in Fig. 5, we show 
the result of fitting a single third-degree algebraic surface to 
two visible surface patches of a pencil sharpener, a planar end, 
and a patch of cylindrical side. 

If the data set is an observation of a part of a single and 
known object 0 in an unknown position and Z(f) is a model 
of 0 in standard position, then position estimation becomes 
the problem of best fitting the data set with a member of the 
family of implicit curves or surfaces defined as compositions 
of f with elements of the admissible family of transformations 
G because if T E G is a nonsingular transformation, then 

T-l[WI = G’%) : f(y) = 01 
= {z : f(T(z)) = 0) = Z(f o T) 

that is, the implicit curve or surface Z(f) transformed by 
T-l is a new implicit curve or surface, where the curve or 
surface is defined as the set of zeros of f composed with the 
transformation T. 

Typical examples of families of transformations are rigid 
body, similarity, affine, and projective transformations. A 
detailed formulation is given in Section XI. If the object is 
unknown but it is known that it is one of a finite number of 
known objects modeled in standard position by the curves or 
surfaces Z(fi), . . . , Z(f4), then object recognition is equiva- 
lent to estimating the position of each object, assuming that 
the data corresponds to that object and then associating the 
data to the object that minimizes the fitting criterion. 

Fig. 4. Regions well approximated by fourth-degree algebraic curves. Only 
the data inside the gray areas have been used in the computations; therefore, 
the approximation is good only there. 

DATA SET FllTlNG DEGREE = 3 

Fig. 5. Original range data and a single third-degree polynomial fit to the 
planar cap and patch of cylindrical side of a pencil sharpener. 

If the data set is a view of several objects, object recognition 
is equivalent to segmentation with curve or surface primitives 
belonging to the family of compositions of models of known 
objects in standard position with admissible transformations. 

Two different approximation criteria will be considered in 
different parts of this paper. They are based on the 2-norm 

i $ dist(p;, Z.0’ 
O-l 

and the cc-norm 

SUP dist(pi, z(f)) 
l<i& 

where27 = {pr,...,pq} is a finite data set, and dist (p;, Z( f )) 
is the distance from the point pi to the curve or surface Z(f). 

We are primarily interested in fitting curves and surfaces 
to data under the cc-norm, but fitting under the 2-norm is 
computationally less expensive. In Section XIV, we describe 
an algorithm that follows the classical hypothesize and test 

approach, a curve or surface is hypothesized by minimizing 
an approximation to the 2-norm, and then it is tested with the 
cc-norm. 

IV. APPROXIMATE DISTANCE 

Since a general formulation lets us study the three cases 
of interest at once, we will continue our analysis in this 
way, showing at the same time that it applies to an arbitrary 
dimension. 

In general, the distance from a regular point z E R” of a 
smooth map f : R” -+ R” to the set of zeros Z(f) cannot 



be computed by direct methods. The case of a linear map is 
an exception, in which case the Jacobian matrix D = Of(x) 
is constant, and we have the identity 

f(y) = f(x) + D(Y - x). 

Without loss of generality, we will assume that the rank of D 
is Lz. The unique point jj that minimizes the distance ]]y - z]] 
to Z, constrained by f(y) = 0, is given by 

jj = x - D+f(x) 

where D+ is the pseudoinverse (see section 9.2 of [29] and 
chapter 6 of [42]) of D. In our case, D+ = Dt(DDt)-‘, with 
the square of the distance from z to Z(f) being 

dist(z, Zf)2 = [lb - ~11’ = f(s)“(DDt)-‘f(x). 

In the nonlinear case, we approximate the distance from 2 
to Z(f) with the distance from x to the set of zeros of a linear 

model of f at x, which is a linear map f : EL” --) lRk such that 

f(Y) - J(Y) = O(llv - 412). 

Such a map is uniquely defined when x is a regular point of f, 
and it is given by the truncated Taylor series expansion of f 

f(Y) = f(x) + Df(X)(Y - x), 

Clearly f(x) = f(x), Of(x) = Df (z), and we have 

dist(x,Zf)2 M f(x)t(Df(x)Df(x)“)-‘f(x). (1) 

This normalization generalizes two previous results. For k = 
1, which is the case of planar curves and surfaces, the Jacobian 
has only one row Llf (x) = Of (x)t, and the right-hand side 
member of (1) reduces to f (x)2/]]Vf (z)]12, where the value of 
the function is scaled down by the rate of growth at the point. 
Turner [72] and Sampson [64] have independently proposed it 
for particular cases of curve fitting. For Ic = n, the Jacobian 
matrix is square and nonsingular, and therefore, the right-hand 
side member of (1) reduces to IlDf (x)-‘f(x)\12, which is 
the length of the update of the Newton-Raphson root finding 
algorithm (see chapter 5 of (27)] 

5’ = 2 - of(x)-‘f(x). 

Our contribution is the extension to space curves and, in 
general, to curves and surfaces of any dimension. 

Since the right-hand side member of (1) is a nonnegative 
number, from now on, we will call 

Jf (x)“(Df (x)Df(xWlf (x) 

the approximate distance from x to Z( f ). Fig. 6 shows several 
contours of constant distance, constant function value, and 
constant approximate distance for the simplest case of a planar 
curve with a singular point: the pair of intersecting lines 

lx : x1x2 = 0). Fig. 7 shows the same contours for the 
regular curve {z : 8x: + (xz - 4)2 - 32 = 0). The contours 
of constant function value tend to be farther from the singular 

Fig. 6. Contours of constant distance, constant function value, and constant 
approximate distance to the curve {z : .q z2 = 0) near a singular point. 

Fig. 7. Contours of constant distance, constant function value, and constant 
approximate distance to the cmve{z : 82: + (zz - 4)2 - 32 = 0) near 
a regular curve. 

points and closer to the regular points than the real distance. 
The approximate distance solves these problems. 

The approximate distance has several interesting geometric 
properties. It is independent of the representation of Z(f). If 
A is a nonsingular lc x lc matrix and g(z) = Af (x), then 

!w (Wa?9W) -?I(4 

= f(x)tAt(ADf[x)Df(x)tAt)-lAf(x) 

= f(x)“(Df(x)Df(x)“)-‘fk). (2) 

It is also invariant to rigid body transformations of the space 
variables; if T(z) = Ux + b is a rigid body transformation, 
then D (f (Ux + b)) = Df(Ux + b)U, and therefore 

D(f(ux + b))D(f (Ux + b))t 

= Df (Us + b)UUtDf(Ux + b)t 

= Df(Ux+ b)Df(Ux+ b)t. 

A similar derivation shows that a scale transformation of the 
space variables produces the corresponding scaling of the 
approximate distance. 

Since we are interested in fitting curves and surfaces to data 
in a finite number of steps, we will restrict ourselves to families 
of maps described by a finite number of parameters. Let us fix a 
smooth function r$ : IRT+n --) R” defined almost everywhere. 
From now on, we will only consider maps f : R” --t R”, 

which can be written as 

f(x) = $(Q, x) 

for certain o = (or,. . . , CX,)~, in which case, we will also 
write f = &. We will refer to cul , . . . , cy, as the parameters 

and to xr,...,z, as the variables. The family of all such 
maps will be denoted 

3 = {f : 3af = &}. 

We will say that C#I is the parameterization of the family F, and 
we will write 3$ when having to differentiate among different 
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parameterizations. The approximate distance from z to Z( &) 
will be denoted 

or s+(a, x) when it is necessary. 
We will give special attention to the linearparameterization, 

where $(a, z) is a linear function of a, and therefore, F is 
a finite dimensional vector space of smooth maps ll?,” + 
lR”. We will refer to this case as the linear case. In the 
linear case, a map f belongs to F if and only if for every 
nonsingular Ic x lc matrix A, Af also belongs to F. Vector 
spaces of polynomials of degree 5 d are typical examples 
of linearly parameterized families. In Section XI, we show 
several nonlinear parameterizations of families of curves and 
surfaces with applications in computer vision. 

V. APPROXIMATE MEAN SQUARE DISTANCE 

LetD= {PI,... , pq} be a set of n-dimensional data points, 
and let Z(f) be the set of zeros of f = & : lR” --$ lR”. 
If we assume that a is known and ~(cY,P)~)~, . . . , S(~r,p,)~ 
are independent and uniformly distributed as the square of a 
normal random variable of mean zero and variance cr2, the sum 

5 @ 6Ca,Pi12 

a=1 

has a x2 distribution with q degrees of freedom. 
If the true (Y is unknown, it can be estimated minimizing 

(3). Curve or surface fitting corresponds to the minimization 
of (3) with respect to the unknown parameters of ~1, . . . , o+. 

Assuming that the variance c2 is known, the problem 
is equivalent to minimizing the approximate mean square 

distance from the data set D to the set of zeros of f = 4a 

A&(a) = i $ S(a,pi)‘. (4) 
Z-l 

Depending on the particular parameterization 4, the r pa- 
rameters LYE, . . . , (Ye might not be independent. For example, 
by (2) the sum does not change if we replace Af for f, 
where A is a nonsingular k x Ic matrix, and if f minimizes the 
approximate mean square distance (4), so does Af^. In other 
words, the parameters might not be identifiable. This lack of 
identifiability is not a problem, though, because we are not 
interested in the function f^ but in its set of zeros Z(f). For 
example, in the linear case, the symmetric matrix constraint 

' 2 Df(pi)Df(pi)t = Ik 

' i=l 

(5) 

which is equivalent to k(lc + 1)/2 scalar constraints on the 
parameters, can be imposed on f without affecting the set 
of zeros of a minimizer of (4). The reason is that A%(a) is 
defined only if the symmetric matrices 

are nonsingular, and since all of these matrices are also 
nonnegative definite, they are positive definite, and their mean 

f $ Df(Pi)Df(Pilt (6) 
2-l 

is positive definite as well, in which case there exists a 
nonsingular k x li matrix A such that 

and Af satisfies the constraint (5). We can take A to be the 
inverse of the Cholesky decomposition of (6). Since f belongs 
to 7 if and only if Af does, the constraint (5) does not impose 
any restriction on the set of admissible curves or surfaces 

{Z(f) : f E Q. 
The problem of computing a local minimum of an expression 

like (4) is known as the nonlinear least squares problem, 
and it can be solved using several iterative methods (see 
chapter 10 of [27]). Among them, the Levenberg-Marquardt 
algorithm [49], [52] is probably the best known, and excellent 
implementations of it are available in subroutine packages such 
as MINPACK [53]. A short description of the Levenberg- 
Marquardt algorithm in the context of our problem is given 
in Appendix A. 

Every local minimization algorithm requires a good starting 
point. Since we are interested in the global minimization of 
(4), even using the Levenberg-Marquardt algorithm, we need 
a method to chose a good initial estimate. 

VI. MEAN SQUARE ERROR 

The study of A;(a) in a particular case will provide us 
with a good strategy to choose an initial estimate in certain 
cases, such as, for example, in the linear case. Let us assume 
that the matrix function Df(x)Df(x)” is cunstant on the 
set Z(f); in particular, Z(f) does not have singular points. 
For Ic = 1, this means that the length of the gradient of the 
unique component fi of f is constant on Z(f), but nothing 
is said about its orientation. Linear functions obviously have 
this property because in this case, of(x) is already constant, 
but circles, spheres, and cylinders, among other families of 
functions, have the same property. If f also satisfies the 
constraint (5) and the data points are close to the set of zeros 
of f, by continuity of Df, we have 

Ik = i $ Df(pi)Df(Pi)t W Df(~j)Df(~j)~ 
2-l 

for j = l,...,q, and the approximate mean square distance 
A&(a) is approximated by the mean square error 

E?7Ca) = i c Ilf(Pi)l12. 
2-l 

(7) 

In this particular case, when DfDf” is constant on Z(f), the 
minimizers of (7) and (4), both constrained by (5), are almost 
the same, and we will see in the following section that in the 
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linear case, the global minimizer of (5)-(7) can be computed 
at a much lower cost than a local minimizer of (4)-(5). 

Furthermore, we have observed that if f is the global 
minimizer of A&(o) and the matrix DfDfi is not close to a 
singular matrix on D, the minimizer of:&(o) constrained by 
(5) is a very good approximation of f, and the Ievenberg- 
Marquardt algorithm started from this estimate converges 
quickly after a few iterations. Geometrically, DfDf^t not close 
to a singular matrix means that no point of D is close to 
a singular point of f^. Since j is unknown, we cannot test 
beforehand whether DfDf^” is close to a singular matrix or 
not. In order to speed up the convergence of the Levenberg- 
Marquardt algorithm, after computing the minimizer of the 
mean square error, and before the iterative minimization, we 
apply the reweight procedure, which is described after the 
analysis of the linear case in Section X. 

Most of the previous work on fitting implicit curves and 
surfaces to data has been based on minimizing the mean square 
error but with different constraints. In Section XII, we give a 
detailed description of these earlier methods. 

VII. GENERALIZED EIGENVECTOR FIT 

In this section, we show that in the linear model, the 
minimization of the mean square error (7) constrained by (5) 
reduces to a generalized eigenvector problem. In Section XII, 
we show that this method, introduced by the author [70], [71], 
generalizes several earlier eigenvector fit methods. 

L&X1(2),... , Xh(z) be linearly independent smooth func- 
tions, e.g., polynomials, and let us denote . *I i 

x = (Xl,. . . ,X/J : IR” + EP. 

In this section, all the maps can be written as linear combina- 
tions of the components of X 

f =FX:lR”--+lR” 

for a k x h matrix F of real numbers. The parameter vector 
(Y has T = hk elements, and it is equal to the concatenation 
of the rows of F 

Fij = a(i-l)h+j i= l,... ,k j=l,..., h. 

Since differentiation is a linear operation, we have 

Df = D[FX] = F[DX] 

where DX is the Jacobian of X. The constraint (5) become a 
quadratic constraint on the elements of F 

Ik = i $ F[DX(pi)][DX(pijt]Ft = FNDF~ @I 
Z-l 

where 

ND = 5 $[DX(Pi)DX(pi)t] 2-I 
is symmetric nonnegative definite. The approximate mean 
square distance A&(Q) does not have any special form, but 

the mean square error (7) becomes 

<;(a> = 5 2 IIFXb)l12 
Z-l 

= 5 $ tra~e(F[X(p;)X(p~)~]F~) 

Z-l 

= 5 trace(F&Ft) (9) 

where 

Ml9 = i cLx@i)x@i)t] 
Z-1 

which is the covariance matrix of X over the data set D. 
This matrix is classically associated with the normal equations 
of the least square method (see chapter 6 of [42]). In addi- 
tion, several researchers have introduced linear or quadratic 
constraints on F to fit implicit curves or surfaces k = 1 

to data [l], [8], 1141, [20], [221, [23], [401, [551, [541, [601, 
[64] minimizing (9). However, all of these constraints do not 
take into account the data; they are fixed and predetermined 
constraints on the coefficients, and most of them introduce sin- 
gularities in parameter space, i.e., certain parameters are never 

solutions of the corresponding method. A detailed description 
of these methods is given in Section XII. Our contribution 
is the introduction of the quadratic constraint (S), which is 
function of the data, and the handling of space curves within 
the same framework. The generalized eigenvector fit algorithm 
is more robust than most of the previous direct methods, 
except perhaps for Pratt’s simple fit algorithm [60], which is 
explained in Section XII, which seems to be equivalent both 
in computational cost and robustness. We plan to carry out a 
detailed comparison of the generalized eigenvector fit and the 
simple fit algorithms in the near future. 

Note that if MD is singular and a row Fj of the matrix F 

belongs to the null space of MD, then 

0 = F~MDF; = i $ IF’X(pi)12 
2-l 

and the function fj = FjX is identically zero on D, in which 
case, fj interpolates all the data set. If 

1 = J’jNDF’ = k $ llVfj(p~)l12 
Z-l 

as well, then Fj has to be a row of the minimizer matrix 
P of (S)-(9) when such a minimizer exists. In Appendix 
B, we analyze the existence and uniqueness of the solution 
and show that if ND is positive definite and @I;, . . . , Fk are 
the eigenvectors of the symmetric-positive pencil MD - AN, 

corresponding to the least k eigenvalues 0 5 Xr 5 . . . 5 XI, 

.P!MD = XiPiND i= l,...,k 

j?iND~j = ,& = ’ if i = j 
0 ififj 

i,j=l k , . ? . 
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Fig. 8. Generalized eigenvector space curve fit. The solution is the intersection 
of two unconstrained quadrics. Discontinuities in the curves are errors of the 
plotting routine. 

Fig. 9. Fourth-degree algebraic surface fit 

then p (the matrix with rows pr) . . . , pk) is a minimizer of 

W(9). 
In general, the matrix ND is rank deficient, but the problem 

can be reduced to an equivalent positive-definite one of size 
equal to the rank of ND. A minimizer exists if and only if 
the rank of ND is at least k, and the solution is unique if 
k = rank(ND), or if k < rank(ND) and )rk < &+I. The 
robustness, or stability, of the solution is also related to how 
& is separated from Xk+r. 

We have already shown examples of generalized eigenvector 
planar curve fit in Figs. 3 and 4. Fig. 8 shows an example 
of generalized eigenvector nonplanar space curve fit: the 
intersection of two cylinders. Fig. 9 shows an example of 
algebraic fourth-degree surface fit. The original surface is 
the surface of revolution generated by the curve of Fig. 7, 
and the solution is the set of zeros of a general fourth- 
degree polynomial with 35 coefficients. Fig. 10 shows another 
example of generalized eigenvector space curve fit, which 
again is the intersection of two surfaces, where the solution 
fits the data very well, but it is very different from the original 
curve elsewhere. In general, even if the solution fits the data 
well, we cannot expect to reconstruct the same original curve 
or surface, which is the curve or surface of which the data is a 
sample. Depending on the amount of noise and the extent 
of the original curve or surface sampled by the data, the 
generalized eigenvector fit may or may not produce this kind 
of solution. It is less likely to occur if the reweight procedure 
and the Levenberg-Marquardt algorithms are used, and the 
solution is tested after each of the three steps. 

OR!Q#N. CURVE DATA POYTS 
,,,r”....“‘...““....~, 

S”PERlMPOSED 
,,: . . . . . . . . . . . . . . . . . . . . . . . 

,:’ ., 
,:’ : 

.:’ ‘.,~ 
,.,’ ., 

,;’ ., ,;’ : 

Fig. 10. Generalized eigenvector space curve fit. The solution is the intersec- 
tion of two unconstrained quadrics. Discontinuities in the curves are errors 
of the plotting routine. 

VIII. COMPUTATIONAL COST 

The complexity of evaluating the matrices MD and Nn 
depends on the functions that constitute the vector X. In the 
case of polynomials when X is the vector of monomials of 
degree _< d, the elements of MD are moments of degree < 2d, 

and the elements of ND are integral combinations of at most R. 
moments of degree 5 2(d - 1). For example, for polynomials 
of degree two in three variables, we have 

Other basis vectors, such as the Bernstein basis, are more 
expensive to evaluate but are potentially more stable [32], 
[31]. The solution is independent of the basis, however, as we 
explain in Section IX. We circumvent the stability problem by 
using centered and scaled monomials, which is also explained 
in Section IX. The center of the data set is its mean value, and 
the scale is the square root of the mean square distance to the 
center. The computation of the center and scale only requires 
the moments of degree 5 2, which are exactly those moments 
used for the eigenvector line or planar fit. 

Computing the matrices from their definitions requires more 
operations than computing the vector of moments of degree 
5 2d and then filling the matrices by table lookup. The tables 
are computed off line. The vector of monomials of degree 5 2d 

has s = ( 2dJ”) = O(h) corn p onents and can be evaluated by 

exactly s - n - 1 multiplications, where h = (di”) = O(dn) 

is the number of components of X, which is the size of the 
matrices. It follows that q(s - n - 1) multiplications and 
(q - l)(s - n - 1) a i ions are required to evaluate the dd t 
moments and then h(h + 1)/2 operations to fill MD and at 
most nh(h + 1) operations to fill ND. The total number of 
operations required to build the matrices is O(qh + nh2). 

An algorithm that computes all the eigenvalues and eigen- 
vectors is given by Golub and Van Loan [42], requiring 
about 7h3 flops, where h is the order of the matrices, and 
a flop roughly constitutes the effort of doing a floating point 
add, a floating point multiply, and a little subscripting. That 
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algorithm uses the symmetric QR algorithm to compute all 
the eigenvalues and corresponding eigenvectors. When all 
the eigenvectors are computed, the symmetric QR algorithm 
requires about 5h3 flops. 

Since we only need to compute a few eigenvalues and 
eigenvectors, we use the alternative methods implemented 
in EISPACK [68], [36], that is, tridiagonalization, the QR 
algorithm, and inverse iteration. Tridiagonalization of a sym- 
metric matrix requires about 2/3h3 flops. The computation of 
each eigenvalue using the QR algorithm without computing 
eigenvectors requires about 5h flops per eigenvalue. When the 
eigenvalues are well separated from each other, as is generally 
the case in our matrices due to measurement errors and noise, 
only one inverse iteration is required to compute an eigenvec- 
tor. Each inverse iteration requires about 4h flops. From all 
this analysis, we conclude that the proposed algorithm requires 
about 3h3 flops. The alternative implicit curve and surface- 
fitting algorithms all have the same order of complexity [20], 

1601. 

IX. INDEPENDENCE AND INVARIANCE 

The solution produced by the generalized eigenvector fit 
method is independent of the basis. In particular, it is inde- 
pendent of the order of the elements of a particular basis. 
If Yr. . . Yh is another basis of the vector space spanned 
by X1.. . :Xh and we denote Y = (Yr,. . . ,Yh)t, then there 
exists a nonsingular h x h matrix A such that X = AY. Every 
admissible function can be written as f(x) = FX = (FA)Y, 

and 

transformation and f(x) is a polynomial, the composition 
f(T(s)) is a polynomial of the same degree whose coefficients 
are polynomials in A, b, and the coefficients of f(x). If 
the components of X form a basis of the vector space of 
polynomials of degree < d, then so do the components of 
Y(x) = X(T(x)) b ecause the transformation T is nonsingu- 
lar. It follows that there exists an h x h nonsingular matrix 
T” whose coefficients are polynomials of degree 5 d in A 

and b such that X(T(z)) = T*X(x) is a polynomial identity 
(see chapter III, section 4 of [75]). Furthermore, the map 
T I+ T* defines a linear representation of the n-dimensional 
affine group in the h-dimensional general linear group, which 
is a 1 - 1 homomorphism of groups [70] that, in particular, 
satisfies (T-l)* = (T*)-l. For example, if T is a translation 
in the plane 

T(x) = 

and X is the vector of monomials of degree 5 2 in two 
variables 

x = (1,51r52,x~,2122,x~)t 

then 

1 

XI + bl 

X(T(x)) = 
x2 + 62 

(XI + bd2 

(51 + h)(x2 + b2) 

(~2 + W2 

with the corresponding identity for ND because, by linearity 
of differentiation 

D(FX) = FD(AY) = (FA)DY. 

It follows that F solves the generalized eigenvector fit problem 
with respect to the basis X if and only if [FA] solves the same 
problem but with respect to the basis Y. Since the approximate 
distance and afortiori the approximate mean square distance 
are clearly independent of the basis, the minimizer of the 
approximate mean square distance is independent of the basis 
as well. 

If f is a solution of the generalized eigenvector fit or a 
minimizer of the approximate mean square distance to the 
data set D = {PI,... ,P4}, i.e., the curve or surface Z(f) 
best fits the data set D, we want to know for which families 
of nonsingular transformations T the transformed curve or 
surface T-l [Zf] = Z(f o T) best fits the transformed data 
set T-l[2)] = {Tpl(pl), . . . ,T-‘(p,)}. 

If the vector space spanned by X is the space of polynomials 
of maximum degree d, then the solution of the generalized 
eigenvector fit is invariant with respect to similarity trans- 
formations. If T(x) = Ax + b is an nonsingular affine 

1 0 0 000 
h 1 0 000 

i; 21, 

1 0 0 0 
= 0 1 0 0 

hbz b2 h 0 1 0 
G 0 2b2 0 0 1 

= T*X(x). 

f 1 

Xl 

x2 

XI 

51x2 

, x2” 

If f = FX is a solution of the generalized eigenvector fit for 
the data set ‘D and T is a similarity transformation, that is, 
A = XU, with U orthogonal and X a nonzero constant, then 
g = foT = (FT*)X is the solution of the same problem for 
the data set T-‘[Z7] because 

= $ ~((T-‘)*X(pi))((T-‘)*x(pi))t) 
y i=l 

= (T*)-%ID(T*)-~ 

which implies that 

(FT*)MT-~I~Dl(FT*)t = Fi’%Ft 

and with respect to the matrix ND, by the chain rule 

DY = D(X(T(x)) = (DX)(T(x)) * D(T(z)) 

=T”DXA=XT*DXU 

which, since U is orthogonal, implies that 
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4 
(a) @) 

(4 
Fig. 11. Invariance to translation and rotation: (a) Data set A; (b) data set 8; 
(c) degree 6 generalized eigenvector fit to data set A, (d) degree 6 generalized 
eigenvector fit to data set B. 

and so 

mean value 

and its scale is the square root of the mean square distance 
to the center 

If T is the similarity transformation T(x) = (T . x + p, 

then solving the generalized eigenvector fit or minimizing the 
approximate mean square distance with respect to the original 
data set D is equivalent to solving the corresponding problem 
using the power basis with respect to the transformed set 
T-l[‘D]; this is the proper way to implement this algorithm. 
First, the center and scale are computed, and then, the data 
set is transformed and the corresponding fitting problem is 
solved using the power basis; finally, the coefficients are back- 
transformed using T*. It is even better not to backtransform 
the polynomial g, which is the solution of the transformed 
problem, and evaluate the solution of the original problem f 
in two steps 

1 5’ f( ) 
X 

=$-“’ 
X 

when such an evaluation becomes necessary. 

NT-qvl = X2(T*)-‘ND(T*)-” 

(FT*)N,-I[~,(FT*)~ = A2 FN=Ft. 

The factor X2 in the constraint equation does not change the 
solution of the problem. 

A similar result holds for the minimizer of the approximate 
mean square distance (7), but we omit the proof, which can 
easily be reproduced from the previous derivation. 

Fig. 11 shows an example of generalized eigenvector fit of 
sixth-degree algebraic curves to two observations of the same 
object in different positions. The curves are slightly different 
because the data sets are as well. 

The matrix MD could be very badly conditioned when X 
is the vector of monomials of degree 5 d. The matrix ND 
is generally better conditioned than MD but not too much. 
When the matrices are poorly conditioned, the results are not 
accurate or even totally wrong. Even worse, the eigenvalue 
computation can diverge. Based on the results of the current 
section, we would like to find a new basis Y = AX for the 
polynomials of degree 5 d such that the matrices computed 
with respect to this new basis are well conditioned. Such a 
basis has to be a function of the data set. One of such basis 
is the Bernstein basis [32], [31]. Since the evaluation of the 
Bernstein basis has a higher complexity than the power basis, 
we follow an alternative approach that is usually found in the 
statistical literature [24], [17]. The center of the data set is its 

X. THE REWEIGHT PROCEDURE 

Let f = & and WI,. . , wq be positive numbers. Let us call 

(10) 

the weighted mean square error. For planar curves and surfaces 
k = 1 and wi = l/~~O$(p~)~~2, the weighted mean square 
error reduces to the approximate mean square distance. The 
point pi is given a heavy weight only if it is close to a 
singular point of Z(f). Note that if f^ is a minimizer of the 
approximate mean square distance6 constrained by, (5) and pi 
is close to a singular point of Z(f), then both llf(pi)j12 z 0 

and IlV.f(~i)ll~ = 0 and the contributions of pi to both the 
mean square error (7) and the constraint (5) are negligible. 
Minimizing the mean square error instead of the approximate 
mean square distance is like fitting a curve or surface to the 
data set but without considering the points close to singularities 
of Z(f). If the minimizer of the approximate mean square 
distance has singular points, we cannot expect them to be 
well approximated by the set of zeros of the curve or surface 
solution of the generalized eigenvector fit problem. 

In general, we take 

w(a) = trace([Df(pi)Df(pi)t]-l) 

and based on the same arguments used in Section V, we 
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procedure FLeweight (F,D) 

F’ := F 

do 
F := F’ 

w := w(F) 

F’ := minimizer of traee(F’hfo,,F) 

constmined by F’No,.F = Ir 
while A&(P) < (1 - f)A$(F) 

if A$,(F’) < A&(F) then 
return 

else 
return(F) 

Fig. 12. Reweight procedure for the generalized eigenvector fit. 

impose the constraint 

f 8 wi[Df(pi)~f(pi)t] = Ik 

2-l 
(11) 

without modifying the set of zeros of the minimizer of the 
approximate mean square distance. 

Now, if we keep w = (WI,. . . , w~)~ fixed and we stay 
within the linear model f(z) = FX(z), the minimiza- 
tion of (10) constrained by (11) is a generalized eigenprob- 
lem, as in the previous section. In this case, we minimize 
trace(FMD,,Ft) constrained by FND,,F~ = 1, where 

MV ,W = i 2 Wi [X(Pi)X(pi)“] 

If f^ is a minimizer of the approximate mean square distance 
and the weighs 201, . . . , wq are close to 201 (f), . . . , w,(f), by 
continuity, the minimizer of the weighted linear problem is 
close to f^. This property suggests the reweight procedure, 
which is described in Fig. 12, where E is a small positive 
constant that controls the stopping of the loop. 

In the linear model, the initial value of F will be the 
solution produced by the generalized eigenvector fit with 
uniform weights, as is the case of the previous section. In 
a practical implementation, and in order to save time, the 
reweight procedure would be called only if this initial value 
of F does not pass a goodness of fit test. At each iteration, 
we solve a generalized eigenproblem and then recompute the 
weights. We continue doing this while the approximate mean 
square distance decreases. Then, if the value of F returned by 
the reweight procedure does not pass the same goodness of fit 
test, we call the Levenberg-Marquardt algorithm. 

The reweight procedure is similar in spirit to Sampson’s 
algorithm [64] and those iterative weighted least squares 
algorithms that appear in the regression literature [61]. There 
is no certainty of convergence, however, and according to 
Sampson, the system of equations is so complex that it would 
be extremely difficult to determine the conditions under which 
such a scheme converges [47]. This statement agrees with what 
we have observed during the course of this study. 

We have already shown in Fig. 3 how the reweight pro- 
cedure improves the result of the generalized eigenvector fit, 
even though the final result would not be accepted by the 
goodness of fit test. In Fig. 13, we show how the reweight 

(a) 04 

Fig. 13. Reweight procedure improving generalized eigenvector fit: (a) Gen- 
eralized eigenvector fit; (b) after reweight procedure. 

procedure improves the fitting curve in a case where the result 
provides an acceptable approximation of the data. 

XI. OTHER FAMILIES OF CURVES AND SURFACES 

In this section, we consider several potential applications of 
the methods introduced in this paper. 

In certain cases, such as in the family of cylinders or 
superquadrics, the parameters can be divided in two groups: 
shape and positional parameters. The radius of a cylinder is a 
shape parameter, and all the other parameters, which describe 
its axis, are positional parameters. In the family of polynomials 
of a given maximum degree, all the parameters are shape 
parameters because the composition of a polynomial with a 
nonsingular affine transformation is a polynomial of the same 
degree. 

It is particularly important to consider the case in which all 
the parameters are positional parameters: the case of a family 
of compositions of a fixed map g with a parameterized family 
of transformations 6 

7 = {f : 3 T E Bf(z) = g(T(z))} 

for its applications to object recognition and position estima- 
tion. 

A. Transformations of a Curve or Surface 

A family of transformations, e.g., rigid body, affine, or 
projective transformations, can be given in parametric form 

6 = (T, : CY E IR’} 

in which case the parameterization of the admissible functions 
is 

where g(z) is a fixed map whose set of zeros we will call 
the model in standard position. Explicit parameterizations of 
some of these families are discussed below in this section. The 
problem of fitting a member of the family F = {f : 3a f (x) E 
g(T,(z))} to a set of data points 2) = {PI, . . . ,p4} is position 
estimation or generalized template matching; we assume that 
the data belong to a single object and that this object is 
an observation of the model not necessarily in the standard 
position and possibly partially occluded. We minimize A&(a), 
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c 

Fig. 14. Simple position estimation. 

which is the approximate mean square distance from the data 
points to the model Z(g) transformed to the position and 
orientation defined by the transformation T, 

Z(g 0 To) = {x : #a(x)) = 0) 

= {TL1(~) : s(y) = O> 

= T,-l[%dl. 

This method was used by Cooper et al. [21] to locate surface 
matching curves in the context of the stereo problem. Fig. 14 
shows a simple example of planar curve position estimation 
within this framework. How to choose initial estimates for the 
minimization of the approximate mean square distance is the 
remaining problem of this formulation, particularly when we 
have to deal with very complex objects or occlusions, and 
it is the subject of our current research. In Section XIII, we 
describe how we intend to attack this problem through the 
concept of interest regions. 

B. Projection of Space Curves Onto the Plane 

The methods for the minimization of the approximate mean 
square distance introduced in this paper can be used to improve 
Ponce and Kriegman’s algorithm [59] for object recognition 
and positioning of 3-D objects from image contours. 

In their formulation, object models consist of collections 
of parametric surface patches and their intersection curves. 
The image contours considered are the projections of surface 
discontinuities and occluding contours. They use elimination 
theory [28], [41], [51], [63], [66], [18] for constructing the 
implicit equation of the image contours of an object ob- 
served under orthographic, weak perspective, or perspective 
projection. The equation is parameterized by the position and 
orientation of the object with respect to the observer. 

Note that object models defined by implicit curves and 
surfaces can be handled using the same techniques. For 
example, under orthographic projection, the implicit equation 
of the projection of an algebraic curve Z(f) onto the plane 
can be computed, eliminating the variable x3 from the pair 

(fl(x)> fdx)), d an since the occluding contour of a surface 
Z(f) is the curve defined as the intersection of Z(f) with 
Z(af/azs), the projection of the occluding contour is in this 
case the discriminant of f with respect to zs (see chapter I, 
section 9 of [75]). 

They use more complex iterative methods to compute 
the distance from a point to the hypothesized curve than 
the approximate distance, and so, it becomes much more 
expensive to minimize their approximation to the mean square 
distance than in our case. 

C. Parameterizations of Some Transformation Groups 

The general rigid body transformation is T(z) = Qx + b, 

where Q is a rotation matrix, which is an orthogonal matrix 
of unitary determinant, and b is an n-dimensional vector. 
The general affine transformation can be written, as usual, as 
T(z) = As + b, where A is a n x n nonsingular matrix, and 
b is an n-dimensional vector. Alternatively, we can write it as 
T(s) = LQx + b, where L is a nonsingular lower triangular 
matrix, and Q is a rotation matrix. 

The usual parameterization of a general rotation matrix is 
trigonometric Q(e), which is the product of the following three 
matrices: 

i 

cos 01 sin& 0 
- sin Hi cose1 0 ) 

0 0 1 1 

( 

cos e2 0 sin& 
0 1 0 

- sin& 0 cose2 1 

, and 

( 

1 0 0 
0 cose3 sin e3 

0 - sine3 c0se3 1 

where 0 = (0i , e2: 0,) are the so called Euler angles. Since we 
have to iterate on the parameters, we propose the alternative 
rational parameterization, originally due to Cayley (see chapter 
II of [76]), which is valid in any dimension. 

A square matrix Q is called exceptional if 

II+&/=0 

and nonexceptional otherwise, where I is the identity matrix, 
that is, a matrix is exceptional if it has -1 as an eigenvalue. 
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If the matrix Q is nonexceptional, let us consider the matrix 

u = (I - Q)(I + Q)-' = (I + &)-‘(I - Q). 

The matrix U so defined is nonexceptional as well because 

II + ul = \(I + Q)-l((I + Q> + (I - &))I 
= 2(I+ &l-l 

and the matrix Q can be recovered from U in the same Way 

because 

I-U = (((I + Q) - (I - Q))U + Q)-'> 
= 2Q(I + Q)-’ 

I+U = (((I + Q) + (I - Q))(I + Q>-'> 
=2I(I + Q)-’ 

(I - u)(I + U)-l= (2Q(I + Q,-‘) (2I(I + Q)-‘)-’ 

=Q. 

Furthermore, another simple algebraic manipulation shows that 
Q is a rotation if and only if U is skew symmetric. 

For n = 2, a skew-symmetric matrix can be written as 

u= -“, ; 
( > 

and no real 2 x 2 skew-symmetric matrix is exceptional because 

)I + UJ = 1+ u2 2 1. 

The rational parameterization of the 2 x 2 nonexceptional 
rotation matrices is defined by the map R2 -+ O(2) given 

by 

The only exceptional 2-D rotation is the matrix 

(-d -4) (12) 

which corresponds to a rotation of x radians. 
For n = 3, we can write the general skew-symmetric matrix 

in the following way: 

uq2 i $) 
because if u = (~1, ua, ~3)~ and v are two 3-D vectors, then 
Uv is equal to the vector product u x v. Again, no skew- 
symmetric 3 x 3 matrix is exceptional because 11 + Uj = 

l+$+u~+u~geql, and the only exceptional rotation matrices 
are those corresponding to rotations of r radians. The rational 
parameterization of the 3 x 3 rotation matrices is defined by 
the map IR3 + O(3) given by 

Note that this function maps a neighborhood of the origin 
u = 0 continuously onto a neighborhood of the identity 
matrix Q(0) = I. Clearly, if Qo is a rotation, then, the 
map u H QeQ(u) maps a neighborhood of the origin onto 
a neighborhood of the matrix Qu, and in this way, we can 
deal with the exceptional orthogonal matrices. Also note that 
the three parameters have explicit geometrical meaning. If 
ua = ua = 0, the matrix Q(u) becomes 

which is a rotation about the x1 axis. Similarly, Q(u) is a 
rotation about the x2 axis if ui = us = 0, and it is a 
rotation about the 2s axis if ul = ua = 0. More generally, 
if w(t) describes the trajectory of a point that rotates with 
constant angular velocity, the motion equations can be written 
as 6 = u x ‘u = Uv, where ti is the time derivative of v(t). In 
the language of Lie groups, the skew-symmetric matrices are 
the infinitesimal generators of the group of rotations. 

D. Cylinders, Algebraic Curves, and Surfaces 

The implicit equations of a straight line can be written as 

Q”lx - a4 = 0 

Q;x = 0 

where Qr , Qa, Q3 are the columns of a general rotation matrix 
Q(Q~,cx~,~x~) parameterized as in (13), with CY~,CX~,(Y~ real 
parameters, in which case the general implicit representation 
of a cylinder is given as the set of zeros of 

(Q;x - a4)’ + (Q;x)” - a; 

= xt(I - Q3Q;)x - 2a4Q;x + a; - a; 04) 

which is the set of points at a distance (og( from the straight 
line. By homogeneity, the set of zeros of (14) does not change 
if we multiply it by the constant K’ = (1 + CK: + ai + r$)” # 0 
so that the cylinder can also be represented as the set of zeros 
of 

f(x) = xt(n21 - q3qi)x - 2a&q;x + K”(& - c&, (15) 

where 

This representation is particularly attractive because the co- 
efficients of f(x) are polynomials in the five unconstrained 
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parameters or, . . . , cy5 and are therefore much less expen- 
sive to evaluate than the trigonometric functions. Explic itly, 
f(x) = F(a) . X(x), where 

F(a) = 

-4cQ(l; CY: + o; + Q~)(Ql(Y2 +‘a31 

-4a4(1+ cry + o; + c#V, - a2) 

(1 + a:: + a; + a$)’ - 4(IrlIy3 -t Q2y 

-8(a1a3 + Q2)(Q2a3 - al) 

-4(cQa3 + az)(l - a:: - a; + ai) 
(1 + ,q + a; + Q;) - 4(a2a3 - al> 

-4(CQCQ - Qq) (1 - CX; - a; + a;) 
4(1+ a: + a$) (1+ a;) - 4 

and 

t 

/ 

The same procedure that we applied above (the multipli- 
cation of the implicit equation of the cylinder by a power of 
K to convert the rational parameterization of the coefficients 
into a polynomial one) can be applied to the composition of a 
fixed polynomial with a rigid body transformation to obtain a 
polynomial parameterization of all the members of the family, 
even if some shape parameters are present, as in the cylinder. 

E. Superquadrics 

According to Solina [69], superquadrics were discovered 
by the Danish designer Hein [37] as an extension of basic 
quadric surfaces and solids. They have been used as primitives 
for shape representation in computer graphics by Barr [4], in 
computer-aided design by Elliot [30], and in computer vision 
by Pentland [58], Bajcsy and Solina [3], Solina [69] and Boult 
and Gross [15], [16], [44]. 

Barr divides the superquadrics into superellipsoids, superhy- 
perboloids, and supertoroids. We will only consider the case of 
superellipsoids here as an example. The usual representation of 
a superellipsoid is the set of zeros of f(x) = g(x) - 1, where 

wt x 

I I 

e1 
-- b3 

a3 

and [UULJ] is a general rotation matrix parameterized by the 
three Euler angles or, 82, @a, and al, a2, as, bl, bar b3, ~1, ~2 are 
unconstrained parameters. Solina [69] proposes an alternative 
parameterization with 

to overcome the bias problem associated with the minimization 
of the mean square error, and Gross and Boult [44] compare 
the performance of these two representations with other two, 
where one of them is proposed by themselves. 

We propose the following parameterization (a generalization 
of the parameterization of cylinders (15)), which simplifies the 

computation of the partial derivatives with respect to a, which 
is required by the Levenson-Marquardt algorithm 

where qr,q2, and q3 are the three columns of the parameterized 
rotation matrix (13) multiplied by IE~. Superhyperboloids and 
supertoroids can be parameterized in a similar way. 

XII. RELATED WORK ON IMPLICIT 

CURVE AND SURFACE FITTING 

According to Duda and Hart [29], the earliest work on 
fitting a line to a set of points was probably motivated by 
the work of the experimental scientist; the easiest way to 
explain a set of observations is to relate the dependent and 
independent variables by means of the equation of a straight 
line. Minimum-squared-error line fitting (see section 9.2.1 of 
[29]) and eigenvector line fitting (see section 9.2.2 of [29]) are 
the two classical solutions to this classical problem. With our 
notation, in both cases, the mean square error (6) is minimized, 
with F = (FI, F2, F3) and X = (1,~1,22)~. In the first case, 
the linear constraint F3 = 1 is imposed, whereas the quadratic 
constraint Fi + Fi = 1 is imposed in the second case. Early 
work on eigenvector line fitting can be traced back to Pearson 
[57] and Hotelling [46] on principal components analysis. 
Chapter 1 of Jollife [48] gives a brief history of principal 
components analysis. 

Pratt [60] affirms that there appears to be relatively little 
written about fitting planar algebraic curves to data [55], 

[541, [W, PI, PI, [221, [23], P41, [4’% [641, PO1 and 
none whatsoever of least-squares fitting of nonplanar algebraic 
surfaces. We can add to this statement that we have been 
unable to locate any previous work on fitting space curves 
defined by implicit functions, except for Ponce and Kriegman 
[59], who fit the projection of a space curve to 2-D data points 
and only a few references on fitting quadric surfaces to data 
[38], [45], [34], [19], [9], [lo]. However, there is an extensive 
literature on fitting parametric curves and surfaces to scattered 
data, for example [26], [35], [39], [50], [56]. 

The first extensions of the line fitting algorithms concen- 
trated on fitting tonics to data minimizing the mean square 
error. Since the implicit equations are homogeneous, a con- 
straint has to be imposed on the coefficients to obtain a 
nontrivial solution, and either linear or quadratic constraints 
were considered. With our notation, a conic is the set of zeros 
of a polynomial f(x) = FX, where F = (Fl, . . . , FG), and 

x = (1,~1,~2,4, 21 x2 2122, zz)“. Biggerstaff [8], Albano [l], 
and Cooper and Yalabik [22], [23] impose the constraint FI = 

1. This constraint has the problem that no conic that passes 
through the origin satisfies it, and therefore, it cannot be a 
solution of the problem. Paton [55], [54] imposes the constraint 
Ff + ’ . . + Fi = 1, and Gnanadesikan [40] uses F; + + . . + 

Fz = 1. These two constraints are not invariant with respect 
to translation and rotation of the data, whereas Bookstein’s 
constraint [14] Fi + F,2/2 f Fi is. However, the previous 
two quadratic constraints allow the solution to have F4 = 

F5 = F6 = 0, which is a straight line, whereas Bookstein 
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does not. Pratt [60] shows that this is a great disadvantage and 
proposes a new quadratic constraint for the case of circles. 
Cernuschi-Frias [19] derives a quadratic constraint that is 
invariant under the action of the Euclidean group for quadric 
surfaces, generalizing Bookstein’s constraint. 

In general, linear constraints turn the minimization of the 
mean square error into a linear regression problem, whereas 
quadratic constraints convert it into an eigenvalue problem. 
It is important to note that in all the previous cases, the 
constraints are independent of the data. They have been chosen 
beforehand. In our generalized eigenvector fit, the quadratic 
constraint is a function of the data. 

More recently, Chen [20] fitted general linearly parameter- 
ized planar curves to data. With our notation, an admissible 
function is f(x) = FX = FIXI + . .. FhXh. He imposes 
the constraint Fh = 1, turning the minimization into a linear 
regression problem, and he solves the normal equations with 
the QR algorithm (see chapter 6 of [42]). This constraint looks 
arbitrary because it rules out all the curves with Fh = 0 

or close to zero. A different ordering of the basis vector 
would produce a different solution. In the case of fitting 
circles to data shown as an application in Chen’s paper, where 
X = (1, zl, 22, $ + xi)“, a straight line cannot be a valid 
solution as in Bookstein’s algorithm, and the same kind of 
behavior has to be expected. 

Chen apparently developed his algorithm independently of 
the earlier work of Pratt [60], whose simplefit algorithm is very 
close to Chen’s, except that he solves the ordering problem in 
a clever way. Pratt presents his algorithm for algebraic curves 
and surfaces, but it can be formulated for the general linear 
case with the same effort. Let D = (~1, . . . , pq} be the set of 
data points. Let us first assume that q = h - 1, where h is the 
number of elements of X, and the h x q design matrix 

xv = Kwl)-~x(P,)l 

has maximal rank h - 1. The function 

f(x) = det([Xdl) 

is a linear combination of the elements of X, with the 
coefficients being the cofactors of the elements of the hth 
column. Note that for every i = 1, . . . , h - 1 

f(pd = det ([Xd(~dl) = 0 

because the matrix has two identical columns. The function 
f(x) interpolates the data points. Pratt calls this technique, 
which generalizes the classical Vandermonde determinant (see 
chapter II of [25]), exact fit. The coefficients can be efficiently 
computed by first triangularizing X, via column operations at 
cost O(h3) and then computing the cofactors at an additional 
cost O(h2). In the general case, he applies the Cholesky 
decomposition to the square matrix XnX& = qMv, obtaining 
the unique square lower triangular matrix L with positive di- 
agonal elements such that XDX& = LLt, and then, he deletes 
the last column of L and treats the result as though it were the 
h x (h - 1) matrix XD of the exact fit case. In this procedure, 
the coefficient of Xh is never zero and corresponds to the 
constraint Fh = 1, producing the same solution as Chen’s 

algorithm. The way Pratt overcomes the ordering problem is 
by performing the Cholesky decomposition with full pivoting, 
permuting the elements of X during the decomposition. No 
one coefficient is singled out as having to be nonzero. Pratt 
calls this procedure simple jit. 

With respect to iterative methods, Sampson [64] introduced 
a reweight procedure to improve Bookstein’s algorithm in the 
case of “very scattered” data. He explains that this reweighting 
scheme does not necessarily converge, but he does not make 
use of further optimization techniques. 

Solina [69] and Gross and Boult [44] fit superquadrics 
[4] to data minimizing the mean square error (7) using the 
Levenberg-Marquardt algorithm. 

Ponce and Kriegman [59] introduce two iterative methods 
for estimating the distance from a point to an implicit curve 
and then use the Levenberg-Marquardt algorithm to minimize 
the sum of the squares of these estimates. Both methods are 
obviously more expensive than minimizing the approximate 
mean square distance. 

XIII. INTEREST REGIONS AS FEATURESFOR OBJECT RECOGNITION 

Our goal is to use the above procedures to develop tech- 
niques for recognizing objects in such hostile environments 
as, for example, a bin of parts or in a cluttered environment. 
Recognition will be based on matching small regions of 
observed data with parts of known models. The small regions 
will be assumed to constitute unoccluded observations of the 
corresponding parts of the models. If an object is modeled as 
a collection of geometrically related subobjects, the problem 
is reduced to finding the best collection of pairings between 
model subobjects and regions of observed data that satisfies 
the same set of global constraints. 

In order to speed up the matching process, we need a 
procedure to chose interest regions of a model or data set and 
generalized features that will be used as the primary source 
of information in the matching process. The fact that implicit 
curves and surfaces can represent several smooth patches at 
once, lets us generalize the concept of high curvature points 
as features for recognition. 

We define an interest region of degree d and radius r as the 
data within a circular or spherical (rotation invariant) window 
of fixed radius r centered at a data or model point, which is 
well approximated by a dth degree algebraic curve or surface 
with respect to the chosen goodness of fit criterion; it is not 
well approximated by any lower degree curve or surface, and 
it is stable with respect to small displacements of the window 
center. Fig. 15 shows a fourth-degree interest region and radius 
equal to 25 pixels in a simple planar example. We can see that 
around the tip of the pliers, the fit is almost independent of the 
position of the center of the circle, and a third-degree curve 
does not provide a good fit in either case. The representation of 
one object as a collection of subobjects has been used before, 
but the subobjects have been simpler, such as quadric patches. 
For 2-D edge images, the interest regions allow us to use the 
information provided not only by the silhouette but by the 
internal boundary structure as well. The interest regions are 
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(b) 

(cl (4 
Fig. 15. Interest region of degree 4 and a 25-pixel radius: (a) Poor third-degree 
fit in the first position; (b) good fourth degree fit in the first position; (c) 
poor third-degree fit in the second position; (d) good fourth-degree fit in the 
second position. 

subregions with a relatively complex structure, i.e., regions 
that can only be represented with higher d. 

Now, we sketch how a matching process could work based 
on these interest regions. This is the subject of our current 
research, and a detailed study will follow this paper. 

All the interest regions of the third and fourth degree, 
and a finite number of radii, will be precomputed for the 
known models and organized into a database. This database 
tvill be indexed by a finite number of algebraic invariants 
of the approximating polynomial. After finding an interest 
region in the data set, the matching process will start by 
computing the algebraic invariants of the stable polynomial 
of degree d with respect to rigid body transformations and 
finding an appropriate match in the database. Then, a rotation 
and translation, which would transform the model polynomial 
to the estimated one, will be hypothesized, based on tensor 
algebra techniques. This rigid-body transformation will be 
used as an initial estimate for the methods of Section XI- 
A and, after iterative improvement, will be tested against a 
larger subset of data. 

XIV. A SEGMENTATION ALGORITHM 

As an application of the ideas introduced in preceding 
sections, we have implemented two versions of the same 
segmentation algorithm. The first one segments planar edge 
maps into algebraic planar curve patches, and the second 
one segments range images into algebraic surface patches. 
In both cases, the maximum degree is a parameter that can 
be chosen by the user, but due to numerical and complexity 
considerations, it is not appropriate to use patches of a degree 
higher than four or five. There is a straightforward extension 
of these algorithms to the segmentation of space edge maps, 
which are composed of surface discontinuities, surface normal 

discontinuities, occluding boundaries, or lines of curvature, 
into algebraic space curve patches, which we are currently 
implementing. 

These algorithms are partially based on Besl and Jain’s 
variable-order surface fitting algorithm [7], [6] and Silverman 
and Cooper’s surface estimation clustering algorithm [67], and 
they are also related to Chen’s planar curve reconstruction 
algorithm [20]. 

Both versions have the same structure with minor differ- 
ences at the implementation level. The basic building blocks 
are noise variance estimation, region growing, and merging. 

Our philosophy is that this segmentation is most useful when 
the appropriate segmentation is well defined, i.e., when there 
are range or surface normal discontinuities between regions, 
each of which is well represented by a single polynomial. 

A. Noise Variance Estimation 

Since the algorithm follows an hypothesize and test ap- 
proach, tests for accepting or rejecting a hypothesized curve 
or surface as a good approximation for a given set of data 
points have to be chosen. In addition, good subsets of the data 
set to start the region-growing process (the seeds) have to be 
located. These two subjects are closely related. 

Our tests are based on modeling a smooth region of the data 
set as samples of an implicit curve or surface plus additive per- 
turbations in the orthogonal direction to the curve or surface. 
These orthogonal perturbations are assumed to be independent 
Gaussian random variables of zero mean. The square of the 
noise variance at one data point e-(x) is estimated by fitting 
a straight line or plane to the data in a small neighborhood of 
the point, which in our implementation is a circle or ball of a 
radius equal to a few pixels, using the eigenvector fit method 
and then computing the approximate mean square distance to 
the fitted line or plane. This estimator can be biased if the 
curvature of the curve or surface is large at the point. 

Although a much better method to estimate the noise 
variance would be to fit a circle or ellipsoid to the data in a 
neighborhood of the point and then measure the approximate 
mean square distance to this curve or surface, we have 
experienced very good results with the former method. 

The first step of the algorithm is to estimate the square 
of the noise variance at every data point and to store these 
values in an array for latter usage. In the case of surfaces, we 
only compute the estimated noise variances on a subsampled 
image to save computational time. 

The second step of the algorithm is to build a histogram 
of the square noise variance. The data points with square 
noise variance in the top 10% of the histogram are marked as 
outliers. These points correspond to mixed regions, comers, 
or surface normal discontinuities. All the remaining points 
are left available to start growing regions from the small 
neighborhoods used to estimate their noise variances because 
a straight line or plane well approximates the data in that 
neighborhood. 

B. Goodness of Fit Tests 

During the region-growing process, curves or surfaces are 
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hypothesized as good approximations for a given subset of 
data. These hypotheses have to be tested because the criterion 
used for fitting is different from the desired one. We have 
chosen the thresholds used to test the validity of a hypothesized 
curve or surface approximation for a set of data points as 
functions of the noise variance estimates for the individual 
points of the set instead of choosing global thresholds for the 
full data set, as in [7]. There are two reasons for this. In the first 
place, we have observed that in the case of surfaces, the point 
noise variance estimated with the method described in the 
previous section is nonstationary, varying slowly according to 
the angle of the normal with respect to the vertical, that is, the 
viewing direction. In the second place, local thresholds allow 
parallel implementations of the algorithms because distant 
regions become independent of each other. The data set can 
be spatially divided into blocks of approximately the same 
size, the region growing algorithm can be run in parallel for 
each block, and then pairs of neighboring blocks can also be 
merged in parallel. A pyramid architecture can be used to 
implement such an algorithm. The two implementations that 
we present in this paper are sequential and are only intended 
to show the usefulness of the previous fitting techniques. We 
will implement the corresponding parallel versions in the near 
future. 

Let S = {pl>. . . ,p4} be a set of data points, and let a be 
a parameter vector that defines an implicit curve or surface. 

The mean noise variance estimate on the set S will be 
denoted 

where G(pi) is the noise variance at the point p; estimated with 
the method of the previous section. The maximum approximate 

square distance from the set S to the curve or surface defined 
by 0 will be denoted 

Two tests are performed on the parameter vector cx to decide 
whether or not to accept the curve or surface defined by cu as 
a good approximation of the set S. The first test is related to 
the x2 statistic. The parameter vector (Y passes the first test if 
the approximate mean square distance satisfies the inequalities 

where 0 < ti < 1 < ~2 are test constants. If (Y satisfies the first 
test, then we perform the second test. The parameter vector cu: 
passes the second test if ~ 

where ~3 > 1 is another test constant. 
If the parameter vector CY does not satisfy the first test 

with A&(Q) 5 ~1 6:, that is, with the approximate mean 
square distance to small, the curve or surface defined by cx 
is overapproximating the data set, and the hypothesis has to 
be rejected, e.g., if we try to test a pair of very close parallel 
lines as an approximation of a noisy straight line segment. In 
a variable-order algorithm, this means that the order has to be 

decreased. If the parameter vector a does not satisfy the first 
test with ~1 62 _ < A$(@), that is, with the approximate mean 
square distance to large, too many points of S are too far away 
from the curve or surface defined by a, and it cannot possibly 
pass the second test. The hypothesis has to be rejected. Finally, 
our goal is to accept the parameter Q only if the curve or 
surface defined by a approximates every point of S well, that 
is, the maximum approximate distance is not to large with 
respect to the variance estimate for the set. The second test 
takes care of this situation. 

C. Region Growing 

The basic structure of the variable-order region growing 
algorithm can be described as follows. An increasing sequence 

31 5 ” ’ c: ForderM.z,x of families of functions is given. A 
region is a data structure R = (S, f, order), where S is a 
connected subset of data points, and f is an element of 3&er 
that approximates every point of S well. A point x is well 
approximated by the curve or surface defined by the parameter 
vector a if the approximate distance satisfies the inequality 

S(a,x)* < 62 6; 

where e2 is the same constant of the previous paragraph. In 
the case of surfaces, we also test surface normal continuity. 
When the noise variance is estimated at a point, the equation 
of the fitting line or plane also provides an estimate for the 
curve or surface normal at the point. If the angle between the 
gradient of the surface defined by a at a point under test and 
the estimate for the surface normal at the same point is larger 
than a certain value, the point is rejected. 

The region growing starts by finding a seed region I2 = 

(S, f? l), where S is a subset of data points, and f is an 
element of 31, whose set of zeros Z(f) approximates every 
point of S well. In our case, 31 is the family of first-degree 
polynomials, and a seed region is the subset of data points in 
the neighborhood of a point not marked as an outlier, which 
was used to estimate the noise variance at the point, together 
with the fitted straight line or plane. 

Then, given a current region R = (S, f, order), the follow- 
ing loop is repeated until no further growth in S is observed. 
The maximal connected region S’ of points well approximated 
by f and intersecting the initial seed set is computed. If S’ 
does not have more points than S, then neither S nor f are 
changed, and the loop is exited. Otherwise, a new member f’ 
of 30&T is fitted to S’, and if it satisfies the goodness of fit 
test, the region R is replaced by R = (S’, f’, order) and the 
loop repeated. If f’ does not satisfy the test, the loop is exited. 
When the loop is exited, if order is equal to the maximum 
order orderMAx, the region growing is finished returning the 
current region R = (S, f, order). Otherwise, a member f’ of 

Forder+l is fitted to S, and if it satisfies the goodness of fit test, 
f is replaced by f’, order is increased to order + 1, that is, R 
is replaced by R = (S, f’, order+ l), and the loop is traversed 
once more. If f’ does not satisfy the test, the region growing 
is finished returning the current region R = (S, f, order). 

In our implementation of the algorithm for planar curve 
segmentation, the second order corresponds to circles, the 
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third to general second-degree polynomials, the fourth to third- 
degree polynomials, and so on. In the case of surfaces, the 
second-order corresponds to spheres and cylinders, the third 
order to second-degree polynomials, the fourth to third-degree 
polynomials, and so on. There are two reasons for introducing 
an extra family between first- and second-degree polynomials. 
First, we want to locate large and smooth curve or surface 
patches without curve or surface normal discontinuities or 
singularities. Since any pair of straight line or planar patches 
can be well approximated by the set of zeros of a valid second- 
degree algebraic curve or surface, where the set of zeros of the 
product of the two linear equations is without the new family, it 
is equally likely that a region grows across a curve or surface 
normal discontinuity than along a smooth curved area. The 
second reason is that slightly curved areas of the data set that 
are almost well approximated by a straight line are usually 
best approximated by second-degree curves or surfaces with 
many branches, such as pairs of lines or planes, hyperbolas 
or hyperboloids, and ellipses or ellipsoids with very unequal 
mean axes. 

The reason for introducing the merging process is that 
once a region has grown large enough, very few new points 
compatible with the current hypothesized curve or surface 
can be found, and the fit corresponding to the next order 
is generally rejected due to the same problem that we just 
encountered for the case of almost flat data sets approximated 
by second-degree curves or surfaces. The approximate mean 
square distance is too small. With the merging algorithm, a 
larger proportion of points is included in the current region, 
and there exists a possibility of a successful fit of a higher 
order. 

We have restricted the curve or surface types used in the 
region-growing process to those that can be computed only 
with the generalized eigenvector fit algorithm without rhe 
need of improving them with the reweight heuristic and the 
iterative Levenson-Marquardt algorithm, saving time in the 
computation. For planar curves, we use straight lines and 
circles. For surfaces, the parallel of circles are spheres and 
cylinders, but since fitting cylinders require the Levenberg- 
Marquardt algorithm and a strategy to compute an initial 
estimate, we also moved the spheres and cylinders to the 
merging phase, leaving a single-order planar region growing. 

Figs. 16 and 17 provide a description of our implementation 
of the region-growing algorithm for planar curves. The corre- 
sponding surface algorithms are simplified versions of the pla- 
nar curve algorithms described above. TestOrder(72) is a pro- 
cedure that implements the goodness of fit test described in the 
previous section for the region 72 = (S, f, order), and returns 
one of three values: Decrease, Accept, or Increase. It is clear 
what the procedure FitImplicit( order, S) does. With respect 
to GrowRegion(R, R’), the procedure CompatiblePoints 
computes a not-necessarily-connected region intersecting the 
current region by sequentially dilating the current region and 
checking for compatible points. IsCompatible (2, f, order) 

just checks that the approximate distance from x to the set 
Z(f) be within the limits imposed by the second part of 
the goodness of fit test. In the case of surfaces, it also 
checks the angular deviation between the estimated normal 

procedure GrowRqionIkmPoint @) 
s := seedset (p) 
order := Line 
f := FitImplicit (order,S) 
R. := (S,f, order) 
copyRegion (?a,%‘) 
onfcr~~x := Circle 

LOOP: 
GrowRegion (R,R’) 
TEST: 
if order’ = Circle or order = Line 

CopyRegion (W, ‘R) 
if order = Cimk then 

order := Line 

f := FitImplicit (ordsr,S) 
if TestOrder (‘R) # Incr~se then 

CopyRegion (R, w’) 
orderMAx := Line 

goto LOOP 
else if o&r = Line 

if order~~x = Cinle 
or&r := Circle 

f := FitImplicit (order,S) 
goto LOOP 

return (R’) 

Fig. 16. Region-growing algorithm for planar curves. 

procedure GrowRegion (‘R,‘R’) 
do 

A, := CompatiblePoint (‘R) 
b1 := /AI/ 
S := SUA, 
f := FitImplicit (onfcr,S) 
A2 := CompatiblePoints (‘R) 
61 := (A21 
S” := SUA2 
S := Largestcomponent (p, S”) 
if ISI < IS”(/Z then 

lf order = Cinlr then o&r 7 Line 

return 
6, := IS”1 - ISI 

if ISI > IS’1 them 
copyR8gion (12, ‘R’) 

6, := 6, + 6, + 63 
if TmFerPoints (order, S) then 

if o&r = Cinfc then order := Line 
return 

procedure CompatiblePoints (‘R) 
B := {z : llzll 5 radius} 

S’ := s 

do 
s := S’ 
S’ := {z E S d B : IsCompatible (z,f, order)} 

while 72.’ # R 
return (72) 

Fig. 17. Core of region-growing algorithm for planar curves. 

and the gradient of j at the point. Without this check, some 
surface patches grow along very thin strips of neighboring 
transversal patches. LargestComponent (p, S) computes the 
largest connected component of the set S, which is adjacent or 
contains the point p. Finally, TooFewPoints( order, S) rejects 
a region if it has shrunk to much with respect to the given 
order. 

D. Merging 

The variable-order merging tries to find maximal subsets of 
the smooth regions or, depending on the application, groups of 
smooth regions, whrer each of them is represented as a subset 
of the set of zeros of a single implicit curve or surface. The 
merging process can be seen as a generalization of region 



TAUBIN: ESTIMATION OF PLANAR CURVES, SURFACES, AND NONPLANAR SPACE CURVES 

procedure Merging (order, bsi) 
heap := 0 

for ‘R’ E ksf 
for 72” E lid\{??) 

node := MergeAndFit (order,‘R’,R”) 
ifnode # 0 then 

Insert (node, heap) 

while heap # 0 

(R,W,R”) := DeleteMin (heap) 

72’ := R 

lid := bsf\{R.“) 

for 7L E fist\{R’) 
ifSnS’f0 then 

Delete (22, heap) 

for a” E r:sl\{x’) 
if S” n S’ # 0 then 

node := MergeAndFit (order. (R’, 72”) 
if 72 # 0 then 

Insert (node, heap) 

return (hi) 

procedure MergeAndFit (order, W, 72”) 

if order < MinOrder (order’, order”) then 
return (0) 

if order > MaxOrder (order’, order”) then 
return (0) 

s := S’US” 
f := FitImplicit (order,S) 

ifTestOrder (‘R) # Accept then 
R := 0 

return ((72 FL’ iv’)) I 3 

Fig. 18. Merging procedure. 

growing, where regions grow not by single points but by 
groups of points. 

At every step, the variable-order merging produces the best 
possible merge of two neighboring regions. At the beginning, 
all the neighboring pairs that are well fitted by a surface of the 
current order are computed and inserted into a priority queue 
according to the value of the maximum relative approximate 
square distance, which is the number 

where S is the union of the two sets being considered for 
merging. The priority queue is implemented with a binary 
heap. Every node of this heap consists of a tern of regions 
(R, R’, ‘R”), where 72’ and R” are two neighboring regions, 
the set S of the region R is the union of the sets S’ and S” 
corresponding to the region R’ and R’, and the element f of 
R is an acceptable fit of the current order for S. 

Then, while the queue is not empty, the pair corresponding 
to the minimum value is deleted from the queue and merged, 
creating a new region and deleting two, where all the pairs 
that are still in the queue and involve either one of the two 
merged regions are deleted, and all the pairs that involve 
the new region are recomputed and reinserted in the queue. 
The procedure Merging( order, list), which is described in 
Fig. 18, is called sequentially for increasing values of order 

until the maximum one, where list is equal to the current 
list of regions. The procedure MergeAndFit( order, R, 72’) 

fits a surface of the requested order to the union of the two 
regions and returns a nonempty data structure only if a fit of 
the given order successfully passes the goodness of fit test. 
Finally, the procedures MinOrder and MaxOrder impose 
preliminary limits before the fitting precess. For example, if 
two regions are currently approximated by quadrics, it does 

4 
(4 

Cc) 

0) 

(4 
Fig. 19. Segmentation of planar curve: (a) Data set; (b) segmentation after 
region growing with straight line and circle primitives; (c) after merging (b) 
using general second-degree algebraic curve primitives (tonics); (d) after 
merging (c) using general third-degree algebraic curve primitives. 

not make sense to fit a plane to the union, nor does it make 
sence to fit an algebraic surface of degree higher than four 
because the product of the two quadrics already approximates 
the union well. 

XV. EXPERIMENTAL RESULTS 

Figs. 19-21 show the results of our segmentation algorithm 
applied to contours obtained by thresholding gray-level images 
taken by a standard TV-quality CCD camera. Figs. 22 and 23 
show the corresponding results for the segmentation of range 
images taken with a White Scanner model 100 laser range- 
finding system, and finally, Fig. 24 shows the segmentation 
of one range image from the NRCC data base [62] (the file 
“jet4”). 

XVI. CONCLUSIONS 

We show that families of planar curves in z-y, and 3-D 
surfaces in 2-y-z can be described as a subset of a single 
implicit curve or surface. Families of nonplanar 3-D curves 
can be described as a subset of the intersection of a pair of 3- 
D surfaces in x-y-z. We show how this unified representation 
can be used for position estimation and object recognition. 

From an intuitive idea, we developed an approximate dis- 
tance from a point to a curve or surface defined by implicit 
equations, turning the problem of fitting curves and surfaces 
into the minimization of the approximate mean square dis- 
tance. 
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(4 

L-2 
(b) 

Cc) (4 
Fig. 20. Segmentation of planar curve: (a) Data set; (b) segmentation after 
region growing with straight line and circle primitives; (c) after merging 
(b) using general second-degree algebraic curve primitives (tonics); (d) after 
merging (c) using general fourth-degree algebraic curve primitives. 

(a) (b) 
II- 

(c) 

II- 

(4 
Fig. 21 Segmentation of planar curve: (a) Data set; (b) segmentation after 
region growing with straight line and circle primitives; (c) after merging (b) 
using general second-degree algebraic curve primitives (tonics); (d); after 
merging (c) using general third-degree algebraic curve primitives. 

We showed that the minimization of the approximate mean 
square distance reduces to a generalized eigenvector compu- 

(4 (b) 

(4 (e) 

w (h) 0) 

Fig. 22. Segmentation of 3-D scene: sphere, cylinder, and box: (a) Original 
range image represented as a gray-level image; (b) same range image from 
a perspective view; (c) white areas represent regions occluded by shadows; 
(d) result of region growing with planar patches reconstructed as a gray-level 
image; (e) same result from a perspective view; (f) segmentation after the 
region growing; (g) result of merging (d)-(f) with general second-degree 
algebraic surface patches (quadrics), reconstructed as a gray-level image; (h) 
same result from a perspective view; (i) segmentation after the merging. 

tation for certain families of nonsingular curves and surfaces, 
and based on this result, we introduced an efficient procedure 
to compute an initial estimate for the general case. 

The basic contributions of this paper are the approximate 
distance, the generalized eigenvector fit, and the techniques to 
minimize the approximate mean square distance. 

Since the properties of implicit curves and surfaces are 
complicated and have received little attention in the computer 
vision literature, many examples of resulting representations 
are shown, and computational considerations are discussed. 

We show an important set of potential applications to 
object recognition for the methods introduced in this paper. 
Among these is the concept of “interest region,” which is a 
generalization of high curvature points. 

Finally, we described a variable-order segmentation algo- 
rithm for planar curves, surfaces, and space curves, based on 
the methods introduced in this paper. 

APPENDIX A 
THE LEVENBERG-MARQUARDT ALGORITHM 

Let D = {PI,... ,p4} be a set of n-dimensional data 
points, and let $( a, x) be a parameterization of the family of 
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(4 (e) 

(9) (4 0) 

Fig. 23. Segmentation of 3-D scene: spray bottle and cylinders: (a) Original 
range image represented as a gray-level image; (b) same range image from 
a perspective view; (c) white areas represent regions occluded by shadows; 
(d) result of region growing with planar patches reconstructed as a gray-level 
image; (e) same result from a perspective view; (f) segmentation after the 
region growing; (g) result of merging (dHt) with general second-degree 
algebraic surface patches (quadrics) reconstructed as a gray-level image; (h) 
same result from a perspective view; (i) segmentation after the merging. 

admissible maps F. The nonlinear least squares problem is to 
minimize the length of the residual vector R = (RI, . . . , R,)t 

llR(~)ll” = 2 R&)2 = q A%4 
i=l 

where in our case 

&(a) = S(wpi) i = l,...,q 

and the number of points is not less than the number of 
parameters. The Levenberg-Marquardt algorithm, which is 
one of several methods to solve the nonlinear least squares 
problem, is based on the following iteration step: 

05 n+l = an - (+“)J(a”)t + pnIq)-lJ(an)tR(an) 

where J(Q) is the Jacobian of R with respect to Q 

.&(a) = Z(c) 
3 

for i = 1,. . . , q j = 1,. . . , r, and the constant pn is 
chosen as a small nonnegative number (equal to zero whenever 
possible), which makes the matrix 

(4 (e) 

(g) (h) (9 

Fig. 24 Segmentation of 3-D scene: NRCC “jet4” file: (a) Original range 
image represented as a gray-level image; (b) same range image from a 
perspective view; (c) white areas represent regions occluded by shadows 
and the background. (d) result of region growing with planar patches re- 
constructed as a gray-level image;(e) same result from a perspective view; 
(f) segmentation after the region growing; (g) result of merging (dHf) with 
general second-degree algebraic surface patches (quadrics), reconstructed as 
a gray-level image; (h) same result from a perspective view; (i) segmentation 
after the merging. 

safely positive definite. This strategy assures that the algorithm 
reduces the value of llR(cy)(12 at each iteration, converging to 
a local minimum with fast quadratic local convergence. See 
Dennis and Shnabel [27] for details. 

We only need to provide procedures to compute the values 
of the residual vector R(a) and the Jacobian J(a). Since all 
the components of the residual vector have the same form, 
we only need a procedure to compute 6((~, X) and its partial 
derivatives with respect to or,. . . , or. 

For example, let us consider the linear parameterization 
of planar curves and surfaces /C = 1. In this case, we have 
f(x) = c$((u,x) = FX, where F = o? is an r-dimensional 
row vector 

F[XXt]Ft 112 
s(FJ2) = F[DXDXt]Ft 

= (&>“’ 
and 

+,x) = { [FX]X, - S( F, x)2 [FDX]DXjt } 

3 15(F,s)[FllX][FllX]~ 
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In the case of cylinders and, in general, in all the cases 
of parameterized families of polynomials where we can write 
f(x) = FX with the coefficient vector as a function of the 
parameters F = F(a), we just apply the chain rule to the 
previous expression 

h as 
~$a, x) = c -(F(a), x) z(a). 

z j=l vi 2 

APPENDIX B 
ANALYSIS OFTHE GENERALIZED EIGENVEC~OR FIT 

Let A4 and N be T x r symmetric matrices, where N is 
nonnegative definite, and let F be a lc x T matrix. Let US 

consider the problem of minimizing 

trace (FMFt) (16) 

constrained by 

FNFt = Ik. (17) 

Let h = rank(N). Then, let h 2 k; otherwise, the problem 
has no solution because from (17) 

h = rank(N) 2 rank(FNFt) = k. 

We will see that this condition is also sufficient for the 
existence of a solution. In addition, k = rank(F) because 

k = min{k, h} 2 rank(F) 2 rank(FNFt) = k. 

Let F, denote the ith row of F and DF, the Jacobian with 
respect to the T variables of Fi. We can rewrite (16) as 

and (17) as 

c F;MF,” 

i=l 

i,j = 1 >“‘, k. 

Let us consider the function 

I=1 kl j=l 

where A is a k x k matrix. If PI,. . . , @k are the rows of a 
minimizer F of (16)-(17), by the Lagrange multipliers theorem 
(see Theorem 7-10 of [2]), there exists a matrix i such that 

for i = l,... , k, or in matrix form 

PM = i$N. 

Since the matrix M is symmetric and nonnegative definite, 
so is FMFt for every matrix F, and for certain orthogonal 
k x k matrix Q 

QIFMFtlQt = [QFIWQFlt 

is diagonal. Since Qt = Q-l and (16) and (17) are invariant 
with respect to similarity transformations 

trace (FMFt) = trace ([QF]MIQFlt) 

and 

FNFt = Ik w [QFINIQFlt = Ik 

the matrix F is a solution of the minimization problem if and 
only if QF is. We may assume without loss of generality that 
PM@ is diagonal. In this case, i is nonnegative definite and 
diagonal because 

i=iI,=iPNPt=$‘M$‘t 

or equivalently 

piM = j\&N i=l ,...,k 

F’i is a generalized eigenvector of the symmetric-positive 
pencil M - XN corresponding to the eigenvalue Xii. It is clear 
that if 0 5 ?r 5 *.* 5 Ah are the eigenvalues of M - AN, 

the choice Xrr = X1, . . . , ikk = & defines a solution of 
the minimization problem, and a solution clearly exists. The 
solution is unique if and only if xk < &+I, and it is a subspace 
of dimension s 5 h - k if xk = &+r = .. . = &+e and 
s = h - k Or &+s < &+s+l. 

The pencil M - AN is symmetric positive if N is also 
positive definite. Algorithms to solve a symmetric-positive 
eigenproblem are well known (see section 8.6. of [42]), and 
very good subroutine packages are available such as EISPACK 
[68], [36]. The following is a brief description of such an 
algorithm. 

Since N is symmetric and positive definite, it has a Cholesky 
decomposition L -lNLmt = I,, where L is nonsingular and 
lower triangular. Let 0 5 x1 5 . . . 5 & be the least 
eigenvalues of H = L-l MLmt, and let Ur , . T . , uk be corre- 
sponding orthogonal row eigenvectors. The eigenvalues can be 
computed with the QR algorithm, and then, the eigenvectors 
can be computed one by one by inverse iteration. If U is the 
k x r matrix with rows ur, . . . , uk, x = diag(Xr, . . . , &) and 
F = UL-‘, then 

FM = UHLt = XULt = XFN 

FNFt = UUt = Ik 

and F is the solution of the original problem. F can be 
computed by backsubstitution. 

If N is rank deficient, as it is, for example, in the case 
of polynomials, we can reduce the original problem to a 
symmetric-positive one, generalizing the previous algorithm 

[431- 
Since N is nonnegative definite, using the Cholesky decom- 

position with full pivoting, we can find an T x h matrix L1 

and an T x (r - h) matrix Lz such that N = L1 Li, NL:! = 0, 

and the square matrix L = [LlL2] is nonsingular. The matrix 
L is a product of transpositions and elementary triangular 
transformations. In this case, the matrix LmlNLbt is not the 
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identity matrix but a diagonal matrix with h ones followed by 
T - h zeros on the diagonal. The matrix H = L-lA4Lpt can 
be decomposed in the following way: 

H3 +HPHIH; H2Hl 
HIH; HI 

= (2 I(:h))(7 i)(k I(fg 
The matrices HI, Hz, Hs are computed in this order from the 
corresponding blocks of H. Let U, be a Ic x h matrix, Up a 
k x (r - h) matrix, and U = [UlU2]. Since L is nonsingular, 
we can write F = lJLpl for a certain matrix U. Then, 

trace (FMF) 

= trace (UHUt) 

= trace (UlH3Ut) 

and 

+ trace ((UIHZ + U~)HI(UIHZ + U2)t) 

FNFt = Ik w uJJ; = I,. 

Since U2 is not included in the constraint and the matrix 
(U1 H2 + U2)Hl (VI H2 + U2)t is nonnegative definite, if 
F is a solution of the minimization problem, then U2 = 

- U1 Hz. The original problem has been reduced to minimizing 
trace (UlH3Ui) constrained by UlUj = Ik, which is a 
particular case of the symmetric positive problem. 
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